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Preface

Six blind sages were shown an elephant and met to discuss their ex-
perience. “It’s wonderful,” said the first, “an elephant is like a rope:
slender and flexible.” “No, no, not at all,” said the second, “an ele-
phant is like a tree: sturdily planted on the ground.” “Marvelous,”
said the third, “an elephant is like a wall.” “Incredible,” said the
fourth, “an elephant is a tube filled with water.” “What a strange
piecemeal beast this is,” said the fifth. “Strange indeed,” said the
sixth, “but there must be some underlying harmony. Let us investi-
gate the matter further.”

— Freely adapted from a traditional Indian fable.

“A programming language is like a natural, human language in that
it favors certain metaphors, images, and ways of thinking.”

— Mindstorms: Children, Computers, and Powerful Ideas [141], Sey-
mour Papert (1980)

One approach to study computer programming is to study programming lan-
guages. But there are a tremendously large number of languages, so large that it
is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques to use them, not on
programming languages. The concepts are organized in terms of computation
models. A computation model is a formal system that defines how computations
are done. There are many ways to define computation models. Since this book is
intended to be practical, it is important that the computation model should be
directly useful to the programmer. We will therefore define it in terms of concepts
that are important to programmers: data types, operations, and a programming
language. The term computation model makes precise the imprecise notion of
“programming paradigm”. The rest of the book talks about computation models
and not programming paradigms. Sometimes we will use the phrase programming
model. This refers to what the programmer needs: the programming techniques
and design principles made possible by the computation model.

Each computation model has its own set of techniques for programming and
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reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many well-known models as well as some less-known models.
The main criterium for presenting a model is whether it is useful in practice.

Each computation model is based on a simple core language called its kernel
language. The kernel languages are introduced in a progressive way, by adding
concepts one by one. This lets us show the deep relationships between the dif-
ferent models. Often, just adding one new concept makes a world of difference
in programming. For example, adding destructive assignment (explicit state) to
functional programming allows us to do object-oriented programming.

When stepping from one model to the next, how do we decide on what con-
cepts to add? We will touch on this question many times in the book. The main
criterium is the creative extension principle. Roughly, a new concept is added
when programs become complicated for technical reasons unrelated to the prob-
lem being solved. Adding a concept to the kernel language can keep programs
simple, if the concept is chosen carefully. This is explained further in Appendix D.
This principle underlies the progression of kernel languages presented in the book.

A nice property of the kernel language approach is that it lets us use differ-
ent models together in the same program. This is usually called multiparadigm
programming. It is quite natural, since it means simply to use the right concepts
for the problem, independent of what computation model they originate from.
Multiparadigm programming is an old idea. For example, the designers of Lisp
and Scheme have long advocated a similar view. However, this book applies it in
a much broader and deeper way than was previously done.

From the vantage point of computation models, the book also sheds new
light on important problems in informatics. We present three such areas, namely
graphical user interface design, robust distributed programming, and constraint
programming. We show how the judicious combined use of several computation
models can help solve some of the problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to par-
ticular computation models. For example, Java and Smalltalk are based on an
object-oriented model. Haskell and Standard ML are based on a functional mod-
el. Prolog and Mercury are based on a logic model. Not all interesting languages
can be so classified. We mention some other languages for their own merits. For
example, Lisp and Scheme pioneered many of the concepts presented here. Er-
lang is functional, inherently concurrent, and supports fault tolerant distributed
programming.

We single out four languages as representatives of important computation
models: Erlang, Haskell, Java, and Prolog. We identify the computation model
of each language in terms of the book’s uniform framework. For more information
about them we refer readers to other books. Because of space limitations, we are
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not able to mention all interesting languages. Omission of a language does not
imply any kind of value judgement.

Goals of the book

Teaching programming

The main goal of the book is to teach programming as a unified discipline with
a scientific foundation that is useful to the practicing programmer. Let us look
closer at what this means.

What is programming?

We define programming, as a general human activity, to mean the act of extend-
ing or changing a system’s functionality. Programming is a widespread activity
that is done both by nonspecialists (e.g., consumers who change the settings of
their alarm clock or cellular phone) and specialists (computer programmers, the
audience of this book).

This book focuses on the construction of software systems. In that setting,
programming is the step between the system’s specification and a running pro-
gram that implements it. The step consists in designing the program’s archi-
tecture and abstractions and coding them into a programming language. This
is a broad view, perhaps broader than the usual connotation attached to the
word programming. It covers both programming “in the small” and “in the
large”. It covers both (language-independent) architectural issues and (language-
dependent) coding issues. It is based more on concepts and their use rather than
on any one programming language. We find that this general view is natural for
teaching programming. It allows to look at many issues in a way unbiased by
limitations of any particular language or design methodology. When used in a
specific situation, the general view is adapted to the tools used, taking account
their abilities and limitations.

Both science and technology

Programming as defined above has two essential parts: a technology and its sci-
entific foundation. The technology consists of tools, practical techniques, and
standards, allowing us to do programming. The science consists of a broad and
deep theory with predictive power, allowing us to understand programming. Ide-
ally, the science should explain the technology in a way that is as direct and useful
as possible.

If either part is left out, we are no longer doing programming. Without the
technology, we are doing pure mathematics. Without the science, we are doing a
craft, i.e., we lack deep understanding. Teaching programming correctly therefore
means teaching both the technology (current tools) and the science (fundamental
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concepts). Knowing the tools prepares the student for the present. Knowing the
concepts prepares the student for future developments.

More than a craft

Despite many efforts to introduce a scientific foundation, programming is almost
always taught as a craft. It is usually taught in the context of one (or a few)
programming languages (e.g., Java, complemented with Haskell, Scheme, or Pro-
log). The historical accidents of the particular languages chosen are interwoven
together so closely with the fundamental concepts that the two cannot be sepa-
rated. There is a confusion between tools and concepts. What’s more, different
schools of thought have developed, based on different ways of viewing program-
ming, called “paradigms”: object-oriented, logic, functional, etc. Each school of
thought has its own science. The unity of programming as a single discipline has
been lost.

Teaching programming in this fashion is like having separate schools of bridge
building: one school teaches how to build wooden bridges and another school
teaches how to build iron bridges. Graduates of either school would implicitly
consider the restriction to wood or iron as fundamental and would not think of
using wood and iron together.

The result is that programs suffer from poor design. We give an example
based on Java, but the problem exists in all existing languages to some degree.
Concurrency in Java is complex to use and expensive in computational resources.
Because of these difficulties, Java-taught programmers conclude that concurrency
is a fundamentally complex and expensive concept. Program specifications are
designed around the difficulties, often in a contorted way. But these difficulties
are not fundamental at all. There are forms of concurrency that are quite useful
and yet as easy to program with as sequential programs (for example, stream
programming as exemplified by Unix pipes). Furthermore, it is possible to imple-
ment threads, the basic unit of concurrency, almost as cheaply as procedure calls.
If the programmer were taught about concurrency in the correct way, then he
or she would be able to specify for and program in systems without concurrency
restrictions (including improved versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of code.
They provide a rich set of abstractions and syntax. How can we separate the lan-
guages’ fundamental concepts, which underlie their success, from their historical
accidents? The kernel language approach shows one way. In this approach, a
practical language is translated into a kernel language that consists of a small
number of programmer-significant elements. The rich set of abstractions and
syntax is encoded into the small kernel language. This gives both programmer
and student a clear insight into what the language does. The kernel language has
a simple formal semantics that allows reasoning about program correctness and
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complexity. This gives a solid foundation to the programmer’s intuition and the
programming techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by
a small set of closely-related kernel languages. It follows that the kernel language
approach is a truly language-independent way to study programming. Since any
given language translates into a kernel language that is a subset of a larger, more
complete kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of
the scientific method. It is a successful approach that is used in all the exact
sciences. It gives a deep understanding that has predictive power. For example,
structural science lets one design all bridges (whether made of wood, iron, both,
or anything else) and predict their behavior in terms of simple concepts such as
force, energy, stress, and strain, and the laws they obey [62].

Comparison with other approaches

Let us compare the kernel language approach with three other ways to give pro-
gramming a broad scientific basis:

e A foundational calculus, like the A\ calculus or 7 calculus, reduces program-
ming to a minimal number of elements. The elements are chosen to simplify
mathematical analysis, not to aid programmer intuition. This helps theo-
reticians, but is not particularly useful to practicing programmers. Founda-
tional calculi are useful for studying the fundamental properties and limits
of programming a computer, not for writing or reasoning about general
applications.

e A wirtual machine defines a language in terms of an implementation on an
idealized machine. A virtual machine gives a kind of operational semantics,
with concepts that are close to hardware. This is useful for designing com-
puters, implementing languages, or doing simulations. It is not useful for
reasoning about programs and their abstractions.

o A multiparadigm language is a language that encompasses several program-
ming paradigms. For example, Scheme is both functional and imperative
([38]) and Leda has elements that are functional, object-oriented, and logi-
cal ([27]). The usefulness of a multiparadigm language depends on how well
the different paradigms are integrated.

The kernel language approach combines features of all these approaches. A well-
designed kernel language covers a wide range of concepts, like a well-designed
multiparadigm language. If the concepts are independent, then the kernel lan-
guage can be given a simple formal semantics, like a foundational calculus. Final-
ly, the formal semantics can be a virtual machine at a high level of abstraction.
This makes it easy for programmers to reason about programs.
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Designing abstractions

The second goal of the book is to teach how to design programming abstractions.
The most difficult work of programmers, and also the most rewarding, is not
writing programs but rather designing abstractions. Programming a computer is
primarily designing and using abstractions to achieve new goals. We define an
abstraction loosely as a tool or device that solves a particular problem. Usually the
same abstraction can be used to solve many different problems. This versatility
is one of the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automo-
biles.! Abstractions can be classified into a hierarchy depending on how special-
ized they are (e.g., “pencil” is more specialized than “writing instrument”, but
both are abstractions).

Abstractions are particularly numerous inside computer systems. Modern
computers are highly complex systems consisting of hardware, operating sys-
tem, middleware, and application layers, each of which is based on the work of
thousands of people over several decades. They contain an enormous number of
abstractions, working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not too much of an exaggeration to say that civilization is built
on successful abstractions [134]. New ones are being designed every day. Some
ancient ones, like the wheel and the arch, are still with us. Some modern ones,
like the cellular phone, quickly become part of our daily life.

We use the following approach to achieve the second goal. We start with pro-
gramming concepts, which are the raw materials for building abstractions. We
introduce most of the relevant concepts known today, in particular lexical scoping,
higher-order programming, compositionality, encapsulation, concurrency, excep-
tions, lazy execution, security, explicit state, inheritance, and nondeterministic
choice. For each concept, we give techniques for building abstractions with it.
We give many examples of sequential, concurrent, and distributed abstractions.
We give some general laws for building abstractions. Many of these general laws
have counterparts in other applied sciences, so that books like [69], [55], and [62]
can be an inspiration to programmers.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

! Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential equa-
tions. They do not have to be material entities!
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e The computation-based approach presents programming as a way to define
executions on machines. It grounds the student’s intuition in the real world
by means of actual executions on real systems. This is especially effective
with an interactive system: the student can create program fragments and
immediately see what they do. Reducing the time between thinking “what
if” and seeing the result is an enormous aid to understanding. Precision
is not sacrificed, since the formal semantics of a program can be given in
terms of an abstract machine.

e The logic-based approach presents programming as a branch of mathemat-
ical logic. Logic does not speak of execution but of program properties,
which is a higher level of abstraction. Programs are mathematical con-
structions that obey logical laws. The formal semantics of a program is
given in terms of a mathematical logic. Reasoning is done with logical as-
sertions. The logic-based approach is harder for students to grasp yet it is
essential for defining precise specifications of what programs do.

Like Structure and Interpretation of Computer Programs, by Abelson, Sussman,
& Sussman [1, 2], our book mostly uses the computation-based approach. Con-
cepts are illustrated with program fragments that can be run interactively on an
accompanying software package, the Mozart Programming System [129]. Pro-
grams are constructed with a building-block approach, bringing together basic
concepts to build more complex ones. A small amount of logical reasoning is in-
troduced in later chapters, e.g., for defining specifications and for using invariants
to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of this book are all carefully-chosen subsets of Oz. Why did
we choose Oz? The main reason is that it supports the kernel language approach
well. Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation mod-
els. The models are designed not just with formal simplicity in mind (although it
is important), but on the basis of how a programmer can express himself/herself
and reason within the model. There are many different practical computation
models, with different levels of expressiveness, different programming techniques,
and different ways of reasoning about them. We find that each model has its
domain of application. This book explains many of these models, how they are
related, how to program in them, and how to combine them to greatest advantage.
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More is not better (or worse), just different

All computation models have their place. It is not true that models with more
concepts are better or worse. This is because a new concept is like a two-edged
sword. Adding a concept to a computation model introduces new forms of expres-
sion, making some programs simpler, but it also makes reasoning about programs
harder. For example, by adding ezplicit state (mutable variables) to a functional
programming model we can express the full range of object-oriented programming
techniques. However, reasoning about object-oriented programs is harder than
reasoning about functional programs. Functional programming is about calcu-
lating values with mathematical functions. Neither the values nor the functions
change over time. Explicit state is one way to model things that change over
time: it provides a container whose content can be updated. The very power of
this concept makes it harder to reason about.

The importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same
program. We find that this is not at all the case. This is because models are
not just monolithic blocks with nothing in common. On the contrary, they have
much in common. For example, the differences between declarative & imperative
models and concurrent & sequential models are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind of
epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for
a well-written program to use different models. At this early point this answer
may seem cryptic. It will become clear later in the book.

An important principle we will see in this book is that concepts traditionally
associated with one model can be used to great effect in more general models. For
example, the concepts of lexical scoping and higher-order programming, which are
usually associated with functional programming, are useful in all models. This
is well-known in the functional programming community. Functional languages
have long been extended with explicit state (e.g., Scheme [38] and Standard
ML [126, 192]) and more recently with concurrency (e.g., Concurrent ML [15§]
and Concurrent Haskell [149, 147]).
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The limits of single models

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

e Object-oriented languages encourage the overuse of state and inheritance.
Objects are stateful by default. While this seems simple and intuitive, it
actually complicates programming, e.g., it makes concurrency difficult (see
Section 8.2). Design patterns, which define a common terminology for de-
scribing good programming techniques, are usually explained in terms of in-
heritance [58]. In many cases, simpler higher-order programming techniques
would suffice (see Section 7.4.7). In addition, inheritance is often misused.
For example, object-oriented graphical user interfaces often recommend us-
ing inheritance to extend generic widget classes with application-specific
functionality (e.g., in the Swing components for Java). This is counter to
separation of concerns.

e Functional languages encourage the overuse of higher-order programming.
Typical examples are monads and currying. Monads are used to encode
state by threading it throughout the program. This makes programs more
intricate but does not achieve the modularity properties of true explicit
state (see Section 4.7). Currying lets you apply a function partially by
giving only some of its arguments. This returns a new function that expects
the remaining arguments. The function body will not execute until all
arguments are there. The flipside is that it is not clear by inspection whether
the function has all its arguments or is still curried (“waiting” for the rest).

e Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of
Horn clauses, which resemble simple logical axioms in an “if-then” style.
Many algorithms are obfuscated when written in this style. Backtracking-
based search must always be used even though it is almost never needed

(see [196]).

These examples are to some extent subjective; it is difficult to be completely ob-
jective regarding good programming style and language expressiveness. Therefore
they should not be read as passing any judgement on these models. Rather, they
are hints that none of these models is a panacea when used alone. Each model
is well-adapted to some problems but less to others. This book tries to present
a balanced approach, sometimes using a single model in isolation but not shying
away from using several models together when it is appropriate.
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Teaching from the book

We explain how the book fits in an informatics curriculum and what courses
can be taught with it. By informatics we mean the whole field of information
technology, including computer science, computer engineering, and information
systems. Informatics is sometimes called computing.

Role in informatics curriculum

Let us consider the discipline of programming independent of any other domain
in informatics. In our experience, it divides naturally into three core topics:

1. Concepts and techniques.
2. Algorithms and data structures.

3. Program design and software engineering.

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught
early on, so that students avoid bad habits. However, this is only part of the story
since students need to know about concepts to express their designs. Parnas has
used an approach that starts with topic (3) and uses an imperative computation
model [143]. Because this book uses many computation models, we recommend
using it to teach (1) and (3) concurrently, introducing new concepts and design
principles gradually. In the informatics program at UCL, we attribute eight
semester-hours to each topic. This includes lectures and lab sessions. Together
the three topics comprise one sixth of the full informatics curriculum for licentiate
and engineering degrees.

There is another point we would like to make, which concerns how to teach
concurrent programming. In a traditional informatics curriculum, concurrency
is taught by extending a stateful model, just as Chapter 8 extends Chapter 6.
This is rightly considered to be complex and difficult to program with. There are
other, simpler forms of concurrent programming. The declarative concurrency of
Chapter 4 is much simpler to program with and can often be used in place of
stateful concurrency (see the quote that starts Chapter 4). Stream concurrency,
a simple form of declarative concurrency, has been taught in first-year courses at
MIT and other institutions. Another simple form of concurrency, message passing
between threads, is explained in Chapter 5. We suggest that both declarative
concurrency and message-passing concurrency be part of the standard curriculum
and be taught before stateful concurrency.

Courses

We have used the book as a textbook for several courses ranging from second-
year undergraduate to graduate courses [200, 199, 157]. In its present form,
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this book is not intended as a first programming course, but the approach could
likely be adapted for such a course.? Students should have a small amount of
previous programming experience (e.g., a practical introduction to programming
and knowledge of simple data structures such as sequences, sets, stacks, trees,
and graphs) and a small amount of mathematical maturity (e.g., a first course on
analysis, discrete mathematics, or algebra). The book has enough material for
at least four semester-hours worth of lectures and as many lab sessions. Some of
the possible courses are:

e An undergraduate course on programming concepts and techniques. Chap-
ter 1 gives a light introduction. The course continues with Chapters 2-8.
Depending on the desired depth of coverage, more or less emphasis can be
put on algorithms (to teach algorithms along with programming), concur-
rency (which can be left out completely, if so desired), or formal semantics
(to make intuitions precise).

e An undergraduate course on applied programming models. This includes
relational programming (Chapter 9), specific programming languages (espe-
cially Erlang, Haskell, Java, and Prolog), graphical user interface program-
ming (Chapter 10), distributed programming (Chapter 11), and constraint
programming (Chapter 12). This course is a natural sequel to the previous
one.

e An undergraduate course on concurrent and distributed programming (Chap-
ters 4, 5, 8, and 11). Students should have some programming experience.
The course can start with small parts of Chapters 2, 3, 6, and 7 to introduce
declarative and stateful programming.

e A graduate course on computation models (the whole book, including the
semantics in Chapter 13). The course can concentrate on the relationships
between the models and on their semantics.

The book’s Web site has more information on courses including transparencies
and lab assignments for some of them. The Web site has an animated interpreter
done by Christian Schulte that shows how the kernel languages execute according
to the abstract machine semantics. The book can be used as a complement to
other courses:

e Part of an undergraduate course on constraint programming (Chapters 4, 9,
and 12).

e Part of a graduate course on intelligent collaborative applications (parts of
the whole book, with emphasis on Part III). If desired, the book can be
complemented by texts on artificial intelligence (e.g., [160]) or multi-agent
systems (e.g., [205]).

2We will gladly help anyone willing to tackle this adaptation.
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e Part of an undergraduate course on semantics. All the models are formally
defined in the chapters that introduce them, and this semantics is sharpened
in Chapter 13. This gives a real-sized case study of how to define the
semantics of a complete modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a prac-
tical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these frag-
ments, course lectures can have live interactive demonstrations of the concepts.
We find that students very much appreciate this style of lecture.

Each chapter ends with a set of exercises that usually involve some program-
ming. They can be solved on the Mozart system. To best learn the material in
the chapter, we encourage students to do as many exercises as possible. Exer-
cises marked (advanced exercise) can take from several days up to several weeks.
Exercises marked (research project) are open ended and can result in significant
research contributions.

Software

A useful feature of the book is that all program fragments can be run on a
software platform, the Mozart Programming System. Mozart is a full-featured
production-quality programming system that comes with an interactive incremen-
tal development environment and a full set of tools. It compiles to an efficient
platform-independent bytecode that runs on many varieties of Unix and Win-
dows, and on Mac OS X. Distributed programs can be spread out over all these
systems. The Mozart Web site, http://www.mozart-oz.org, has complete infor-
mation including downloadable binaries, documentation, scientific publications,
source code, and mailing lists.

The Mozart system efficiently implements all the computation models covered
in the book. This makes it ideal for using models together in the same program
and for comparing models by writing programs to solve a problem in different
models. Because each model is implemented efficiently, whole programs can be
written in just one model. Other models can be brought in later, if needed, in a
pedagogically justified way. For example, programs can be completely written in
an object-oriented style, complemented by small declarative components where
they are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system is
released with full source code under an Open Source license agreement. The first
public release was in 1995. The first public release with distribution support was
in 1999. The book is based on an ideal implementation that is close to Mozart
version 1.3.0, released in 2003. The differences between the ideal implementation
and Mozart are listed on the book’s Web site.
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History and acknowledgements

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. Many people contributed ideas,
implementations, tools, and applications. We are lucky to have had a coherent
vision among our colleagues for such a long period. Thanks to this, we have been
able to make progress.

Our main research vehicle and “testbed” of new ideas is the Mozart system,
which implements the Oz language. The system’s main designers and developers
are and were (in alphabetic order): Per Brand, Thorsten Brunklaus, Denys Duchi-
er, Donatien Grolaux, Seif Haridi, Dragan Havelka, Martin Henz, Erik Klintskog,
Leif Kornstaedt, Michael Mehl, Martin Miiller, Tobias Miiller, Anna Neiderud,
Konstantin Popov, Ralf Scheidhauer, Christian Schulte, Gert Smolka, Peter Van
Roy, and Jorg Wiirtz. Other important contributors are and were (in alphabet-
ic order): Ilies Alouini, Thorsten Brunklaus, Raphaél Collet, Frej Drejhammer,
Sameh El-Ansary, Nils Franzén, Kevin Glynn, Martin Homik, Simon Lindblom,
Benjamin Lorenz, Valentin Mesaros, and Andreas Simon.

We would also like to thank the following researchers and indirect contributors:
Hassan Ait-Kaci, Joe Armstrong, Joachim Durchholz, Andreas Franke, Claire
Gardent, Fredrik Holmgren, Sverker Janson, Torbjorn Lager, Elie Milgrom, Johan
Montelius, Al-Metwally Mostafa, Joachim Niehren, Luc Onana, Marc-Antoine
Parent, Dave Parnas, Mathias Picker, Andreas Podelski, Christophe Ponsard,
Mahmoud Rafea, Juris Reinfelds, Thomas Sjoland, Fred Spiessens, Joe Turner,
and Jean Vanderdonckt.

We give a special thanks to the following people for their help with materi-
al related to the book. We thank Raphaél Collet for co-authoring Chapters 12
and 13 and for his work on the practical part of LINF1251, a course taught
at UCL. We thank Donatien Grolaux for three GUI case studies (used in Sec-
tions 10.3.2-10.3.4). We thank Kevin Glynn for writing the Haskell introduction
(Section 4.8). We thank Frej Drejhammar, Sameh El-Ansary, and Dragan Havel-
ka for their work on the practical part of Datalogill, a course taught at KTH. We
thank Christian Schulte who was responsible for completely rethinking and rede-
veloping a subsequent edition of Datalogill and for his comments on a draft of
the book. We thank Ali Ghodsi, Johan Montelius, and the other three assistants
for their work on the practical part of this edition. We thank Luis Quesada and
Kevin Glynn for their work on the practical part of INGI2131, a course taught
at UCL. We thank Bruno Carton, Raphaél Collet, Kevin Glynn, Donatien Gro-
laux, Stefano Gualandi, Valentin Mesaros, Al-Metwally Mostafa, Luis Quesada,
and Fred Spiessens for their efforts in proofreading and testing the example pro-
grams. Finally, we thank the members of the Department of Computing Science
and Engineering at UCL, the Swedish Institute of Computer Science, and the De-
partment of Microelectronics and Information Technology at KTH. We apologize
to anyone we may have inadvertently omitted.
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How did we manage to keep the result so simple with such a large crowd of
developers working together? No miracle, but the consequence of a strong vi-
sion and a carefully crafted design methodology that took more than a decade to
create and polish (see [196] for a summary; we can summarize it as “a design is
either simple or wrong”). Around 1990, some of us came together with already
strong systems building and theoretical backgrounds. These people initiated the
ACCLAIM project, funded by the European Union (1991-1994). For some rea-
son, this project became a focal point. Three important milestones among many
were the papers by Sverker Janson & Seif Haridi in 1991 [93] (multiple paradigms
in AKL), by Gert Smolka in 1995 [180] (building abstractions in Oz), and by Seif
Haridi et al in 1998 [72] (dependable open distribution in Oz). The first paper
on Oz was published in 1993 and already had many important ideas [80]. Af-
ter ACCLAIM, two laboratories continued working together on the Oz ideas: the
Programming Systems Lab (DFKI, Universitit des Saarlandes, and Collaborative
Research Center SFB 378) in Saarbriicken, Germany, and the Intelligent Systems
Laboratory (Swedish Institute of Computer Science), in Stockholm, Sweden.

The Oz language was originally designed by Gert Smolka and his students
in the Programming Systems Lab [79, 173, 179, 81, 180, 74, 172]. The well-
factorized design of the language and the high quality of its implementation are
due in large part to Smolka’s inspired leadership and his lab’s system-building
expertise. Among the developers, we mention Christian Schulte for his role in
coordinating general development, Denys Duchier for his active support of users,
and Per Brand for his role in coordinating development of the distributed im-
plementation. In 1996, the German and Swedish labs were joined by the De-
partment of Computing Science and Engineering (Université catholique de Lou-
vain), in Louvain-la-Neuve, Belgium, when the first author moved there. Together
the three laboratories formed the Mozart Consortium with its neutral Web site
http://www.mozart-oz.org so that the work would not be tied down to a single
institution.

This book was written using LaTeX 2., flex, xfig, xv, vi/vim, emacs, and
Mozart, first on a Dell Latitude with Red Hat Linux and KDE, and then on
an Apple Macintosh PowerBook G4 with Mac OS X and X11. The first au-
thor thanks the Walloon Region of Belgium for their generous support of the
Oz/Mozart work at UCL in the PIRATES project.

What’s missing
There are two main topics missing from the book:
e Static typing. The formalism used in this book is dynamically typed. De-
spite the advantages of static typing for program verification, security, and
implementation efficiency, we barely mention it. The main reason is that

the book focuses on expressing computations with programming concepts,
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with as few restrictions as possible. There is already plenty to say even
within this limited scope, as witness the size of the book.

o Specialized programming techniques. The set of programming techniques
is too vast to explain in one book. In addition to the general techniques
explained in this book, each problem domain has its own particular tech-
niques. This book does not cover all of them; attempting to do so would
double or triple its size. To make up for this lack, we point the reader to
some good books that treat particular problem domains: artificial intel-
ligence techniques [160, 136], algorithms [41], object-oriented design pat-
terns [58], multi-agent programming [205], databases [42], and numerical
techniques [153].

Final comments

We have tried to make this book useful both as a textbook and as a reference.
It is up to you to judge how well it succeeds in this. Because of its size, it is
likely that some errors remain. If you find any, we would appreciate hearing from
you. Please send them and all other constructive comments you may have to the
following address:

Concepts, Techniques, and Models of Computer Programming
Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium

As a final word, we would like to thank our families and friends for their support
and encouragement during the more than three years it took us to write this book.
Seif Haridi would like to give a special thanks to his parents Ali and Amina and
to his family Eeva, Rebecca, and Alexander. Peter Van Roy would like to give a
special thanks to his parents Frans and Hendrika and to his family Marie-Thérese,
Johan, and Lucile.

Louvain-la-Neuve, Belgium PETER VAN ROY
Kista, Sweden SEIF HARIDI
June 2003

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



xlii PREFACE

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



Running the example programs

This book gives many example programs and program fragments, All of these can
be run on the Mozart Programming System. To make this as easy as possible,
please keep the following points in mind:

e The Mozart system can be downloaded without charge from the Mozart
Consortium Web site http://www.mozart-oz.org. Releases exist for var-
ious flavors of Windows and Unix and for Mac OS X.

e All examples, except those intended for standalone applications, can be run
in Mozart’s interactive development environment. Appendix A gives an
introduction to this environment.

e New variables in the interactive examples must be declared with the declare
statement. The examples of Chapter 1 show how to do it. Forgetting to
do this can result in strange errors if older versions of the variables exist.
Starting with Chapter 2 and for all succeeding chapters, the declare state-
ment is omitted in the text when it is obvious what the new variables are.
It should be added to run the examples.

e Some chapters use operations that are not part of the standard Mozart re-
lease. The source code for these additional operations (along with much
other useful material) is given on the book’s Web site. We recommend
putting these definitions into your .ozrc file, so they will be loaded auto-
matically when the system starts up.

e There are a few differences between the ideal implementation of this book
and the Mozart system. They are explained on the book’s Web site.
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Chapter 1

Introduction to Programming
Concepts

“There is no royal road to geometry.”
— Euclid’s reply to Ptolemy, Euclid (c. 300 BC)

“Just follow the yellow brick road.”
— The Wonderful Wizard of Oz, L. Frank Baum (1856-1919)

Programming is telling a computer how it should do its job. This chapter gives
a gentle, hands-on introduction to many of the most important concepts in pro-
gramming. We assume you have had some previous exposure to computers. We
use the interactive interface of Mozart to introduce programming concepts in a
progressive way. We encourage you to try the examples in this chapter on a
running Mozart system.

This introduction only scratches the surface of the programming concepts we
will see in this book. Later chapters give a deep understanding of these concepts
and add many other concepts and techniques.

1.1 A calculator

Let us start by using the system to do calculations. Start the Mozart system by
typing:

(o4

or by double-clicking a Mozart icon. This opens an editor window with two
frames. In the top frame, type the following line:

{Browse 9999*9999}

Use the mouse to select this line. Now go to the 0z menu and select Feed Region.
This feeds the selected text to the system. The system then does the calculation
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9999*9999 and displays the result, 99980001 , in a special window called the
browser. The curly braces { ... } are used for a procedure or function call.
Browse is a procedure with one argument, which is called as {Browse X} . This
opens the browser window, if it is not already open, and displays X in it.

1.2 Variables

While working with the calculator, we would like to remember an old result,
so that we can use it later without retyping it. We can do this by declaring a
variable:

declare
V=9999*9999

This declares V and binds it to 99980001 . We can use this variable later on:
{Browse V*V}

This displays the answer 9996000599960001 .

Variables are just short-cuts for values. That is, they cannot be assigned
more than once. But you can declare another variable with the same name as a
previous one. This means that the old one is no longer accessible. But previous
calculations, which used the old variable, are not changed. This is because there
are in fact two concepts hiding behind the word “variable”:

e The identifier. This is what you type in. Variables start with a capital
letter and can be followed by any letters or digits. For example, the capital
letter “V” can be a variable identifier.

e The store vartable. This is what the system uses to calculate with. It is
part of the system’s memory, which we call its store.

The declare statement creates a new store variable and makes the variable
identifier refer to it. Old calculations using the same identifier V are not changed
because the identifier refers to another store variable.

1.3 Functions

Let us do a more involved calculation. Assume we want to calculate the factorial
function n!, which is defined as 1 x 2 x - -+ x (n — 1) x n. This gives the number
of permutations of n items, that is, the number of different ways these items can
be put in a row. Factorial of 10 is:

{Browse 1*2*3*4*5*6*7*8*9*10}
This displays 3628800 . What if we want to calculate the factorial of 1007 We
would like the system to do the tedious work of typing in all the integers from 1

to 100. We will do more: we will tell the system how to calculate the factorial of
any n. We do this by defining a function:
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declare
fun {Fact N}

if N==0 then 1 else N*Fact N-1} end
end

The keyword declare says we want to define something new. The keyword fun

starts a new function. The function is called Fact and has one argument N. The
argument is a local variable, i.e., it is known only inside the function body. Each
time we call the function a new variable is declared.

Recursion

The function body is an instruction called an if expression. When the function
is called then the if expression does the following steps:

e [t first checks whether Nis equal to 0 by doing the test N==0.

e If the test succeeds, then the expression after the then is calculated. This
just returns the number 1. This is because the factorial of 0 is 1.

e If the test fails, then the expression after the else is calculated. That is,
if Nis not 0, then the expression N*{Fact N-1} is done. This expression
uses Fact , the very function we are defining! This is called recursion. It
is perfectly normal and no cause for alarm. Fact is recursive because the
factorial of Nis simply N times the factorial of N-1. Fact uses the following
mathematical definition of factorial:

o =1
nl = nxn-1!if n>0

which is recursive.

Now we can try out the function:
{Browse {Fact 10}}

This should display 3628800 as before. This gives us confidence that Fact is
doing the right calculation. Let us try a bigger input:

{Browse {Fact 100}}

This will display a huge number:

933 26215 44394 41526 81699 23885 62667 00490
71596 82643 81621 46859 29638 95217 59999 32299
15608 94146 39761 56518 28625 36979 20827 22375
82511 85210 91686 40000 00000 00000 00000 00000
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This is an example of arbitrary precision arithmetic, sometimes called “infinite
precision” although it is not infinite. The precision is limited by how much
memory your system has. A typical low-cost personal computer with 64 MB of
memory can handle hundreds of thousands of digits. The skeptical reader will
ask: is this huge number really the factorial of 1007 How can we tell? Doing the
calculation by hand would take a long time and probably be incorrect. We will
see later on how to gain confidence that the system is doing the right thing.

Combinations

Let us write a function to calculate the number of combinations of 7 items taken
from n. This is equal to the number of subsets of size r that can be made from

a set of size n. This is written - ) in mathematical notation and pronounced

“n choose r”. It can be defined as follows using the factorial:

which leads naturally to the following function:

declare
fun {Comb N R}

{Fact N} div ({Fact R}*{Fact N-R})
end

For example, {Comb 10 3} is 120, which is the number of ways that 3 items can
be taken from 10. This is not the most efficient way to write Comh but it is
probably the simplest.

Functional abstraction

The function Combecalls Fact three times. It is always possible to use existing
functions to help define new functions. This principle is called functional abstrac-
tion because it uses functions to build abstractions. In this way, large programs
are like onions, with layers upon layers of functions calling functions.

1.4 Lists

Now we can calculate functions of integers. But an integer is really not very much
to look at. Say we want to calculate with lots of integers. For example, we would
like to calculate Pascal’s triangle:
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This triangle is named after scientist and mystic Blaise Pascal. It starts with 1
in the first row. Each element is the sum of two other elements: the ones above
it and just to the left and right. (If there is no element, like on the edges, then
zero is taken.) We would like to define one function that calculates the whole nth
row in one swoop. The nth row has n integers in it. We can do it by using lists
of integers.

A list is just a sequence of elements, bracketed at the left and right, like [5
6 7 8] . For historical reasons, the empty list is written nil (and not [] ). Lists
can be displayed just like numbers:

{Browse [ 5 6 7 8]}

The notation [5 6 7 8] is a short-cut. A list is actually a chain of links, where
each link contains two things: one list element and a reference to the rest of the
chain. Lists are always created one element a time, starting with nil and adding
links one by one. A new link is written H|T, where H is the new element and T
is the old part of the chain. Let us build a list. We start with Z=nil . We add a
first link Y=7|Z and then a second link X=6|Y . Now X references a list with two
links, a list that can also be written as [6 7] .

The link H|T is often called a cons, a term that comes from Lisp.! We also
call it a list pair. Creating a new link is called consing. If T is a list, then consing
Hand T together makes a new list H|T :

!Much list terminology was introduced with the Lisp language in the late 1950’s and has
stuck ever since [120]. Our use of the vertical bar comes from Prolog, a logic programming
language that was invented in the early 1970’s [40, 182]. Lisp itself writes the cons as (H . T),
which it calls a dotted pair.
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1 First row
1 1 Second row
1 2 1 Third row
0) 1 3 3 1 ©) Fourth row
\+ AJr /\+ /\+ /\+ /
1 4 6 4 1 Fifth row

Figure 1.2: Calculating the fifth row of Pascal’s triangle

declare

H=5

T=[6 7 8]
{Browse H|T}

The list H|T can be written [5 6 7 8] . It has head 5 and tail [6 7 8] . The
cons H|T can be taken apart, to get back the head and tail:

declare

L=[5 6 7 8]
{Browse L.1}
{Browse L.2}

W

This uses the dot operator “. 7, which is used to select the first or second argument
of a list pair. Doing L.1 gives the head of L, the integer 5. Doing L.2 gives the
tail of L, the list [6 7 8] . Figure 1.1 gives a picture: L is a chain in which each
link has one list element and the nil marks the end. Doing L.1 gets the first
element and doing L.2 gets the rest of the chain.

Pattern matching

A more compact way to take apart a list is by using the case instruction, which
gets both head and tail in one step:

declare
L=[5 6 7 8]
case L of H|T then {Browse H} {Browse T} end

This displays 5 and [6 7 8] , just like before. The case instruction declares two
local variables, Hand T, and binds them to the head and tail of the list L. We say
the case instruction does pattern matching, because it decomposes L according
to the “pattern” H|T. Local variables declared with a case are just like variables
declared with declare , except that the variable exists only in the body of the
case statement, that is, between the then and the end.

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



1.5 Functions over lists

1.5 Functions over lists

Now that we can calculate with lists, let us define a function, {Pascal N} , to
calculate the nth row of Pascal’s triangle. Let us first understand how to do the
calculation by hand. Figure 1.2 shows how to calculate the fifth row from the
fourth. Let us see how this works if each row is a list of integers. To calculate a
row, we start from the previous row. We shift it left by one position and shift it
right by one position. We then add the two shifted rows together. For example,
take the fourth row:

(1 3 3 1]
We shift this row left and right and then add them together:

[t 3 3 1 0]
+[0 1 3 3 1]

Note that shifting left adds a zero to the right and shifting right adds a zero to
the left. Doing the addition gives:

[t 4 6 4 1]

which is the fifth row.

The main function

Now that we understand how to solve the problem, we can write a function to do
the same operations. Here it is:

declare  Pascal AddList ShiftLeft ShiftRight
fun {Pascal N}

if N==1 then [1]

else

{AddList {ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}

end

end

In addition to defining Pascal , we declare the variables for the three auxiliary
functions that remain to be defined.

The auxiliary functions

This does not completely solve the problem. We have to define three more func-
tions: ShiftLeft | which shifts left by one position, ShiftRight , which shifts
right by one position, and AddList , which adds two lists. Here are ShiftLeft
and ShiftRight
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fun {ShiftLeft L}
case L of H|T then
H|{ShiftLeft T}
else [0] end
end

fun {ShiftRight L} O|L end

ShiftRight  just adds a zero to the left. ShiftLeft traverses L one element at
a time and builds the output one element at a time. We have added an else to
the case instruction. This is similar to an else in an if : it is executed if the
pattern of the case does not match. That is, when L is empty then the output
is [0] , i.e., a list with just zero inside.

Here is AddList

fun {AddList L1 L2}
case L1 of H1|T1 then
case L2 of H2|T2 then
H1+H2|{AddList T1 T2}
end
else nil end
end

This is the most complicated function we have seen so far. It uses two case
instructions, one inside another, because we have to take apart two lists, L1 and
L2. Now that we have the complete definition of Pascal , we can calculate any
row of Pascal’s triangle. For example, calling {Pascal 20} returns the 20th row:

[1 19 171 969 3876 11628 27132 50388 75582 92378
92378 75582 50388 27132 11628 3876 969 171 19 1]

Is this answer correct? How can you tell? It looks right: it is symmetric (reversing
the list gives the same list) and the first and second arguments are 1 and 19, which
are right. Looking at Figure 1.2, it is easy to see that the second element of the
nth row is always n— 1 (it is always one more than the previous row and it starts
out zero for the first row). In the next section, we will see how to reason about
correctness.

Top-down software development

Let us summarize the technique we used to write Pascal :
e The first step is to understand how to do the calculation by hand.

e The second step writes a main function to solve the problem, assuming that
some auxiliary functions (here, ShiftLeft | ShiftRight | and AddList )
are known.

e The third step completes the solution by writing the auxiliary functions.
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The technique of first writing the main function and filling in the blanks af-
terwards is known as top-down software development. It is one of the most
well-known approaches, but it gives only part of the story.

1.6 Correctness

A program is correct if it does what we would like it to do. How can we tell
whether a program is correct? Usually it is impossible to duplicate the program’s
calculation by hand. We need other ways. One simple way, which we used before,
is to verify that the program is correct for outputs that we know. This increases
confidence in the program. But it does not go very far. To prove correctness in
general, we have to reason about the program. This means three things:

e We need a mathematical model of the operations of the programming lan-
guage, defining what they should do. This model is called the semantics of
the language.

e We need to define what we would like the program to do. Usually, this
is a mathematical definition of the inputs that the program needs and the
output that it calculates. This is called the program’s specification.

e We use mathematical techniques to reason about the program, using the
semantics. We would like to demonstrate that the program satisfies the
specification.

A program that is proved correct can still give incorrect results, if the system
on which it runs is incorrectly implemented. How can we be confident that the
system satisfies the semantics? Verifying this is a major task: it means verifying
the compiler, the run-time system, the operating system, and the hardware! This
is an important topic, but it is beyond the scope of the present book. For this
book, we place our trust in the Mozart developers, software companies, and
hardware manufacturers.?

Mathematical induction

One very useful technique is mathematical induction. This proceeds in two steps.
We first show that the program is correct for the simplest cases. Then we show
that, if the program is correct for a given case, then it is correct for the next case.
From these two steps, mathematical induction lets us conclude that the program
is always correct. This technique can be applied for integers and lists:

e For integers, the base case is 0 or 1, and for a given integer n the next case
isn+1.

2Some would say that this is foolish. Paraphrasing Thomas Jefferson, they would say that
the price of correctness is eternal vigilance.
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e For lists, the base case is nil  (the empty list) or a list with one or a few
elements, and for a given list T the next case is H|T (with no conditions on
H).

Let us see how induction works for the factorial function:
e {Fact 0} returns the correct answer, namely 1.

e Assume that {Fact N-1} is correct. Then look at the call {Fact N} . We
see that the if instruction takes the else case, and calculates N*{Fact
N-1} . By hypothesis, {Fact N-1}  returns the right answer. Therefore,
assuming that the multiplication is correct, {Fact N} also returns the right
answer.

This reasoning uses the mathematical definition of factorial, namely n! = n x
(n—1)l'if n > 0, and 0! = 1. Later in the book we will see more sophisticated
reasoning techniques. But the basic approach is always the same: start with the
language semantics and problem specification, and use mathematical reasoning
to show that the program correctly implements the specification.

1.7 Complexity

The Pascal function we defined above gets very slow if we try to calculate higher-
numbered rows. Row 20 takes a second or two. Row 30 takes many minutes. If
you try it, wait patiently for the result. How come it takes this much time? Let
us look again at the function Pascal :

fun {Pascal N}
if N==1 then [1]
else
{AddList {ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}
end
end

Calling {Pascal N} will call {Pascal N-1} two times. Therefore, calling {Pascal
30} will call {Pascal 29} twice, giving four calls to {Pascal 28} , eight to
{Pascal 27} , and so forth, doubling with each lower row. This gives 2% calls
to {Pascal 1} , which is about half a billion. No wonder that {Pascal 30} is
slow. Can we speed it up? Yes, there is an easy way: just call {Pascal N-1}
once instead of twice. The second call gives the same result as the first, so if we
could just remember it then one call would be enough. We can remember it by
using a local variable. Here is a new function, FastPascal , that uses a local
variable:

fun {FastPascal N}
if N==1 then [1]
else L in
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L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}
end
end

We declare the local variable L by adding “L in ” to the else part. This is just
like using declare , except that the variable exists only between the else and the
end. We bind L to the result of {FastPascal N-1} . Now we can use L wherever
we need it. How fast is FastPascal 7 Try calculating row 30. This takes minutes
with Pascal , but is done practically instantaneously with FastPascal . A lesson
we can learn from this example is that using a good algorithm is more important
than having the best possible compiler or fastest machine.

Run-time guarantees of execution time

As this example shows, it is important to know something about a program’s
execution time. Knowing the exact time is less important than knowing that
the time will not blow up with input size. The execution time of a program as
a function of input size, up to a constant factor, is called the program’s time
complexity. What this function is depends on how the input size is measured.
We assume that it is measured in a way that makes sense for how the program
is used. For example, we take the input size of {Pascal N} to be simply the
integer N (and not, e.g., the amount of memory needed to store N).

The time complexity of {Pascal N} is proportional to 2". This is an ex-
ponential function in n, which grows very quickly as n increases. What is the
time complexity of {FastPascal N} 7 There are n recursive calls, and each call
processes a list of average size n/2. Therefore its time complexity is proportional
to n?. This is a polynomial function in n, which grows at a much slower rate
than an exponential function. Programs whose time complexity is exponential
are impractical except for very small inputs. Programs whose time complexity is
a low-order polynomial are practical.

1.8 Lazy evaluation

The functions we have written so far will do their calculation as soon as they
are called. This is called eager evaluation. Another way to evaluate functions is
called lazy evaluation.® In lazy evaluation, a calculation is done only when the
result is needed. Here is a simple lazy function that calculates a list of integers:

fun lazy {Ints N}
N|{Ints N+1}
end
Calling {Ints 0} calculates the infinite list 0|1|2|3|4|5]... . This looks like
it is an infinite loop, but it is not. The lazy annotation ensures that the function

3These are sometimes called data-driven and demand-driven evaluation, respectively.
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will only be evaluated when it is needed. This is one of the advantages of lazy
evaluation: we can calculate with potentially infinite data structures without any
loop boundary conditions. For example:

L={Ints 0O}

{Browse L}

This displays the following, i.e., nothing at all:

L<Future>

29

(The browser displays values but does not affect their calculation.) The “Future
annotation means that L has a lazy function attached to it. If the value of L is
needed, then this function will be automatically called. Therefore to get more
results, we have to do something that needs the list. For example:

{Browse L.1}

This displays the first element, namely 0. We can calculate with the list as if it
were completely there:

case L of A|B|C|_ then {Browse A+B+C} end

This causes the first three elements of L to be calculated, and no more. What
does it display?

Lazy calculation of Pascal’s triangle

Let us do something useful with lazy evaluation. We would like to write a function
that calculates as many rows of Pascal’s triangle as are needed, but we do not
know beforehand how many. That is, we have to look at the rows to decide when
there are enough. Here is a lazy function that generates an infinite list of rows:

fun lazy {PascallList Row}
Rowl|{PascalList
{AddList {ShiftLeft Row}
{ShiftRight Row}}}
end

Calling this function and browsing it will display nothing:

declare
L={PascalList [1]}
{Browse L}

(The argument [1] is the first row of the triangle.) To display more results, they
have to be needed:

{Browse L.1}
{Browse L.2.1}

This displays the first and second rows.

Instead of writing a lazy function, we could write a function that takes N,
the number of rows we need, and directly calculates those rows starting from an
initial row:
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fun {PascalList2 N Row}

if N==1 then [Row]

else

Rowl|{PascalList2 N-1
{AddList {ShiftLeft Row}
{ShiftRight Row}}}

end

end

We can display 10 rows by calling {Browse {PascalList2 10 [1]}} . But
what if later on we decide that we need 11 rows? We would have to call PascalList2
again, with argument 11. This would redo all the work of defining the first 10
rows. The lazy version avoids redoing all this work. It is always ready to continue
where it left off.

1.9 Higher-order programming

We have written an efficient function, FastPascal , that calculates rows of Pas-
cal’s triangle. Now we would like to experiment with variations on Pascal’s tri-
angle. For example, instead of adding numbers to get each row, we would like
to subtract them, exclusive-or them (to calculate just whether they are odd or
even), or many other possibilities. One way to do this is to write a new ver-
sion of FastPascal for each variation. But this quickly becomes tiresome. Can
we somehow just have one generic version? This is indeed possible. Let us call
it GenericPascal . Whenever we call it, we pass it the customizing function
(adding, exclusive-oring, etc.) as an argument. The ability to pass functions as
arguments is known as higher-order programmaing.

Here is the definition of GenericPascal . It has one extra argument Op to
hold the function that calculates each number:

fun {GenericPascal Op N}
if N==1 then [1]
else L in
L={GenericPascal Op N-1}
{OpList Op {ShiftLeft L} {ShiftRight L}}
end
end

AddList is replaced by OpList . The extra argument Op is passed to OpList .
ShiftLeft and ShiftRight do not need to know Op, so we can use the old
versions. Here is the definition of OpList :

fun {OpList Op L1 L2}
case L1 of H1|T1 then
case L2 of H2|T2 then
{Op H1 H2}|{OpList Op T1 T2}
end
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else nil end
end

Instead of doing an addition H1+H2, this version does {Op H1 H2}.

Variations on Pascal’s triangle

Let us define some functions to try out GenericPascal . To get the original
Pascal’s triangle, we can define the addition function:
fun {Add X Y} X+Y end

Now we can run {GenericPascal Add 5}  .* This gives the fifth row exactly as
before. We can define FastPascal using GenericPascal

fun {FastPascal N} {GenericPascal Add N} end
Let us define another function:
fun {Xor X Y} if X==Y then O else 1 end end

This does an exclusive-or operation, which is defined as follows:

X Y {Xor X Y}

0 0 0
0 1 1
1 0 1
1 1 0

Exclusive-or lets us calculate the parity of each number in Pascal’s triangle, i.e.,
whether the number is odd or even. The numbers themselves are not calculated.
Calling {GenericPascal Xor N} gives the result:

Some other functions are given in the exercises.

1.10 Concurrency

We would like our program to have several independent activities, each of which
executes at its own pace. This is called concurrency. There should be no inter-
ference between the activities, unless the programmer decides that they need to

4We can also call {GenericPascal Number. "+ B}, since the addition operation
" +" is part of the module Number. But modules are not introduced in this chapter.
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Figure 1.3: A simple example of dataflow execution

communicate. This is how the real world works outside of the system. We would
like to be able to do this inside the system as well.

We introduce concurrency by creating threads. A thread is simply an executing
program like the functions we saw before. The difference is that a program can
have more than one thread. Threads are created with the thread instruction. Do
you remember how slow the original Pascal function was? We can call Pascal
inside its own thread. This means that it will not keep other calculations from
continuing. They may slow down, if Pascal really has a lot of work to do. This
is because the threads share the same underlying computer. But none of the
threads will stop. Here is an example:

thread P in
P={Pascal 30}
{Browse P}

end

{Browse 99*99}

This creates a new thread. Inside this new thread, we call {Pascal 30} and
then call Browse to display the result. The new thread has a lot of work to do.
But this does not keep the system from displaying 99*99 immediately.

1.11 Dataflow

What happens if an operation tries to use a variable that is not yet bound? From
a purely aesthetic point of view, it would be nice if the operation would simply
wait. Perhaps some other thread will bind the variable, and then the operation
can continue. This civilized behavior is known as dataflow. Figure 1.3 gives a
simple example: the two multiplications wait until their arguments are bound
and the addition waits until the multiplications complete. As we will see later in
the book, there are many good reasons to have dataflow behavior. For now, let
us see how dataflow and concurrency work together. Take for example:

declare X in
thread {Delay 10000} X=99 end
{Browse start} {Browse X*X}
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The multiplication X*X waits until X is bound. The first Browse immediately
displays start . The second Browse waits for the multiplication, so it displays
nothing yet. The {Delay 10000} call pauses for 10000 milliseconds (i.e., 10
seconds). X is bound only after the delay continues. When X is bound, then the
multiplication continues and the second browse displays 9801. The two operations
X=99 and X*X can be done in any order with any kind of delay; dataflow execution
will always give the same result. The only effect a delay can have is to slow things
down. For example:

declare X in
thread {Browse start} {Browse X*X} end
{Delay 10000} X=99

This behaves exactly as before: the browser displays 9801 after 10 seconds. This
illustrates two nice properties of dataflow. First, calculations work correctly
independent of how they are partitioned between threads. Second, calculations
are patient: they do not signal errors, but simply wait.

Adding threads and delays to a program can radically change a program’s
appearance. But as long as the same operations are invoked with the same argu-
ments, it does not change the program’s results at all. This is the key property
of dataflow concurrency. This is why dataflow concurrency gives most of the
advantages of concurrency without the complexities that are usually associated
with it.

1.12 State

How can we let a function learn from its past? That is, we would like the function
to have some kind of internal memory, which helps it do its job. Memory is needed
for functions that can change their behavior and learn from their past. This kind
of memory is called explicit state. Just like for concurrency, explicit state models
an essential aspect of how the real world works. We would like to be able to do
this in the system as well. Later in the book we will see deeper reasons for having
explicit state. For now, let us just see how it works.

For example, we would like to see how often the FastPascal function is used.
Is there some way FastPascal can remember how many times it was called? We
can do this by adding explicit state.

A memory cell

There are lots of ways to define explicit state. The simplest way is to define a
single memory cell. This is a kind of box in which you can put any content.
Many programming languages call this a “variable”. We call it a “cell” to avoid
confusion with the variables we used before, which are more like mathemati-
cal variables, i.e., just short-cuts for values. There are three functions on cells:
NewCell creates a new cell, := (assignment) puts a new value in a cell, and @
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(access) gets the current value stored in the cell. Access and assignment are also
called read and write. For example:

declare

C={NewCell 0}

C:=@C+1

{Browse @C}
This creates a cell C with initial content 0, adds one to the content, and then
displays it.

Adding memory to FastPascal

With a memory cell, we can let FastPascal count how many times it is called.
First we create a cell outside of FastPascal . Then, inside of FastPascal , we
add one to the cell’s content. This gives the following:

declare

C={NewCell 0}

fun {FastPascal N}
C=@C+1
{GenericPascal Add N}

end

(To keep it short, this definition uses GenericPascal .)

1.13 Objects

Functions with internal memory are usually called objects. The extended version
of FastPascal we defined in the previous section is an object. It turns out that
objects are very useful beasts. Let us give another example. We will define a
counter object. The counter has a cell that keeps track of the current count. The
counter has two operations, Bumpand Read. Bumpadds one and then returns the
resulting count. Read just returns the count. Here is the definition:

declare
local C in
C={NewCell 0}
fun {Bump}
C=@C+1
@cC
end
fun {Read}
@cC
end
end

There is something special going on here: the cell is referenced by a local variable,
so it is completely invisible from the outside. This property is called encapsu-
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lation. It means that nobody can mess with the counter’s internals. We can
guarantee that the counter will always work correctly no matter how it is used.
This was not true for the extended FastPascal because anyone could look at
and modify the cell.

We can bump the counter up:

{Browse {Bump}}
{Browse {Bump}}

What does this display? Bumpcan be used anywhere in a program to count how
many times something happens. For example, FastPascal could use Bump

declare

fun {FastPascal N}
{Browse {Bump}}
{GenericPascal Add N}

end

1.14 Classes

The last section defined one counter object. What do we do if we need more
than one counter? It would be nice to have a “factory” that can make as many
counters as we need. Such a factory is called a class. Here is one way to define
it:
declare
fun {NewCounter}
C Bump Readin
C={NewCell 0}
fun {Bump}
C=@C+1
@C
end
fun {Read}
@cC
end
counter(bump:Bump read:Read)
end

NewCounter is a function that creates a new cell and returns new Bumpand Read
functions for it. Returning functions as results of functions is another form of
higher-order programming.

We group the Bump and Read functions together into one compound data
structure called a record. The record counter(bump:Bump read:Read) is char-
acterized by its label counter and by its two fields, called bump and read . Let
us create two counters:

declare
Ctr1={NewCounter}
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time
C={ NewCel | 0} C=1 C =2 First execution:

I I I final content of Cis2
C={NewCel I 0} C =2 cC=1 Second execution:

i i i final contentof Cis1

Figure 1.4: All possible executions of the first nondeterministic example

Ctr2={NewCounter}

Each counter has its own internal memory and its own Bumpand Read functions.
We can access these functions by using the “ 7 (dot) operator. Ctrl.bump
accesses the Bumpfunction of the first counter. Let us bump the first counter and
display its result:

{Browse {Ctrl.bump}}

Towards object-oriented programming

We have given an example of a simple class, NewCounter , that defines two op-
erations, Bump and Read. Operations defined inside classes are usually called
methods. The class can be used to make as many counter objects as we need.
All these objects share the same methods, but each has its own separate internal
memory. Programming with classes and objects is called object-based program-
ming.

Adding one new idea, inheritance, to object-based programming gives object-
oriented programming. Inheritance means that a new class can be defined in
terms of existing classes by specifying just how the new class is different. We say
the new class inherits from the existing classes. Inheritance is a powerful concept
for structuring programs. It lets a class be defined incrementally, in different
parts of the program. Inheritance is quite a tricky concept to use correctly. To
make inheritance easy to use, object-oriented languages add special syntax for it.
Chapter 7 covers object-oriented programming and shows how to program with
inheritance.

1.15 Nondeterminism and time

We have seen how to add concurrency and state to a program separately. What
happens when a program has both? It turns out that having both at the same
time is a tricky business, because the same program can give different results
from one execution to the next. This is because the order in which threads access
the state can change from one execution to the next. This variability is called
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nondeterminism. Nondeterminism exists because we lack knowledge of the exact
time when each basic operation executes. If we would know the exact time,
then there would be no nondeterminism. But we cannot know this time, simply
because threads are independent. Since they know nothing of each other, they
also do not know which instructions each has executed.

Nondeterminism by itself is not a problem; we already have it with concur-
rency. The difficulties occur if the nondeterminism shows up in the program,
i.e., if it is observable. (An observable nondeterminism is sometimes called a race
condition.) Here is an example:

declare
C={NewCell 0}
thread

C=1
end
thread

C.=2
end

What is the content of C after this program executes? Figure 1.4 shows the two
possible executions of this program. Depending on which one is done, the final
cell content can be either 1 or 2. The problem is that we cannot say which. This
is a simple case of observable nondeterminism. Things can get much trickier. For
example, let us use a cell to hold a counter that can be incremented by several
threads:

declare

C={NewCell 0}

thread | in
I=@C
C:=I+1

end

thread J in
J=@C
C:=J+1

end

What is the content of C after this program executes? It looks like each thread
just adds 1 to the content, making it 2. But there is a surprise lurking: the
final content can also be 1! How is this possible? Try to figure out why before
continuing.

Interleaving

The content can be 1 because thread execution is interleaved. That is, threads
take turns each executing a little. We have to assume that any possible interleav-
ing can occur. For example, consider the execution of Figure 1.5. Both | and
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time
C={NewCel | 0} | =@ J=@ C =J+1 C =l +1
] ] ] ] ]
] ] ] ] ]
(C contains 0) (I equals 0) (J equals 0) (C contains 1) (C contains 1)

Figure 1.5: One possible execution of the second nondeterministic example

J are bound to 0. Then, since I+1 and J+1 are both 1, the cell gets assigned 1
twice. The final result is that the cell content is 1.

This is a simple example. More complicated programs have many more pos-
sible interleavings. Programming with concurrency and state together is largely
a question of mastering the interleavings. In the history of computer technol-
ogy, many famous and dangerous bugs were due to designers not realizing how
difficult this really is. The Therac-25 radiation therapy machine is an infamous
example. It sometimes gave its patients radiation doses that were thousands of
times greater than normal, resulting in death or serious injury [112].

This leads us to a first lesson for programming with state and concurrency: if
at all possible, do not use them together! It turns out that we often do not need
both together. When a program does need to have both, it can almost always be
designed so that their interaction is limited to a very small part of the program.

1.16 Atomicity

Let us think some more about how to program with concurrency and state. One
way to make it easier is to use atomic operations. An operation is atomic if no
intermediate states can be observed. It seems to jump directly from the initial
state to the result state.

With atomic operations we can solve the interleaving problem of the cell
counter. The idea is to make sure that each thread body is atomic. To do this,
we need a way to build atomic operations. We introduce a new language entity,
called lock, for this. A lock has an inside and an outside. The programmer defines
the instructions that are inside. A lock has the property that only one thread at
a time can be executing inside. If a second thread tries to get in, then it will wait
until the first gets out. Therefore what happens inside the lock is atomic.

We need two operations on locks. First, we create a new lock by calling the
function NewLock. Second, we define the lock’s inside with the instruction lock

L then ... end, where L is a lock. Now we can fix the cell counter:
declare
C={NewCell 0}
L={NewLock}
thread
lock L then | in
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I=@C
C:=I+1
end
end
thread
lock L then J in
J=@C
C:=J+1
end
end

In this version, the final result is always 2. Both thread bodies have to be guarded
by the same lock, otherwise the undesirable interleaving can still occur. Do you
see why?

1.17 Where do we go from here

This chapter has given a quick overview of many of the most important concepts
in programming. The intuitions given here will serve you well in the chapters to
come, when we define in a precise way the concepts and the computation models
they are part of.

1.18 Exercises
1. Section 1.1 uses the system as a calculator. Let us explore the possibilities:

(a) Calculate the exact value of 2!% without using any new functions. Try
to think of short-cuts to do it without having to type 2*2*2*...*2
with one hundred 2’s. Hint: use variables to store intermediate results.

(b) Calculate the exact value of 100! without using any new functions. Are
there any possible short-cuts in this case?

2. Section 1.3 defines the function Combto calculate combinations. This func-
tion is not very efficient because it might require calculating very large
factorials. The purpose of this exercise is to write a more efficient version
of Comb

(a) As a first step, use the following alternative definition to write a more
efficient function:

(n) nxn—1)x-x(n—-r+1)

r) rx(r—1)x---x1

Calculate the numerator and denominator separately and then divide
them. Make sure that the result is 1 when r = 0.
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(b) As a second step, use the following identity:

(3)=(2)

to increase efficiency even more. That is, if » > n/2 then do the
calculation with n — r instead of with r.

3. Section 1.6 explains the basic ideas of program correctness and applies them
to show that the factorial function defined in Section 1.3 is correct. In this
exercise, apply the same ideas to the function Pascal of Section 1.5 to show
that it is correct.

4. What does Section 1.7 say about programs whose time complexity is a
high-order polynomial? Are they practical or not? What do you think?

5. Section 1.8 defines the lazy function Ints that lazily calculates an infinite
list of integers. Let us define a function that calculates the sum of a list of
integers:

fun {SumList L}
case L of X|L1 then X+{SumList L1}
else 0 end

end

What happens if we call {SumList {Ints 0}} ? Is this a good idea?

6. Section 1.9 explains how to use higher-order programming to calculate vari-
ations on Pascal’s triangle. The purpose of this exercise is to explore these
variations.

(a) Calculate individual rows using subtraction, multiplication, and other
operations. Why does using multiplication give a triangle with all
zeroes? Try the following kind of multiplication instead:

fun {Mull X Y} (X+1)*(Y+1)  end

What does the 10th row look like when calculated with Mull ?

(b) The following loop instruction will calculate and display 10 rows at a
time:

for | in 1..10 do {Browse {GenericPascal Op I}} end

Use this loop instruction to make it easier to explore the variations.

7. This exercise compares variables and cells. We give two code fragments.
The first uses variables:
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local X in
X=23
local X in
X=44
end
{Browse X}
end

The second uses a cell:

local X in
X={NewCell 23}
X:=44
{Browse @X}
end

In the first, the identifier X refers to two different variables. In the second,
X refers to a cell. What does Browse display in each fragment? Explain.

8. This exercise investigates how to use cells together with functions. Let us
define a function {Accumulate N}  that accumulates all its inputs, i.e., it
adds together all the arguments of all calls. Here is an example:

{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}

This should display 5, 105, and 150, assuming that the accumulator contains
zero at the start. Here is a wrong way to write Accumulate

declare

fun {Accumulate N}

Acc in
Acc={NewCell 0}
Acc:=@Acc+N
@Acc

end

What is wrong with this definition? How would you correct it?

9. This exercise investigates another way of introducing state: a memory store.
The memory store can be used to make an improved version of FastPascal
that remembers previously-calculated rows.

(a) A memory store is similar to the memory of a computer. It has a
series of memory cells, numbered from 1 up to the maximum used so
far. There are four functions on memory stores: NewStore creates a
new store, Put puts a new value in a memory cell, Get gets the current
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value stored in a memory cell, and Size gives the highest-numbered
cell used so far. For example:

declare
S={NewStore}

{Put S 2 [22 33]}
{Browse {Get S 2}}
{Browse {Size S}}

This stores [22 33] in memory cell 2, displays [22 33] , and then
displays 2. Load into the Mozart system the memory store as defined
in the supplements file on the book’s Web site. Then use the interactive
interface to understand how the store works.

Now use the memory store to write an improved version of FastPascal |,
called FasterPascal , that remembers previously-calculated rows. If
a call asks for one of these rows, then the function can return it directly

without having to recalculate it. This technique is sometimes called

memoization since the function makes a “memo” of its previous work.

This improves its performance. Here’s how it works:

First make a store S available to FasterPascal

For the call {FasterPascal N} , let M be the number of rows
stored in S, i.e., rows 1 up to M are in S.

If N>M then compute rows M+1 up to N and store them in S.

Return the Nth row by looking it up in S.

Viewed from the outside, FasterPascal  behaves identically to FastPascal

except that it is faster.

We have given the memory store as a library. It turns out that the
memory store can be defined by using a memory cell. We outline how
it can be done and you can write the definitions. The cell holds the
store contents as a list of the form [N1|X1 ... Nn|Xn] , where the
cons Ni|Xi means that cell number Ni has content Xi. This means
that memory stores, while they are convenient, do not introduce any
additional expressive power over memory cells.

Section 1.13 defines a counter with just one operation, Bump This
means that it is not possible to read the counter without adding one
to it. This makes it awkward to use the counter. A practical counter
would have at least two operations, say Bumpand Read, where Read
returns the current count without changing it. The practical counter
looks like this:

declare

local C in
C={NewCell 0}
fun {Bump}
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C=@C+1
@cC

end

fun {Read}
@cC

end
end

Change your implementation of the memory store so that it uses this
counter to keep track of the store’s size.

10. Section 1.15 gives an example using a cell to store a counter that is incre-
mented by two threads.

(a) Try executing this example several times. What results do you get?
Do you ever get the result 17 Why could this be?

(b) Modify the example by adding calls to Delay in each thread. This
changes the thread interleaving without changing what calculations
the thread does. Can you devise a scheme that always results in 17

(c) Section 1.16 gives a version of the counter that never gives the result 1.
What happens if you use the delay technique to try to get a 1 anyway?
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Chapter 2

Declarative Computation Model

“Non sunt multiplicanda entia praeter necessitatem.”
“Do not multiply entities beyond necessity.”
— Ockham’s Razor, William of Ockham (1285-13497)

Programming encompasses three things:

e First, a computation model, which is a formal system that defines a lan-
guage and how sentences of the language (e.g., expressions and statements)
are executed by an abstract machine. For this book, we are interested in
computation models that are useful and intuitive for programmers. This
will become clearer when we define the first one later in this chapter.

e Second, a set of programming techniques and design principles used to write
programs in the language of the computation model. We will sometimes
call this a programming model. A programming model is always built on
top of a computation model.

e Third, a set of reasoning techniques to let you reason about programs,
to increase confidence that they behave correctly and to calculate their
efficiency.

The above definition of computation model is very general. Not all computation
models defined in this way will be useful for programmers. What is a reasonable
computation model? Intuitively, we will say that a reasonable model is one that
can be used to solve many problems, that has straightforward and practical rea-
soning techniques, and that can be implemented efficiently. We will have more
to say about this question later on. The first and simplest computation model
we will study is declarative programming. For now, we define this as evaluating
functions over partial data structures. This is sometimes called stateless program-
ming, as opposed to stateful programming (also called imperative programming)
which is explained in Chapter 6.

The declarative model of this chapter is one of the most fundamental com-
putation models. It encompasses the core ideas of the two main declarative
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paradigms, namely functional and logic programming. It encompasses program-
ming with functions over complete values, as in Scheme and Standard ML. It
also encompasses deterministic logic programming, as in Prolog when search is
not used. And finally, it can be made concurrent without losing its good proper-
ties (see Chapter 4).

Declarative programming is a rich area — most of the ideas of the more ex-
pressive computation models are already there, at least in embryonic form. We
therefore present it in two chapters. This chapter defines the computation model
and a practical language based on it. The next chapter, Chapter 3, gives the
programming techniques of this language. Later chapters enrich the basic mod-
el with many concepts. Some of the most important are exception handling,
concurrency, components (for programming in the large), capabilities (for encap-
sulation and security), and state (leading to objects and classes). In the context of
concurrency, we will talk about dataflow, lazy execution, message passing, active
objects, monitors, and transactions. We will also talk about user interface design,
distribution (including fault tolerance), and constraints (including search).

Structure of the chapter

The chapter consists of seven sections:

e Section 2.1 explains how to define the syntax and semantics of practical pro-
gramming languages. Syntax is defined by a context-free grammar extended
with language constraints. Semantics is defined in two steps: by translat-
ing a practical language into a simple kernel language and then giving the
semantics of the kernel language. These techniques will be used throughout
the book. This chapter uses them to define the declarative computation
model.

e The next three sections define the syntax and semantics of the declarative
model:

— Section 2.2 gives the data structures: the single-assignment store and
its contents, partial values and dataflow variables.

— Section 2.3 defines the kernel language syntax.

— Section 2.4 defines the kernel language semantics in terms of a simple
abstract machine. The semantics is designed to be intuitive and to
permit straightforward reasoning about correctness and complexity.

e Section 2.5 defines a practical programming language on top of the kernel
language.

e Section 2.6 extends the declarative model with ezception handling, which
allows programs to handle unpredictable and exceptional situations.

e Section 2.7 gives a few advanced topics to let interested readers deepen their
understanding of the model.
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Figure 2.1: From characters to statements

2.1 Defining practical programming languages

Programming languages are much simpler than natural languages, but they can
still have a surprisingly rich syntax, set of abstractions, and libraries. This is
especially true for languages that are used to solve real-world problems, which we
call practical languages. A practical language is like the toolbox of an experienced
mechanic: there are many different tools for many different purposes and all tools
are there for a reason.

This section sets the stage for the rest of the book by explaining how we
will present the syntax (“grammar”) and semantics (“meaning”) of practical pro-
gramming languages. With this foundation we will be ready to present the first
computation model of the book, namely the declarative computation model. We
will continue to use these techniques throughout the book to define computation
models.

2.1.1 Language syntax
The syntax of a language defines what are the legal programs, i.e., programs that
can be successfully executed. At this stage we do not care what the programs are

actually doing. That is semantics and will be handled in the next section.
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Grammars

A grammar is a set of rules that defines how to make ‘sentences’ out of ‘words’.
Grammars can be used for natural languages, like English or Swedish, as well as
for artificial languages, like programming languages. For programming languages,
‘sentences’ are usually called ‘statements’ and ‘words’ are usually called ‘tokens’.
Just as words are made of letters, tokens are made of characters. This gives us
two levels of structure:

statement (‘sentence’) = sequence of tokens (‘words’)
token (‘word’) = sequence of characters (‘letters’)

Grammars are useful both for defining statements and tokens. Figure 2.1 gives
an example to show how character input is transformed into a statement. The
example in the figure is the definition of Fact :

fun {Fact N}

if N==0 then 1

else N*{Fact N-1} end
end

The input is a sequence of characters, where ©~ ~ represents the space and “\n~
represents the newline. This is first transformed into a sequence of tokens and
subsequently into a parse tree. The syntax of both sequences in the figure is com-
patible with the list syntax we use throughout the book. Whereas the sequences
are “flat”, the parse tree shows the structure of the statement. A program that
accepts a sequence of characters and returns a sequence of tokens is called a to-
kenizer or lexical analyzer. A program that accepts a sequence of tokens and
returns a parse tree is called a parser.

Extended Backus-Naur Form

One of the most common notations for defining grammars is called Extended
Backus-Naur Form (EBNF for short), after its inventors John Backus and Pe-
ter Naur. The EBNF notation distinguishes terminal symbols and nonterminal
symbols. A terminal symbol is simply a token. A nonterminal symbol represents
a sequence of tokens. The nonterminal is defined by means of a grammar rule,
which shows how to expand it into tokens. For example, the following rule defines
the nonterminal (digit):

(digit) == 0]1]2]3]4|5]|6]7|8]9

It says that (digit) represents one of the ten tokens 0, 1, ..., 9. The symbol
“|” is read as “or”; it means to pick one of the alternatives. Grammar rules can
themselves refer to other nonterminals. For example, we can define a nonterminal
(int) that defines how to write positive integers:

(int) == (digit) { (digit) }

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



2.1 Defining practical programming languages

35

Context-free grammar - Is easy to read and understand
(e.g., with EBNF) - Defines a superset of the language
+

- Expresses restrictions imposed by the language
Set of extra conditions (e.g., variables must be declared before use)

- Makes the grammar context-sensitive
Figure 2.2: The context-free approach to language syntax

This rule says that an integer is a digit followed by zero or more digits. The
braces “{ ... }” mean to repeat whatever is inside any number of times, including
zZero.

How to read grammars

To read a grammar, start with any nonterminal symbol, say (int). Reading the
corresponding grammar rule from left to right gives a sequence of tokens according
to the following scheme:

e FEach terminal symbol encountered is added to the sequence.

e For each nonterminal symbol encountered, read its grammar rule and re-
place the nonterminal by the sequence of tokens that it expands into.

e Each time there is a choice (with |), pick any of the alternatives.

The grammar can be used both to verify that a statement is legal and to generate
statements.

Context-free and context-sensitive grammars

Any well-defined set of statements is called a formal language, or language for
short. For example, the set of all possible statements generated by a grammar
and one nonterminal symbol is a language. Techniques to define grammars can
be classified according to how expressive they are, i.e., what kinds of languages
they can generate. For example, the EBNF notation given above defines a class of
grammars called context-free grammars. They are so-called because the expansion
of a nonterminal, e.g., (digit), is always the same no matter where it is used.
For most practical programming languages, there is usually no context-free
grammar that generates all legal programs and no others. For example, in many
languages a variable has to be declared before it is used. This condition cannot
be expressed in a context-free grammar because the nonterminal that uses the
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Figure 2.3: Ambiguity in a context-free grammar

variable must only allow using already-declared variables. This is a context de-
pendency. A grammar that contains a nonterminal whose use depends on the
context where it is used is called a context-sensitive grammar.

The syntax of most practical programming languages is therefore defined in
two parts (see Figure 2.2): as a context-free grammar supplemented with a set of
extra conditions imposed by the language. The context-free grammar is kept in-
stead of some more expressive notation because it is easy to read and understand.
It has an important locality property: a nonterminal symbol can be understood
by examining only the rules needed to define it; the (possibly much more numer-
ous) rules that use it can be ignored. The context-free grammar is corrected by
imposing a set of extra conditions, like the declare-before-use restriction on vari-
ables. Taking these conditions into account gives a context-sensitive grammar.

Ambiguity

Context-free grammars can be ambiguous, i.e., there can be several parse trees
that correspond to a given token sequence. For example, here is a simple grammar
for arithmetic expressions with addition and multiplication:

(exp) == (int) | (exp) (op) (exp)
{op) u= + ]

The expression 2*x3+4 has two parse trees, depending on how the two occurrences
of (exp) are read. Figure 2.3 shows the two trees. In one tree, the first (exp) is 2
and the second (exp) is 3+4. In the other tree, they are 2+3 and 4, respectively.
Ambiguity is usually an undesirable property of a grammar since it makes
it unclear exactly what program is being written. In the expression 2x3+4, the
two parse trees give different results when evaluating the expression: one gives
14 (the result of computing 2*(3+4)) and the other gives 10 (the result of com-
puting (2*3)+4). Sometimes the grammar rules can be rewritten to remove the
ambiguity, but this can make the rules more complicated. A more convenient
approach is to add extra conditions. These conditions restrict the parser so that
only one parse tree is possible. We say that they disambiguate the grammar.
For expressions with binary operators such as the arithmetic expressions given
above, the usual approach is to add two conditions, precedence and associativity:
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e Precedence is a condition on an expression with different operators, like
2x3+4. Each operator is given a precedence level. Operators with high
precedences are put as deep in the parse tree as possible, i.e., as far away
from the root as possible. If * has higher precedence than +, then the parse
tree (2x3)+4 is chosen over the alternative 2% (3+4). If x is deeper in the
tree than +, then we say that * binds tighter than +.

e Associativity is a condition on an expression with the same operator, like
2-3-4. In this case, precedence is not enough to disambiguate because all
operators have the same precedence. We have to choose between the trees
(2-3)-4 and 2-(3-4). Associativity determines whether the leftmost or
the rightmost operator binds tighter. If the associativity of - is 1left, then
the tree (2-3)-4 is chosen. If the associativity of - is right, then the other
tree 2-(3-4) is chosen.

Precedence and associativity are enough to disambiguate all expressions defined
with operators. Appendix C gives the precedence and associativity of all the
operators used in this book.

Syntax notation used in this book

In this chapter and the rest of the book, each new data type and language con-
struct is introduced together with a small syntax diagram that shows how it fits
in the whole language. The syntax diagram gives grammar rules for a simple
context-free grammar of tokens. The notation is carefully designed to satisfy two
basic principles:

e All grammar rules can stand on their own. No later information will ever
invalidate a grammar rule. That is, we never give an incorrect grammar
rule just to “simplify” the presentation.

e [t is always clear by inspection when a grammar rule completely defines a
nonterminal symbol or when it gives only a partial definition. A partial
definition always ends in three dots “...”.

All syntax diagrams used in the book are summarized in Appendix C. This
appendix also gives the lexical syntax of tokens, i.e., the syntax of tokens in
terms of characters. Here is an example of a syntax diagram with two grammar
rules that illustrates our notation:

(statement) = skip | (expression) "~ =" (expression) | ...
(expression) = (variable) | (int) | ...

These rules give partial definitions of two nonterminals, (statement) and (expression).

The first rule says that a statement can be the keyword skip , or two expressions
separated by the equals symbol =, or something else. The second rule says that
an expression can be a variable, an integer, or something else. To avoid confusion
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with the grammar rule’s own syntax, a symbol that occurs literally in the text

is always quoted with single quotes. For example, the equals symbol is shown as

" =", Keywords are not quoted, since for them no confusion is possible. A choice

between different possibilities in the grammar rule is given by a vertical bar |.
Here is a second example to give the remaining notation:

(statement) = if (expression) then (statement)
{ elseif  (expression) then (statement) }
[ else (statement) | end | ...

(expression) == [~ { (expression) }+ 17 | ...

(label) = unit |true |false | (variable) | (atom)

The first rule defines the if statement. There is an optional sequence of elseif
clauses, i.e., there can be any number of occurrences including zero. This is
denoted by the braces { ... }. This is followed by an optional else clause, i.e., it
can occur zero or one times. This is denoted by the brackets [ ... |. The second
rule defines the syntax of explicit lists. They must have at least one element, e.g.,
[5 6 7] isvalid but [ ] is not (note the space that separates the [ and the ] ).
This is denoted by { ... }+4. The third rule defines the syntax of record labels.
This is a complete definition. There are five possibilities and no more will ever
be given.

2.1.2 Language semantics

The semantics of a language defines what a program does when it executes.
Ideally, the semantics should be defined in a simple mathematical structure that
lets us reason about the program (including its correctness, execution time, and
memory use) without introducing any irrelevant details. Can we achieve this for a
practical language without making the semantics too complicated? The technique
we use, which we call the kernel language approach, gives an affirmative answer
to this question.

Modern programming languages have evolved through more than five decades
of experience in constructing programmed solutions to complex, real-world prob-
lems.! Modern programs can be quite complex, reaching sizes measured in mil-
lions of lines of code, written by large teams of human programmers over many
years. In our view, languages that scale to this level of complexity are successful
in part because they model some essential aspects of how to construct complex
programs. In this sense, these languages are not just arbitrary constructions of
the human mind. We would therefore like to understand them in a scientific way,
i.e., by explaining their behavior in terms of a simple underlying model. This is
the deep motivation behind the kernel language approach.

IThe figure of five decades is somewhat arbitrary. We measure it from the first working
stored-program computer, the Manchester Mark I. According to lab documents, it ran its first
program on June 21, 1948 [178].
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Figure 2.4: The kernel language approach to semantics

The kernel language approach

This book uses the kernel language approach to define the semantics of program-
ming languages. In this approach, all language constructs are defined in terms
of translations into a core language known as the kernel language. The kernel
language approach consists of two parts (see Figure 2.4):

e First, define a very simple language, called the kernel language. This lan-
guage should be easy to reason in and be faithful to the space and time
efficiency of the implementation. The kernel language and the data struc-
tures it manipulates together form the kernel computation model.

e Second, define a translation scheme from the full programming language
to the kernel language. Each grammatical construct in the full language is
translated into the kernel language. The translation should be as simple as
possible. There are two kinds of translation, namely linguistic abstraction
and syntactic sugar. Both are explained below.

The kernel language approach is used throughout the book. Each computation
model has its kernel language, which builds on its predecessor by adding one new
concept. The first kernel language, which is presented in this chapter, is called
the declarative kernel language. Many other kernel languages are presented later
on in the book.

Formal semantics

The kernel language approach lets us define the semantics of the kernel language in
any way we want. There are four widely-used approaches to language semantics:
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e An operational semantics shows how a statement executes in terms of an
abstract machine. This approach always works well, since at the end of the
day all languages execute on a computer.

e An aziomatic semantics defines a statement’s semantics as the relation be-
tween the input state (the situation before executing the statement) and
the output state (the situation after executing the statement). This relation
is given as a logical assertion. This is a good way to reason about state-
ment sequences, since the output assertion of each statement is the input
assertion of the next. It therefore works well with stateful models, since a
state is a sequence of values. Section 6.6 gives an axiomatic semantics of
Chapter 6’s stateful model.

e A denotational semantics defines a statement as a function over an ab-
stract domain. This works well for declarative models, but can be applied
to other models as well. It gets complicated when applied to concurrent
languages. Sections 2.7.1 and 4.9.2 explain functional programming, which
is particularly close to denotational semantics.

e A logical semantics defines a statement as a model of a logical theory. This
works well for declarative and relational computation models, but is hard
to apply to other models. Section 9.3 gives a logical semantics of the declar-
ative and relational computation models.

Much of the theory underlying these different semantics is of interest primarily to
mathematicians, not to programmers. It is outside the scope of the book to give
this theory. The principal formal semantics we give in this book is an operational
semantics. We define it for each computation model. It is detailed enough to
be useful for reasoning about correctness and complexity yet abstract enough to
avoid irrelevant clutter. Chapter 13 collects all these operational semantics into
a single formalism with a compact and readable notation.

Throughout the book, we give an informal semantics for every new language
construct and we often reason informally about programs. These informal pre-
sentations are always based on the operational semantics.

Linguistic abstraction

Both programming languages and natural languages can evolve to meet their
needs. When using a programming language, at some point we may feel the need
to extend the language, i.e., to add a new linguistic construct. For example, the
declarative model of this chapter has no looping constructs. Section 3.6.3 defines
a for construct to express certain kinds of loops that are useful for writing
declarative programs. The new construct is both an abstraction and an addition
to the language syntax. We therefore call it a linguistic abstraction. A practical
programming language consists of a set of linguistic abstractions.
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There are two phases to defining a linguistic abstraction. First, define a new
grammatical construct. Second, define its translation into the kernel language.
The kernel language is not changed. This book gives many examples of useful
linguistic abstractions, e.g., functions (fun ), loops (for ), lazy functions (fun
lazy ), classes (class ), reentrant locks (lock ), and others.? Some of these are
part of the Mozart system. The others can be added to Mozart with the gump
parser-generator tool [104]. Using this tool is beyond the scope of this book.

A simple example of a linguistic abstraction is the function syntax, which
uses the keyword fun . This is explained in Section 2.5.2. We have already
programmed with functions in Chapter 1. But the declarative kernel language
of this chapter only has procedure syntax. Procedure syntax is chosen for the
kernel since all arguments are explicit and there can be multiple outputs. There
are other, deeper reasons for choosing procedure syntax which are explained later
in this chapter. Because function syntax is so useful, though, we add it as a
linguistic abstraction.

We define a syntax for both function definitions and function calls, and a
translation into procedure definitions and procedure calls. The translation lets
us answer all questions about function calls. For example, what does {F1 {F2
X} {F3 Y}} mean exactly (nested function calls)? Is the order of these function
calls defined? If so, what is the order? There are many possibilities. Some
languages leave the order of argument evaluation unspecified, but assume that a
function’s arguments are evaluated before the function. Other languages assume
that an argument is evaluated when and if its result is needed, not before. So even
as simple a thing as nested function calls does not necessarily have an obvious
semantics. The translation makes it clear what the semantics is.

Linguistic abstractions are useful for more than just increasing the expressive-
ness of a program. They can also improve other properties such as correctness,
security, and efficiency. By hiding the abstraction’s implementation from the pro-
grammer, the linguistic support makes it impossible to use the abstraction in the
wrong way. The compiler can use this information to give more efficient code.

Syntactic sugar

It is often convenient to provide a short-cut notation for frequently-occurring
idioms. This notation is part of the language syntax and is defined by grammar
rules. This notation is called syntactic sugar. Syntactic sugar is analogous to
linguistic abstraction in that its meaning is defined precisely by translating it
into the full language. But it should not be confused with linguistic abstraction:
it does not provide a new abstraction, but just reduces program size and improves
program readability.

We give an example of syntactic sugar that is based on the local statement.

2Logic gates (gate ) for circuit descriptions, mailboxes (receive ) for message-passing
concurrency, and currying and list comprehensions as in modern functional languages, cf.,

Haskell.
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Figure 2.5: Translation approaches to language semantics

Local variables can always be defined by using the statement local X in
end. When this statement is used inside another, it is convenient to have syntactic
sugar that lets us leave out the keywords local and end. Instead of:

if N==1 then [1]
else
local L in

end
end

we can write:

if N==1 then [1]
else L in

end

which is both shorter and more readable than the full notation. Other examples
of syntactic sugar are given in Section 2.5.1.

Language design

Linguistic abstractions are a basic tool for language design. Any abstraction that
we define has three phases in its lifecycle. When first we define it, it has no lin-
guistic support, i.e., there is no syntax in the language designed to make it easy
to use. If at some point, we suspect that it is especially basic and useful, we can
decide to give it linguistic support. It then becomes a linguistic abstraction. This
is an exploratory phase, i.e., there is no commitment that the linguistic abstrac-
tion will become part of the language. If the linguistic abstraction is successful,
i.e., it simplifies programs and is useful to programmers, then it becomes part of
the language.
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Other translation approaches

The kernel language approach is an example of a translation approach to seman-
tics, i.e., it is based on a translation from one language to another. Figure 2.5
shows the three ways that the translation approach has been used for defining
programming languages:

e The kernel language approach, used throughout the book, is intended for the
programmer. Its concepts correspond directly to programming concepts.

e The foundational approach is intended for the mathematician. Examples
are the Turing machine, the A calculus (underlying functional program-
ming), first-order logic (underlying logic programming), and the 7 calculus
(to model concurrency). Because these calculi are intended for formal math-
ematical study, they have as few elements as possible.

e The machine approach is intended for the implementor. Programs are trans-
lated into an idealized machine, which is traditionally called an abstract
machine or a virtual machine.® It is relatively easy to translate idealized
machine code into real machine code.

Because we focus on practical programming techniques, this book uses only the
kernel language approach.

The interpreter approach

An alternative to the translation approach is the interpreter approach. The lan-
guage semantics is defined by giving an interpreter for the language. New lan-
guage features are defined by extending the interpreter. An interpreter is a pro-
gram written in language L; that accepts programs written in another language
Ly and executes them. This approach is used by Abelson & Sussman [2]. In their
case, the interpreter is metacircular, i.e., Ly and Ly are the same language L.
Adding new language features, e.g., for concurrency and lazy evaluation, gives a
new language L’ which is implemented by extending the interpreter for L.

The interpreter approach has the advantage that it shows a self-contained
implementation of the linguistic abstractions. We do not use the interpreter
approach in this book because it does not in general preserve the execution-time
complexity of programs (the number of operations needed as a function of input
size). A second difficulty is that the basic concepts interact with each other in
the interpreter, which makes them harder to understand.

3Strictly speaking, a virtual machine is a software emulation of a real machine, running on
the real machine, that is almost as efficient as the real machine. It achieves this efficiency by
executing most virtual instructions directly as real instructions. The concept was pioneered by
IBM in the early 1960’s in the VM operating system. Because of the success of Java, which
uses the term “virtual machine”, modern usage tends to blur the distinction between abstract
and virtual machines.
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2.2 The single-assignment store

We introduce the declarative model by first explaining its data structures. The
model uses a single-assignment store, which is a set of variables that are initially
unbound and that can be bound to one value. Figure 2.6 shows a store with three
unbound variables x1, xs, and x3. We can write this store as {x1, zo, x3}. For
now, let us assume we can use integers, lists, and records as values. Figure 2.7
shows the store where x; is bound to the integer 314 and x5 is bound to the list
[1 2 3] . We write this as {z; = 314,20 =[1 2 3] ,xz3}.

2.2.1 Declarative variables

Variables in the single-assignment store are called declarative variables. We use
this term whenever there is a possible confusion with other kinds of variables.
Later on in the book, we will also call these variables dataflow variables because
of their role in dataflow execution.

Once bound, a declarative variable stays bound throughout the computation
and is indistinguishable from its value. What this means is that it can be used
in calculations as if it were the value. Doing the operation x + y is the same as
doing 11 + 22, if the store is {x = 11,y = 22}.

2.2.2 Value store

A store where all variables are bound to values is called a value store. Another
way to say this is that a value store is a persistent mapping from variables to
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Figure 2.8: A value store: all variables are bound to values

values. A walue is a mathematical constant. For example, the integer 314 is
a value. Values can also be compound entities. For example, the list [1 2
3] and the record person(name:"George" age:25) are values. Figure 2.8
shows a value store where z; is bound to the integer 314, x5 is bound to the
list [1 2 3] , and z3 is bound to the record person(name:"George" age:25)
Functional languages such as Standard ML, Haskell, and Scheme get by with a
value store since they compute functions on values. (Object-oriented languages
such as Smalltalk, C4++, and Java need a cell store, which consists of cells whose
content can be modified.)

At this point, a reader with some programming experience may wonder why
we are introducing a single-assignment store, when other languages get by with
a value store or a cell store. There are many reasons. The first reason is that
we want to compute with partial values. For example, a procedure can return an
output by binding an unbound variable argument. The second reason is declara-
tive concurrency, which is the subject of Chapter 4. It is possible because of the
single-assignment store. The third reason is that it is essential when we extend the
model to deal with relational (logic) programming and constraint programming.
Other reasons having to do with efficiency (e.g., tail recursion and difference lists)
will become clear in the next chapter.

2.2.3 Value creation

The basic operation on a store is binding a variable to a newly-created value. We
will write this as x;=value. Here x; refers directly to a variable in the store (and
is not the variable’s textual name in a program!) and value refers to a value, e.g.,
314 or [1 2 3] . For example, Figure 2.7 shows the store of Figure 2.6 after the
two bindings:

ZL‘1:314
T =[1 2 3]
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In statement Inside the store

Figure 2.9: A variable identifier referring to an unbound variable

Inside the store

@

Figure 2.10: A variable identifier referring to a bound variable

The single-assignment operation z;=wvalue constructs value in the store and then
binds the variable z; to this value. If the variable is already bound, the operation
will test whether the two values are compatible. If they are not compatible, an
error is signaled (using the exception-handling mechanism, see Section 2.6).

2.2.4 Variable identifiers

So far, we have looked at a store that contains variables and values, i.e., store
entities, with which calculations can be done. It would be nice if we could refer
to a store entity from outside the store. This is the role of variable identifiers.
A wvariable identifier is a textual name that refers to a store entity from outside
the store. The mapping from variable identifiers to store entities is called an
environment.

The variable names in program source code are in fact variable identifiers.
For example, Figure 2.9 has an identifier “X” (the capital letter X) that refers to
the store variable xy. This corresponds to the environment {X — z;}. To talk
about any identifier, we will use the notation (x). The environment {(x) — x;}
is the same as before, if (x) represents X. As we will see later, variable identifiers
and their corresponding store entities are added to the environment by the local
and declare statements.
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Inside the store

"X X, |1 2 3 | nil

Figure 2.11: A variable identifier referring to a value

Inside the store
"X X, | person
name age
"George" X unbound
IIYII \\/

Figure 2.12: A partial value

2.2.5 Value creation with identifiers

Once bound, a variable is indistinguishable from its value. Figure 2.10 shows what
happens when x; is bound to [1 2 3] in Figure 2.9. With the variable identifier
X, we can write the binding as X=[1 2 3] . This is the text a programmer would
write to express the binding. We can also use the notation (x)=[1 2 3] if we
want to be able to talk about any identifier. To make this notation legal in a
program, (x) has to be replaced by an identifier.

The equality sign “=" refers to the bind operation. After the bind completes,
the identifier “X” still refers to z;, which is now bound to [1 2 3] . This is
indistinguishable from Figure 2.11, where X refers directly to [1 2 3] . Following
the links of bound variables to get the value is called dereferencing. It is invisible
to the programmer.

2.2.6 Partial values

A partial value is a data structure that may contain unbound variables. Fig-
ure 2.12 shows the record person(name:"George" age: x2) , referred to by the
identifier X. This is a partial value because it contains the unbound variable 5.
The identifier Y refers to z5. Figure 2.13 shows the situation after x5 is bound
to 25 (through the bind operation Y=25). Now z; is a partial value with no
unbound variables, which we call a complete value. A declarative variable can
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Inside the store
"X X, | person
name age
"George" X, 25
"y \\—/

Figure 2.13: A partial value with no unbound variables, i.e., a complete value

Inside the store

E X1
E X

Figure 2.14: Two variables bound together

be bound to several partial values, as long as they are compatible with each
other. We say a set of partial values is compatible if the unbound variables in
them can be bound in such a way as to make them all equal. For example,
person(age:25) and person(age: ) are compatible (because x can be bound
to 25), but person(age:25) and person(age:26) are not.

2.2.7 Variable-variable binding

Variables can be bound to variables. For example, consider two unbound variables
x1 and x4 referred to by the identifiers X and Y. After doing the bind X=Y, we get
the situation in Figure 2.14. The two variables x; and x5 are equal to each other.
The figure shows this by letting each variable refer to the other. We say that
{1, z2} form an equivalence set.* We also write this as #; = x5. Three variables
that are bound together are written as 1 = 9 = x3 or {1, 2, 3}. Drawn in
a figure, these variables would form a circular chain. Whenever one variable in
an equivalence set is bound, then all variables see the binding. Figure 2.15 shows
the result of doing X=[1 2 3] .

4From a formal viewpoint, the two variables form an equivalence class with respect to equal-
ity.
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Inside the store

E X
E X2

Figure 2.15: The store after binding one of the variables

2.2.8 Dataflow variables

In the declarative model, creating a variable and binding it are done separately.
What happens if we try to use the variable before it is bound? We call this a
variable use error. Some languages create and bind variables in one step, so that
use errors cannot occur. This is the case for functional programming languages.
Other languages allow creating and binding to be separate. Then we have the
following possibilities when there is a use error:

1. Execution continues and no error message is given. The variable’s content
is undefined, i.e. it is “garbage”: whatever is found in memory. This is
what C++ does.

2. Execution continues and no error message is given. The variable is initial-
ized to a default value when it is declared, e.g., to 0 for an integer. This is
what Java does.

3. Execution stops with an error message (or an exception is raised). This is
what Prolog does for arithmetic operations.

4. Execution waits until the variable is bound and then continues.

These cases are listed in increasing order of niceness. The first case is very bad,
since different executions of the same program can give different results. What’s
more, since the existence of the error is not signaled, the programmer is not even
aware when this happens. The second is somewhat better. If the program has a
use error, then at least it will always give the same result, even if it is a wrong
one. Again the programmer is not made aware of the error’s existence.

The third and fourth cases are reasonable in certain situations. In the third,
a program with a use error will signal this fact, instead of silently continuing.
This is reasonable in a sequential system, since there really is an error. It is
unreasonable in a concurrent system, since the result becomes nondeterministic:
depending on the timing, sometimes an error is signaled and sometimes not. In
the fourth, the program will wait until the variable is bound, and then continue.
This is unreasonable in a sequential system, since the program will wait forever.
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(s) =
skip Empty statement
| (s)1 (s)2 Statement sequence
| local (x)in (s) end Variable creation
| ()1=(x)2 Variable-variable binding
| (x)=(v) Value creation
| if (x) then (s); else (s), end Conditional
| case (x) of (pattern) then (s); else (s); end Pattern matching
| {0 ()1 ()} Procedure application

Table 2.1: The declarative kernel language

It is reasonable in a concurrent system, where it could be part of normal operation
that some other thread binds the variable.® The computation models of this book
use the fourth case.

Declarative variables that cause the program to wait until they are bound are
called dataflow variables. The declarative model uses dataflow variables because
they are tremendously useful in concurrent programming, i.e., for programs with
activities that run independently. If we do two concurrent operations, say A=23
and B=A+1, then with the fourth solution this will always run correctly and give
the answer B=24. It doesn’t matter whether A=23 is tried first or whether B=A+1
is tried first. With the other solutions, there is no guarantee of this. This property
of order-independence makes possible the declarative concurrency of Chapter 4.
It is at the heart of why dataflow variables are a good idea.

2.3 Kernel language

The declarative model defines a simple kernel language. All programs in the
model can be expressed in this language. We first define the kernel language
syntax and semantics. Then we explain how to build a full language on top of
the kernel language.

2.3.1 Syntax

The kernel syntax is given in Tables 2.1 and 2.2. It is carefully designed to be a
subset of the full language syntax, i.e., all statements in the kernel language are
valid statements in the full language.

5Still, during development, a good debugger should capture undesirable suspensions if there
are no other running threads.
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(v)

number) | (record) | (procedure)

|
N N

{number) int) | (float)
(record), (pattern) = (literal)
| (literal)((feature),: (x); ... (feature),: (x),)
(procedure) = proc {$ (X); ... (X),} (s) end
(literal) = (atom) | (bool)
(feature) = (atom) | (bool) | (int)
(bool) = true | false

Table 2.2: Value expressions in the declarative kernel language

Statement syntax

Table 2.1 defines the syntax of (s), which denotes a statement. There are eight
statements in all, which we will explain later.

Value syntax

Table 2.2 defines the syntax of (v), which denotes a value. There are three kinds
of value expressions, denoting numbers, records, and procedures. For records and
patterns, the arguments (x)1, ..., (x),, must all be distinct identifiers. This ensures
that all variable-variable bindings are written as explicit kernel operations.

Variable identifier syntax

Table 2.1 uses the nonterminals (x) and (y) to denote a variable identifier. We
will also use (z) to denote identifiers. There are two ways to write a variable
identifier:

e An uppercase letter followed by zero or more alphanumeric characters (let-
ters or digits or underscores), for example X, X1, or ThislsALongVariable_lIsntlt

e Any sequence of printable characters enclosed within * (back-quote) char-
acters, e.g., " this is a 25%\variable!

A precise definition of identifier syntax is given in Appendix C. All newly-declared
variables are unbound before any statement is executed. All variable identifiers
must be declared explicitly.

2.3.2 Values and types

A type or data type is a set of values together with a set of operations on those
values. A value is “of a type” if it is in the type’s set. The declarative model
is typed in the sense that it has a well-defined set of types, called basic types.
For example, programs can calculate with integers or with records, which are all
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of integer type or record type, respectively. Any attempt to use an operation
with values of the wrong type is detected by the system and will raise an error
condition (see Section 2.6). The model imposes no other restrictions on the use
of types.

Because all uses of types are checked, it is not possible for a program to behave
outside of the model, e.g., to crash because of undefined operations on its internal
data structures. It is still possible for a program to raise an error condition, for
example by dividing by zero. In the declarative model, a program that raises
an error condition will terminate immediately. There is nothing in the model to
handle errors. In Section 2.6 we extend the declarative model with a new concept,
exceptions, to handle errors. In the extended model, type errors can be handled
within the model.

In addition to basic types, programs can define their own types, which are
called abstract data types, ADT for short. Chapter 3 and later chapters show
how to define ADTs.

Basic types

The basic types of the declarative model are numbers (integers and floats), records
(including atoms, booleans, tuples, lists, and strings), and procedures. Table 2.2
gives their syntax. The nonterminal (v) denotes a partially constructed value.
Later in the book we will see other basic types, including chunks, functors, cells,
dictionaries, arrays, ports, classes, and objects. Some of these are explained in
Appendix B.

Dynamic typing

There are two basic approaches to typing, namely dynamic and static typing. In
static typing, all variable types are known at compile time. In dynamic typing,
the variable type is known only when the variable is bound. The declarative
model is dynamically typed. The compiler tries to verify that all operations use
values of the correct type. But because of dynamic typing, some type checks are
necessarily left for run time.

The type hierarchy

The basic types of the declarative model can be classified into a hierarchy. Fig-
ure 2.16 shows this hierarchy, where each node denotes a type. The hierarchy
is ordered by set inclusion, i.e., all values of a node’s type are also values of the
parent node’s type. For example, all tuples are records and all lists are tuples.
This implies that all operations of a type are also legal for a subtype, e.g., all
list operations work also for strings. Later on in the book we will extend this
hierarchy. For example, literals can be either atoms (explained below) or another
kind of constant called names (see Section 3.7.5). The parts where the hierarchy
is incomplete are given as “...”.
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Vaue

Number Record Procedure

N\

Int Float Tuple

Char Literal List

N

Bool Atom .. String

/N

True False

Figure 2.16: The type hierarchy of the declarative model

2.3.3 Basic types

We give some examples of the basic types and how to write them. See Appendix B
for more complete information.

Numbers. Numbers are either integers or floating point numbers. Exam-
ples of integers are 314, 0, and "10 (minus 10). Note that the minus sign
is written with a tilde “~”. Examples of floating point numbers are 1.0 ,
3.4 ,2.0e2 , and “2.0E™2

Atoms. An atom is a kind of symbolic constant that can be used as a
single element in calculations. There are several different ways to write
atoms. An atom can be written as a sequence of characters starting with
a lowercase letter followed by any number of alphanumeric characters. An
atom can also be written as any sequence of printable characters enclosed
in single quotes. Examples of atoms are a_person , donkeyKong3 , and
" #### hello #iHH

Booleans. A boolean is either the symbol true or the symbol false

Records. A record is a compound data structure. It consists of a label
followed by a set of pairs of features and variable identifiers. Features can
be atoms, integers, or booleans. Examples of records are person(age:X1
name:X2) (with features age and name), person(1:X1 2:X2) || (1:H
2.T) , "# (L:H 2.T) , nil , and person . An atom is a record with no
features.

Tuples. A tuple is a record whose features are consecutive integers starting
from 1. The features do not have to be written in this case. Examples of
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tuples are person(1:X1 2:X2) and person(X1 X2) , both of which mean
the same.

e Lists. A list is either the atom nil or the tuple "| “ (H T) (label is vertical
bar), where T is either unbound or bound to a list. This tuple is called a
list pair or a cons. There is syntactic sugar for lists:

— The |~ label can be written as an infix operator, so that H|T means
the same as " | "(H T) .

— The "|” operator associates to the right, so that 1|2|3|nil means
the same as 1|(2|(3|nil))

— Lists that end in nil can be written with brackets [ ... ], so that [1
2 3] means the same as 1|2|3|nil . These lists are called complete
lists.

e Strings. A string is a list of character codes. Strings can be written with
double quotes, so that "E=mc™2" means the same as [69 61 109 99 94
50] .

e Procedures. A procedure is a value of the procedure type. The statement:

{(x)=proc {$ (y)1 ... (y)a} (s) end

binds (x) to a new procedure value. That is, it simply declares a new
procedure. The $ indicates that the procedure value is anonymous, i.e.,
created without being bound to an identifier. There is a syntactic short-cut
that is more familiar:

proc { () ()1 - {y)n } {s) end

The $ is replaced by an identifier. This creates the procedure value and
immediately tries to bind it to (x). This short-cut is perhaps easier to read,
but it blurs the distinction between creating the value and binding it to an
identifier.

2.3.4 Records and procedures

We explain why chose records and procedures as basic concepts in the kernel
language. This section is intended for readers with some programming experience
who wonder why we designed the kernel language the way we did.

The power of records

Records are the basic way to structure data. They are the building blocks of
most data structures, including lists, trees, queues, graphs, etc., as we will see in
Chapter 3. Records play this role to some degree in most programming languages.
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But we shall see that their power can go much beyond this role. The extra power
appears in greater or lesser degree depending on how well or how poorly the
language supports them. For maximum power, the language should make it easy
to create them, take them apart, and manipulate them. In the declarative model,
a record is created by simply writing it down, with a compact syntax. A record
is taken apart by simply writing down a pattern, also with a compact syntax.
Finally, there are many operations to manipulate records: to add, remove, or
select fields, to convert to a list and back, etc. In general, languages that provide
this level of support for records are called symbolic languages.

When records are strongly supported, they can be used to increase the ef-
fectiveness of many other techniques. This book focuses on three in particu-
lar: object-oriented programming, graphical user interface (GUI) design, and
component-based programming. In object-oriented programming, Chapter 7
shows how records can represent messages and method heads, which are what
objects use to communicate. In GUI design, Chapter 10 shows how records can
represent “widgets”, the basic building blocks of a user interface. In component-
based programming, Section 3.9 shows how records can represent modules, which
group together related operations.

Why procedures?

A reader with some programming experience may wonder why our kernel language
has procedures as a basic construct. Fans of object-oriented programming may
wonder why we do not use objects instead. Fans of functional programming may
wonder why we do not use functions. We could have chosen either possibility,
but we did not. The reasons are quite straightforward.

Procedures are more appropriate than objects because they are simpler. Ob-
jects are actually quite complicated, as Chapter 7 explains. Procedures are more
appropriate than functions because they do not necessarily define entities that
behave like mathematical functions.® For example, we define both components
and objects as abstractions based on procedures. In addition, procedures are flex-
ible because they do not make any assumptions about the number of inputs and
outputs. A function always has exactly one output. A procedure can have any
number of inputs and outputs, including zero. We will see that procedures are ex-
tremely powerful building blocks, when we talk about higher-order programming
in Section 3.6.

5From a theoretical point of view, procedures are “processes” as used in concurrent calculi
such as the 7 calculus. The arguments are channels. In this chapter we use processes that
are composed sequentially with single-shot channels. Chapters 4 and 5 show other types of
channels (with sequences of messages) and do concurrent composition of processes.
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Operation Description Argument type
==B Equality comparison Value

A\=B Nonequality comparison Value

{IsProcedure P} Test if procedure Value

A=<B Less than or equal comparison Number or Atom

A<B Less than comparison Number or Atom

A>=B Greater than or equal comparison Number or Atom

A>B Greater than comparison Number or Atom

A+B Addition Number

A-B Subtraction Number

A*B Multiplication Number

A div B Division Int

A mod B Modulo Int

A/B Division Float

{Arity R} Arity Record

{Label R} Label Record

R.F Field selection Record

Table 2.3: Examples of basic operations

2.3.5 Basic operations

Table 2.3 gives the basic operations that we will use in this chapter and the next.
There is syntactic sugar for many of these operations so that they can be written
concisely as expressions. For example, X=A*B is syntactic sugar for {Number. ~*~
A B X}, where Number. " *” is a procedure associated with the type Number.”
All operations can be denoted in some long way, e.g., Value. “~==", Value. "<,
Int. “div ", Float. "/ . The table uses the syntactic sugar when it exists.

e Arithmetic. Floating point numbers have the four basic operations, +, -,
* and /, with the usual meanings. Integers have the basic operations +,
-, *,div , and mod, where div is integer division (truncate the fractional
part) and mod is the integer modulo, i.e., the remainder after a division.
For example, 10 mod 3=1.

e Record operations. Three basic operations on records are Arity , Label |,
and “.” (dot, which means field selection). For example, given:

X=person(name:"George" age:25)

then {Arity X} =[age name] ,{Label X} =person ,and X.age =25. The
call to Arity  returns a list that contains first the integer features in ascend-
ing order and then the atom features in ascending lexicographic order.

"To be precise, Number is a module that groups the operations of the Number type and
Number. “ *” selects the multiplication operation.
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e Comparisons. The boolean comparison functions include == and \=,
which can compare any two values for equality, as well as the numeric
comparisons =<, <, >=, and >, which can compare two integers, two floats,
or two atoms. Atoms are compared according to the lexicographic order
of their print representations. In the following example, Z is bound to the
maximum of X and Y:

declare X Y Z Tin

X=5 Y=10

T=(X>=Y)

if T then Z=X else Z=Y end

There is syntactic sugar so that an if statement accepts an expression as
its condition. The above example can be rewritten as:

declare X Y Zin
X=5 Y=10
if X>=Y then Z=X else Z=Y end

e Procedure operations. There are three basic operations on procedures:
defining them (with the proc statement), calling them (with the curly brace
notation), and testing whether a value is a procedure with the IsProcedure
function. The call {IsProcedure P} returns true if P is a procedure and
false otherwise.

Appendix B gives a more complete set of basic operations.

2.4 Kernel language semantics

The kernel language execution consists of evaluating functions over partial values.
To see this, we give the semantics of the kernel language in terms of a simple
operational model. The model is designed to let the programmer reason about
both correctness and complexity in a simple way. It is a kind of abstract machine,
but at a high level of abstraction that leaves out details such as registers and
explicit memory addresses.

2.4.1 Basic concepts

Before giving the formal semantics, let us give some examples to give intuition
on how the kernel language executes. This will motivate the semantics and make
it easier to understand.

A simple execution

During normal execution, statements are executed one by one in textual order.

Let us look at a simple execution:
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local A B C Din
A=11
B=2
C=A+B
D=C*C
end

This looks simple enough; it will bind D to 169. Let us look more closely at what
it does. The local statement creates four new variables in the store, and makes
the four identifiers A, B, C, Drefer to them. (For convenience, this extends slightly
the local statement of Table 2.1.) This is followed by two bindings, A=11 and
B=2. The addition C=A+Badds the values of A and B and binds C to the result 13.
The multiplication D multiples the value of C by itself and binds D to the result
169. This is quite simple.

Variable identifiers and static scoping

We saw that the local statement does two things: it creates a new variable
and it sets up an identifier to refer to the variable. The identifier only refers to
the variable inside the local statement, i.e., between the local and the end.
We call this the scope of the identifier. Outside of the scope, the identifier does
not mean the same thing. Let us look closer at what this implies. Consider the
following fragment:

local X in
X=1
local X in
X=2
{Browse X}
end
{Browse X}
end

What does it display? It displays first 2 and then 1. There is just one identifier,
X, but at different points during the execution, it refers to different variables.

Let us summarize this idea. The meaning of an identifier like X is determined
by the innermost local statement that declares X. The area of the program
where X keeps this meaning is called the scope of X. We can find out the scope of
an identifier by simply inspecting the text of the program; we do not have to do
anything complicated like execute or analyze the program. This scoping rule is
called lezical scoping or static scoping. Later we will see another kind of scoping
rule, dynamic scoping, that is sometimes useful. But lexical scoping is by far the
most important kind of scoping rule because it is localized, i.e., the meaning of
an identifier can be determined by looking at a small part of the program.
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Procedures

Procedures are one of the most important basic building blocks of any language.
We give a simple example that shows how to define and call a procedure. Here
is a procedure that binds Z to the maximum of X and V:

proc {Max X Y ?Z}
if X>=Y then Z=X else Z=Y end
end

To make the definition easier to read, we mark the output argument with a ques-
tion mark “?”. This has absolutely no effect on execution; it is just a comment.
Calling {Max 3 5 C} binds Cto 5. How does the procedure work, exactly? When
Max is called, the identifiers X, Y, and Z are bound to 3, 5, and the unbound vari-
able referenced by C. When Max binds Z, then it binds this variable. Since C
also references this variable, this also binds C. This way of passing parameters
is called call by reference. Procedures output results by being passed references
to unbound variables, which are bound inside the procedure. This book most-
ly uses call by reference, both for dataflow variables and for mutable variables.
Section 6.4.4 explains some other parameter passing mechanisms.

Procedures with external references

Let us examine the body of Max. It is just an if statement:
if X>=Y then Z=X else Z=Y end

This statement has one particularity, though: it cannot be executed! This is
because it does not define the identifiers X, Y, and Z. These undefined identifiers
are called free identifiers. Sometimes these are called free variables, although
strictly speaking they are not variables. When put inside the procedure Max,
the statement can be executed, because all the free identifiers are declared as
procedure arguments.

What happens if we define a procedure that only declares some of the free
identifiers as arguments? For example, let’s define the procedure LB with the
same procedure body as Max, but only two arguments:

proc {LB X ?Z}

if X>=Y then Z=X else Z=Y end
end

What does this procedure do when executed? Apparently, it takes any number
X and binds Z to X if X>=Y, but to Y otherwise. That is, Z is always at least
Y. What is the value of Y? It is not one of the procedure arguments. It has to
be the value of Y when the procedure is defined. This is a consequence of static
scoping. If Y=9 when the procedure is defined, then calling {LB 3 Z} binds Z to
9. Consider the following program fragment:

local Y LB in
Y=10
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proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end

local Y=15 Z in
{LB 5 Z}

end

end

What does the call {LB 5 Z} bind Zto? It will be bound to 10. The binding Y=15
when LB is called is ignored; it is the binding Y=10 at the procedure definition
that is important.

Dynamic scoping versus static scoping

Consider the following simple example:

local P Qin

proc {Q X} {Browse stat(X)} end
proc {P X} {Q X} end
local Q in
proc {Q X} {Browse dyn(X)} end
{P hello}
end

end

What should this display, stat(hello) or dyn(hello) 7 Static scoping says
that it will display stat(hello) . In other words, P uses the version of Q that
exists at P’s definition. But there is another solution: P could use the version of Q
that exists at P’s call. This is called dynamic scoping. Both have been used as the
default scoping rule in programming languages. The original Lisp language was
dynamically scoped. Common Lisp and Scheme, which are descended from Lisp,
are statically scoped by default. Common Lisp still allows to declare dynamically-
scoped variables, which it calls special variables [181]. Which default is better?
The correct default is procedure values with static scoping. This is because a
procedure that works when it is defined will continue to work, independent of
the environment where it is called. This is an important software engineering
property.

Dynamic scoping remains useful in some well-defined areas. For example,
consider the case of a procedure whose code is transferred across a network from
one computer to another. Some of this procedure’s external references, for exam-
ple calls to common library operations, can use dynamic scoping. This way, the
procedure will use local code for these operations instead of remote code. This is
much more efficient.’

8However, there is no guarantee that the operation will behave in the same way on the target
machine. So even for distributed programs the default should be static scoping.
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Procedural abstraction

Let us summarize what we learned from Max and LB. Three concepts play an
important role:

e Procedural abstraction. Any statement can be made into a procedure by
putting it inside a procedure declaration. This is called procedural abstrac-
tion. We also say that the statement is abstracted into a procedure.

e Free identifiers. A free identifier in a statement is an identifier that is not
defined in that statement. It might be defined in an enclosing statement.

e Static scoping. A procedure can have external references, which are free
identifiers in the procedure body that are not declared as arguments. LB
has one external reference. Max has none. The value of an external reference
is its value when the procedure is defined. This is a consequence of static
scoping.

Procedural abstraction and static scoping together form one of the most powerful
tools presented in this book. In the semantics, we will see that they can be
implemented in a simple way.

Dataflow behavior

In the single-assignment store, variables can be unbound. On the other hand,
some statements need bound variables, otherwise they cannot execute. For ex-
ample, what happens when we execute:

local X Y Zin

X=10

if X>=Y then Z=X else Z=Y end
end

The comparison X>=Y returns true or false | if it can decide which is the case.
If Y is unbound, it cannot decide, strictly speaking. What does it do? Continu-
ing with either true or false would be incorrect. Raising an error would be a
drastic measure, since the program has done nothing wrong (it has done nothing
right either). We decide that the program will simply stop its execution, with-
out signaling any kind of error. If some other activity (to be determined later)
binds Y then the stopped execution can continue as if nothing had perturbed the
normal flow of execution. This is called dataflow behavior. Dataflow behavior
underlies a second powerful tool presented in this book, namely concurrency. In
the semantics, we will see that dataflow behavior can be implemented in a simple
way.

2.4.2 The abstract machine

We will define the kernel semantics as an operational semantics, i.e., it defines the
meaning of the kernel language through its execution on an abstract machine. We
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Semantic stack
(statement in execution)

if X<2 then .).

U=Z.age X=U+1

Single-assignment store

(value store extended
with dataflow variables)

Z=person(age: Y)
Y=42 U

X

Figure 2.17: The declarative computation model

first define the basic concepts of the abstract machine: environments, semantic
statement, statement stack, execution state, and computation. We then show how
to execute a program. Finally, we explain how to calculate with environments,
which is a common semantic operation.

Overview of concepts

A running program is defined in terms of a computation, which is a sequence of
execution states. Let us define exactly what this means. We need the following
concepts:

o A single-assignment store o is a set of store variables. These variables are
partitioned into (1) sets of variables that are equal but unbound and (2)
variables that are bound to a number, record, or procedure. For example,
in the store {x1, 9 = 3,24 = a| 22}, 21 is unbound, x5 and x5 are equal
and unbound, and x4 is bound to the partial value a| x5. A store variable
bound to a value is indistinguishable from that value. This is why a store
variable is sometimes called a store entity.

e An environment E is a mapping from variable identifiers to entities in o.
This is explained in Section 2.2. We will write E as a set of pairs, e.g.,
{X— z,Y — y}, where X, Y are identifiers and z, y refer to store entities.

e A semantic statement is a pair ((s), F') where (s) is a statement and E
is an environment. The semantic statement relates a statement to what it
references in the store. The set of possible statements is given in Section 2.3.

e An execution state is a pair (ST, 0) where ST is a stack of semantic state-
ments and o is a single-assignment store. Figure 2.17 gives a picture of the

execution state.
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e A computation is a sequence of execution states starting from an initial
state: (ST(),O'()) — (STl,O'l) — (STQ,O'Q) — ...

A single transition in a computation is called a computation step. A computation
step is atomic, i.e., there are no visible intermediate states. It is as if the step
is done “all at once”. In this chapter, all computations are sequential, i.e., the
execution state contains exactly one statement stack, which is transformed by a
linear sequence of computation steps.

Program execution

Let us execute a program in this semantics. A program is simply a statement (s).
Here is how to execute the program:

e The initial execution state is:

([((s), &), @)

That is, the initial store is empty (no variables, empty set ¢) and the initial
execution state has just one semantic statement ((s), ) in the stack ST.
The semantic statement contains (s) and an empty environment (¢). We
use brackets [...] to denote the stack.

e At each step, the first element of ST is popped and execution proceeds
according to the form of the element.

e The final execution state (if there is one) is a state in which the semantic
stack is empty.

A semantic stack ST can be in one of three run-time states:
e Runnable: ST can do a computation step.
o Terminated: ST is empty.

e Suspended: ST is not empty, but it cannot do any computation step.

Calculating with environments

A program execution often does calculations with environments. An environment
E is a function that maps variable identifiers (x) to store entities (both unbound
variables and values). The notation E((x)) retrieves the entity associated with the
identifier (x) from the store. To define the semantics of the abstract machine in-
structions, we need two common operations on environments, namely adjunction
and restriction.

Adjunction defines a new environment by adding a mapping to an existing
one. The notation:

E+{(x) =z}
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denotes a new environment £’ constructed from £ by adding the mapping {(x) —
x}. This mapping overrides any other mapping from the identifier (x). That is,
E'({x)) is equal to x, and E'({y)) is equal to E({y)) for all identifiers (y) different
from (x). When we need to add more than one mapping at once, we write
E+{(x); = x1,....(x),, = Tn}.

Restriction defines a new environment whose domain is a subset of an existing
one. The notation:

denotes a new environment £’ such that dom(£’) = dom(E)N{(x),, ..., (x),,} and
E'({x)) = E((x)) for all (x) € dom(E"). That is, the new environment does not
contain any identifiers other than those mentioned in the set.

2.4.3 Non-suspendable statements

We first give the semantics of the statements that can never suspend.

The skip statement
The semantic statement is:
(skip , E)

Execution is complete after this pair is popped from the semantic stack.

Sequential composition
The semantic statement is:
((s)1 (s)2, E)
Execution consists of the following actions:

e Push ((s)9, F) on the stack.
e Push ((s);, F) on the stack.

Variable declaration (the local statement)
The semantic statement is:

(local (x)in (s) end, E)
Execution consists of the following actions:

e (Create a new variable x in the store.

e Let E' be E + {(x) — z}, i.e.,, E' is the same as F except that it adds a
mapping from (x) to z.

e Push ((s), E') on the stack.
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Variable-variable binding

The semantic statement is:

()1 = (x)2, E)
Execution consists of the following action:

e Bind E((x);) and E({x)s) in the store.

Value creation

The semantic statement is:

where (v) is a partially constructed value that is either a record, number, or
procedure. Execution consists of the following actions:

e Create a new variable z in the store.

e Construct the value represented by (v) in the store and let x refer to it. All
identifiers in (v) are replaced by their store contents as given by E.

e Bind F((x)) and z in the store.

We have seen how to construct record and number values, but what about pro-
cedure values? In order to explain them, we have first to explain the concept of
lexical scoping.

Lexical scoping revisited

A statement (s) can contain many occurrences of variable identifiers. For each
identifier occurrence, we can ask the question: where was this identifier declared?
If the declaration is in some statement (part of (s) or not) that textually surrounds
(i.e., encloses) the occurrence, then we say that the declaration obeys lexical
scoping. Because the scope is determined by the source code text, this is also
called static scoping.

Identifier occurrences in a statement can be bound or free with respect to that
statement. An identifier occurrence X is bound with respect to a statement (s)
if it is declared inside (s), i.e., in a local statement, in the pattern of a case
statement, or as argument of a procedure declaration. An identifier occurrence
that is not bound is free. Free occurrences can only exist in incomplete program
fragments, i.e., statements that cannot run. In a running program, it is always
true that every identifier occurrence is bound.

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



Declarative Computation Model

Bound identifier occurrences and bound variables

Do not confuse a bound identifier occurrence with a
bound variable! A bound identifier occurrence does not
exist at run time; it is a textual variable name that tex-
tually occurs inside a construct that declares it (e.g., a
procedure or variable declaration). A bound variable ex-
ists at run time; it is a dataflow variable that is bound
to a partial value.

Here is an example with both free and bound occurrences:

local Argl Arg2 in
Argl=111*111
Arg2=999*999
Res=Argl+Arg2
end
In this statement, all variable identifiers are declared with lexical scoping. The
identifier occurrences Argl and Arg2 are bound and the occurrence Res is free.
This statement cannot be run. To make it runnable, it has to be part of a bigger
statement that declares Res. Here is an extension that can run:

local Res in
local Argl Arg2 in
Argl=111*111
Arg2=999*999
Res=Argl+Arg2
end
{Browse Res}
end

This can run since it has no free identifier occurrences.

Procedure values (closures)

Let us see how to construct a procedure value in the store. It is not as simple as
one might imagine because procedures can have external references. For example:

proc {LowerBound X ?Z}
if X>=Y then Z=X else Z=Y end
end

In this example, the if statement has three free variables, X, Y, and Z. Two
of them, X and Z, are also formal parameters. The third, Y, is not a formal
parameter. It has to be defined by the environment where the procedure is
declared. The procedure value itself must have a mapping from Y to the store.
Otherwise, we could not call the procedure since Y would be a kind of dangling
reference.

Let us see what happens in the general case. A procedure expression is written
as:
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proc {$ (y)1 - (y)n} (s) end

The statement (s) can have free variable identifiers. Each free identifer is either a
formal parameter or not. The first kind are defined anew each time the procedure
is called. They form a subset of the formal parameters {{y)1, ..., {y)»}. The second
kind are defined once and for all when the procedure is declared. We call them
the external references of the procedure. Let us write them as {(z)1, ..., (z)x}.
Then the procedure value is a pair:

(proc {$ (y)i .. (y)a} (s)end, CE)

Here C'E (the contezxtual environment) is E|{(z>1,...,<z>n}> where E is the environ-
ment when the procedure is declared. This pair is put in the store just like any
other value.

Because it contains an environment as well as a procedure definition, a pro-
cedure value is often called a closure or a lexically-scoped closure. This is because
it “closes” (i.e., packages up) the environment at procedure definition time. This
is also called environment capture. When the procedure is called, the contextu-
al environment is used to construct the environment of the executing procedure

body.

2.4.4 Suspendable statements

There are three statements remaining in the kernel language:

(s) = ...
S | if (x)then (s); else (s), end
| case (x) of (pattern) then (s); else (s), end

| {0 (W1 - (Y}

What should happen with these statements if (x) is unbound? From the discussion
in Section 2.2.8, we know what should happen. The statements should simply
wait until (x) is bound. We say that they are suspendable statements. They have
an activation condition, which is a condition that must be true for execution
to continue. The condition is that E((x)) must be determined, i.e., bound to a
number, record, or procedure.

In the declarative model of this chapter, once a statement suspends it will
never continue, because there is no other execution that could make the activation
condition true. The program simply stops executing. In Chapter 4, when we
introduce concurrent programming, we will have executions with more than one
semantic stack. A suspended stack S7 can become runnable again if another stack
does an operation that makes ST’s activation condition true. In that chapter we
shall see that communication from one stack to another through the activation
condition is the basis of dataflow execution. For now, let us stick with just one
semantic stack.
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Conditional (the if statement)

The semantic statement is:
(if (x) then (s); else (s); end, E)
Execution consists of the following actions:

e If the activation condition is true (E((x)) is determined), then do the fol-
lowing actions:

— If E({x)) is not a boolean (true or false ) then raise an error condi-
tion.

— If E({x)) is true , then push ({(s);, F) on the stack.
— If E((x)) is false , then push ({s)q, £') on the stack.

e If the activation condition is false, then execution does not continue. The
execution state is kept as is. We say that execution suspends. The stop can
be temporary. If some other activity in the system makes the activation
condition true, then execution can resume.

Procedure application

The semantic statement is:

{ ) ()1 - (Y}, E)

Execution consists of the following actions:

e If the activation condition is true (E((x)) is determined), then do the fol-
lowing actions:

— If E((x)) is not a procedure value or is a procedure with a number of
arguments different from n, then raise an error condition.

— If E((x)) has the form (proc {$ (z); ... (z)»} (s) end,C'E) then push
((s), CE +{(2)y = E((¥)1), -, (2),, = E({y),))}) on the stack.

e If the activation condition is false, then suspend execution.

Pattern matching (the case statement)

The semantic statement is:
(case (x) of (lit)({feat);: (x); ... (feat),: (x),) then (s); else (s); end, F)

(Here (lit) and (feat) are synonyms for (literal) and (feature).) Execution consists
of the following actions:
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e If the activation condition is true (E((x)) is determined), then do the fol-
lowing actions:

— If the label of E((x)) is (lit) and its arity is [(feat); - - - (feat),], then
p}lllSh ((slzl,E + {(x)1 — E((x)).(feat)q, ..., (X}, — E({x)).(feat), }) on
the stack.

— Otherwise push ((s)2, ) on the stack.

e If the activation condition is false, then suspend execution.

2.4.5 Basic concepts revisited

Now that we have seen the kernel semantics, let us look again at the examples of
Section 2.4.1 to see exactly what they are doing. We look at three examples; we
suggest you do the others as exercises.

Variable identifiers and static scoping

We saw before that the following statement (s) displays first 2 and then 1:

;

local X in
X=1
local X in
X=2
(s) = (sh = {Browse X}
end
(s), = {Browse X}
end

\

The same identifier X first refers to 2 and then refers to 1. We can understand
better what happens by executing (s) in our abstract machine.

1. The initial execution state is:
([(s).0)], @)
Both the environment and the store are empty (E = ¢ and o = ¢).

2. After executing the outermost local statement and the binding X=1, we
get:

({({s)1(8)o: {X = 2})];
{r=1})

The identifier X refers to the store variable x, which is bound to 1. The
next statement to be executed is the sequential composition (s), (s),.

3. After executing the sequential composition, we get:
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([({)y; {X = 2}), ({$)g, {X = a})];
{r=1})

Each of the statements (s); and (s), has its own environment. At this point,
the two environments have identical values.

4. Let us start executing (s);. The first statement in (s); is a local ~statement.
Executing it gives:

([(x=2 {Browse X} ,{X—z'}), ((s),, {X— 2})],

{z/;x=1})

This creates the new variable ’ and calculates the new environment {X —
z} + {X — 2'}, which is {X — 2}. The second mapping of X overrides the
first.

5. After the binding X=2 we get:

( [({Browse X} ,{X— 2'}), ({Browse X} ,{X— z})],
{/ =2,2=1})

(Remember that (s), is a Browse .) Now we see why the two Browse calls
display different values. It is because they have different environments. The
inner local statement is given its own environment, in which X refers to
another variable. This does not affect the outer local statement, which
keeps its environment no matter what happens in any other instruction.

Procedure definition and call

Our next example defines and calls the procedure Max, which calculates the max-
imum of two numbers. With the semantics we can see precisely what happens
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during the definition and execution of Max. Here is the example in kernel syntax:

(local Max in
local A in
local B in
local C in
( Max=proc {$ X Y Z}
local T in
(s), = T=(X>=Y)
3 (s),= if T then Z=X else Z=Y end
(s) =4 (s), = end
end
A=3
B=5
| (s), ={Max A B C}
end
end
end
. end

This statement is in the kernel language syntax. We can see it as the expanded
form of:
local Max Cin
proc {Max X Y ?Z}
if X>=Y then Z=X else Z=Y end
end
{Max 3 5 C}
end

This is much more readable but it means exactly the same as the verbose version.
We have added the following three short-cuts:

e Declaring more than one variable in a local ~declaration. This is translated
into nested local declarations.

e Using “in-line” values instead of variables, e.g., {P 3} is a short-cut for
local X in X=3 {P X} end.

e Using nested operations, e.g., putting the operation X>=Y in place of the
boolean in the if statement.

We will use these short-cuts in all examples from now on.
Let us now execute statement (s). For clarity, we omit some of the interme-
diate steps.

1. The initial execution state is:
([({s),0)], @)
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Both the environment and the store are empty (E = ¢ and 0 = ¢).
2. After executing the four local declarations, we get:

( [(<S>1, {Max — m,A — a,B— b,C— c})],
{m,a,b,c})

The store contains the four variables m, a, b, and ¢. The environment of
(s), has mappings to these variables.

3. After executing the bindings of Max, A, and B, we get:

( [{Max A B C},{Max— m,A— a,B—b,C— c})],
{m=(proc {$ X Y Z} (s); end, ¢),a=3,b=5,c})

The variables m, a, and b are now bound to values. The procedure is
ready to be called. Notice that the contextual environment of Max is empty
because it has no free identifiers.

4. After executing the procedure application, we get:

([({s)3: {X = a,Y = b,Z — c})],
{m = (proc {$ X Y Z} (s); end, ¢),a=3,b=5,c})

The environment of (s), now has mappings from the new identifiers X, Y,
and Z.

5. After executing the comparison X>=Y, we get:

([({s)y {X—a, Y= b,Z—cT—t})],
{m = (proc {$ X Y Z} (s); end, ¢),a=3,b="5,c,t =false })

This adds the new identifier T and its variable ¢ bound to false
6. Execution is complete after statement (s), (the conditional):
([,{m = (proc {$ X Y Z} (s); end, ¢),a=3,b=5,c=5,t=false

The statement stack is empty and c is bound to 5.

Procedure with external references (part 1)

The second example defines and calls the procedure LowerBound , which ensures
that a number will never go below a given lower bound. The example is interesting
because LowerBound has an external reference. Let us see how the following code
executes:
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local LowerBound Y C in
Y=5
proc {LowerBound X ?Z}
if X>=Y then Z=X else Z=Y end
end
{LowerBound 3 C}
end

This is very close to the Max example. The body of LowerBound is identical
to the body of Max. The only difference is that LowerBound has an external
reference. The procedure value is:

(proc {$ X Z} if X>=Y then Z=X else Z=Y end end, {Y—y} )
where the store contains:
y=>5

When the procedure is defined, i.e., when the procedure value is created, the
environment has to contain a mapping of Y. Now let us apply this procedure. We
assume that the procedure is called as {LowerBound A C} , where A is bound to
3. Before the application we have:

( [({LowerBound A C} ,{Y — y,LowerBound — [b,A — a,C — c})],
{lb=(proc {$ X z} if X>=Y then Z=X else Z=Y end end,{Y — y}),
y=>5a=3,c})

After the application we get:

([(if X>=Y then Z=X else Z=Y end,{Y — y,X— a,Z — c})],
{lb=(proc {$ X Z} if X>=Y then Z=X else Z=Y end end,{Y — y}),
y=>5a=3,¢c})

The new environment is calculated by starting with the contextual environment
({Y — y} in the procedure value) and adding mappings from the formal argu-
ments X and Z to the actual arguments a and c.

Procedure with external references (part 2)

In the above execution, the identifier Y refers to y in both the calling environment
as well as the contextual environment of LowerBound . How would the execution
change if the following statement were executed instead of {LowerBound 3 C} :

local Y in
Y=10
{LowerBound 3 C}
end

Here Y no longer refers to y in the calling environment. Before looking at the
answer, please put down the book, take a piece of paper, and work it out. Just
before the application we have almost the same situation as before:
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( [({LowerBound A C} ,{Y — ¢/,LowerBound — Ib,A — a,C— c})],
{Ilb=(proc {$ X Z} if X>=Y then Z=X else Z=Y end end,{Y — y}),
y/: ]-an: 5,a = 3,0} )

The calling environment has changed slightly: Y refers to a new variable ¢/, which
is bound to 10. When doing the application, the new environment is calculated
in exactly the same way as before, starting from the contextual environment and
adding the formal arguments. This means that the ¢’ is ignored! We get exactly
the same situation as before in the semantic stack:

( [(if X>=Y then Z=X else Z=Y end,{Y — y,X— a,Z— c})],
{lb=(proc {$ X zZ} if X>=Y then Z=X else Z=Y end end,{Y — y}),
y/: ]-an: 5,(12 3,0} )

The store still has the binding 3’ = 10. But ¢’ is not referenced by the semantic
stack, so this binding makes no difference to the execution.

2.4.6 Last call optimization

Consider a recursive procedure with just one recursive call which happens to
be the last call in the procedure body. We call such a procedure tail-recursive.
Our abstract machine executes a tail-recursive procedure with a constant stack
size. This is because our abstract machine does last call optimization. This is
sometimes called tail recursion optimization, but the latter terminology is less
precise since the optimization works for any last call, not just tail-recursive calls
(see Exercises). Consider the following procedure:

proc {LooplO I}
if [1==10 then skip
else
{Browse 1}
{Loopl0 I+1}
end
end

Calling {Loop10 0} displays successive integers from 0 up to 9. Let us see how
this procedure executes.

e The initial execution state is:

( [({;-OOPlO 0} , Ep)l,

where Ej is the environment at the call.

o After executing the if statement, this becomes:

( [({Browse 1} ,{I —ip}) ({LooplO I+1} {I — ip})],
{io = O} Uo )
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o After executing the Browse , we get to the first recursive call:

( [{Loop10 1+1} ,{I —ig})],
{ig=0}Uo )

e After executing the if statement in the recursive call, this becomes:

( [({Browse 1} ,{I —i1}) ({Loopl0 I+1} {I — i1})],
{ip=0,i1=1}Uo)

e After executing the Browse again, we get to the second recursive call:

([({Loop10 1+1} {I —ii})],
{iozo,il :1}UO')

It is clear that the stack at the kth recursive call is always of the form:

[({Loop10 1+1} {1 — iz 1})]

There is just one semantic statement and its environment is of constant size. This
is the last call optimization. This shows the efficient way to program loops in the
declarative model: the loop should be invoked through a last call.

2.4.7 Active memory and memory management

In the Loopl0 example, the semantic stack and the store have very different
behaviors. The semantic stack is bounded by a constant size. On the other hand,
the store grows bigger at each call. At the kth recursive call, the store has the
form:

{iO:O,il = 1,...,ik_1 :k?—l}UO'

Let us see why this growth is not a problem in practice. Look carefully at the
semantic stack. The variables {ig, 1, ...,ix_2} are not needed for executing this
call. The only variable needed is 7;_;. Removing the not-needed variables gives
a smaller store:

{Z']gflzk—l}UO'

Executing with this smaller store gives exactly the same results as before!

From the semantics it follows that a running program needs only the infor-
mation in the semantic stack and in the part of the store reachable from the
semantic stack. A partial value is reachable if it is referenced by a statement on
the semantic stack or by another reachable partial value. The semantic stack and
the reachable part of the store are together called the active memory. The rest
of the store can safely be reclaimed, i.e., the memory it uses can be reused for
other purposes. Since the active memory size of the Loopl0 example is bounded
by a small constant, it can loop indefinitely without exhausting system memory.
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Allocate

Deallocate

Become inactive
(program execution)

Reclaim
(either manually or by
garbage collection)

Figure 2.18: Lifecycle of a memory block

Memory use cycle

Memory consists of a sequence of words. This sequence is divided up into blocks,
where a block consists of a sequence of one or more words used to store a lan-
guage entity or part of a language entity. Blocks are the basic unit of memory
allocation. Figure 2.18 shows the lifecycle of a memory block. Each block of mem-
ory continuously cycles through three states: active, inactive, and free. Memory
management is the task of making sure that memory circulates correctly along
this cycle. A running program that needs a block of memory will allocate it from
a pool of free memory blocks. During its execution, a running program may no
longer need some of the memory it allocated:

e If it can determine this directly, then it deallocates this memory. This
makes it immediately become free again. This is what happens with the
semantic stack in the Loopl0 example.

e [f it cannot determine this directly, then the memory becomes inactive. It is
simply no longer reachable by the running program. This is what happens
with the store in the Loopl0 example.

Usually, memory used for managing control flow (the semantic stack) can be
deallocated and memory used for data structures (the store) becomes inactive.

Inactive memory must eventually be reclaimed, i.e., the system must recognize
that it is inactive and put it back in the pool of free memory. Otherwise, the
system has a memory leak and will soon run out of memory. Reclaiming inactive
memory is the hardest part of memory management, because recognizing that
memory is unreachable is a global condition. It depends on the whole execution
state of the running program. Low-level languages like C or C++ often leave
reclaiming to the programmer, which is a major source of program errors. There
are two kinds of program error that can occur:

e Dangling reference. This happens when a block is reclaimed even though it
is still reachable. The system will eventually reuse this block. This means
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that data structures will be corrupted in unpredictable ways, causing the
program to crash. This error is especially pernicious since the effect (the
crash) is usually very far away from the cause (the incorrect reclaiming).
This makes dangling references hard to debug.

e Memory leak. This happens when an unreachable block is considered as still
reachable, and so is not reclaimed. The effect is that active memory size
keeps growing indefinitely until eventually the system’s memory resources
are exhausted. Memory leaks are less dangerous than dangling references
because programs can continue running for some time before the error forces
them to stop. Long-lived programs, such as operating systems and servers,
must not have any memory leaks.

Garbage collection

Many high-level languages, such as Erlang, Haskell, Java, Lisp, Prolog, Smalltalk,
and so forth, do automatic reclaiming. That is, reclaiming is done by the sys-
tem independently of the running program. This completely eliminates dangling
references and greatly reduces memory leaks. This relieves the programmer of
most of the difficulties of manual memory management. Automatic reclaiming
is called garbage collection. Garbage collection is a well-known technique that
has been used for a long time. It was used in the 1960’s for early Lisp systems.
Until the 1990’s, mainstream languages did not use it because it was incorrectly
judged as being too inefficient. It has finally become acceptable in mainstream
programming because of the popularity of the Java language.

A typical garbage collector has two phases. In the first phase, it determines
what the active memory is. It does this finding all data structures that are
reachable starting from an initial set of pointers called the root set. The root set
is the set of pointers that are always needed by the program. In the abstract
machine defined so far, the root set is simply the semantic stack. In general, the
root set includes all pointers in ready threads and all pointers in operating system
data structures. We will see this when we extend the machine to implement
the new concepts introduced in later chapters. The root set also includes some
pointers related to distributed programming (namely references from remote sites;
see Chapter 11).

In the second phase, the garbage collector compacts the memory. That is, it
collects all the active memory blocks into one contiguous block (a block without
holes) and the free memory blocks into one contiguous block.

Modern garbage collection algorithms are efficient enough that most applica-
tions can use them with only small memory and time penalties [95]. The most
widely-used garbage collectors run in a “batch” mode, i.e., they are dormant most
of the time and run only when the total amount of active and inactive memory
reaches a predefined threshold. While the garbage collector runs, the program
does not fulfill its task. This is perceived as an occasional pause in program
execution. Usually this pause is small enough not to be disruptive.
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There exist garbage collection algorithms, called real-time garbage collectors,
that can run continuously, interleaved with the program execution. They can be
used in cases, such as hard real-time programming, in which there must not be
any pauses.

Garbage collection is not magic

Having garbage collection lightens the burden of memory management for the
developer, but it does not eliminate it completely. There are two cases that remain
the developer’s responsibility: avoiding memory leaks and managing external
resources.

Avoiding memory leaks It is the programmer’s responsibility to avoid mem-
ory leaks. If the program continues to reference a data structure that it no longer
needs, then that data structure’s memory will never be recovered. The program
should be careful to lose all references to data structures no longer needed.

For example, take a recursive function that traverses a list. If the list’s head
is passed to the recursive call, then list memory will not be recovered during the
function’s execution. Here is an example:

L=[1 2 3 ... 1000000]

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end

{Browse {Sum O L L}}

Sumsums the elements of a list. But it also keeps a reference to L, the original
list, even though it does not need L. This means L will stay in memory during
the whole execution of Sum A better definition is as follows:

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end

{Browse {Sum 0 L}}

Here the reference to L is lost immediately. This example is trivial. But things can
be more subtle. For example, consider an active data structure S that contains
a list of other data structures D1, D2, ..., Dn. If one of these, say Di, is no longer
needed by the program, then it should be removed from the list. Otherwise its
memory will never be recovered.

A well-written program therefore has to do some “cleanup” after itself: making
sure that it no longer references data structures that it no longer needs. The
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cleanup can be done in the declarative model, but it is cumbersome.’

Managing external resources A Mozart program often needs data structures
that are external to its operating system process. We call such a data structure
an external resource. External resources affect memory management in two ways.
An internal Mozart data structure can refer to an external resource and vice versa.
Both possibilities need some programmer intervention. Let us consider each case
separately.

The first case is when a Mozart data structure refers to an external resource.
For example, a record can correspond to a graphic entity in a graphics display or
to an open file in a file system. If the record is no longer needed, then the graphic
entity has to be removed or the file has to be closed. Otherwise, the graphics
display or the file system will have a memory leak. This is done with a technique
called finalization, which defines actions to be taken when data structures become
unreachable. Finalization is explained in Section 6.9.2.

The second case is when an external resource needs a Mozart data structure.
This is often straightforward to handle. For example, consider a scenario where
the Mozart program implements a database server that is accessed by external
clients. This scenario has a simple solution: never do automatic reclaiming of
the database storage. Other scenarios may not be so simple. A general solution
is to set aside a part of the Mozart program to represent the external resource.
This part should be active (i.e., have its own thread) so that it is not reclaimed
haphazardly. It can be seen as a “proxy” for the resource. The proxy keeps a ref-
erence to the Mozart data structure as long as the resource needs it. The resource
informs the proxy when it no longer needs the data structure. Section 6.9.2 gives
another technique.

The Mozart garbage collector

The Mozart system does automatic memory management. It has both a local
garbage collector and a distributed garbage collector. The latter is used for
distributed programming and is explained in Chapter 11. The local garbage
collector uses a copying dual-space algorithm.

The garbage collector divides memory into two spaces, which each takes up
half of available memory space. At any instant, the running program sits com-
pletely in one half. Garbage collection is done when there is no more free memory
in that half. The garbage collector finds all data structures that are reachable
from the root set and copies them to the other half of memory. Since they are
copied to one contiguous memory block this also does compaction.

The advantage of a copying garbage collector is that its execution time is
proportional to the active memory size, not to the total memory size. Small
programs will garbage collect quickly, even if they are running in a large memory
space. The two disadvantages of a copying garbage collector are that half the

9Tt is more efficiently done with explicit state (see Chapter 6).
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memory is unusable at any given time and that long-lived data structures (like
system tables) have to be copied at each garbage collection. Let us see how
to remove these two disadvantages. Copying long-lived data can be avoided by
using a modified algorithm called a generational garbage collector. This partitions
active memory into generations. Long-lived data structures are put in older
generations, which are collected less often.

The memory disadvantage is only important if the active memory size ap-
proaches the maximum addressable memory size of the underlying architecture.
Mainstream computer technology is currently in a transition period from 32-bit
to 64-bit addressing. In a computer with 32-bit addresses, the limit is reached
when active memory size is 1000 MB or more. (The limit is usually not 4000
MB due to limitations in the operating system.) At the time of writing, this
limit is reached by large programs in high-end personal computers. For such
programs, we recommend to use a computer with 64-bit addresses, which has no
such problem.

2.5 From kernel language to practical language

The kernel language has all the concepts needed for declarative programming.
But trying to use it for practical declarative programming shows that it is too
minimal. Kernel programs are just too verbose. It turns out that most of this
verbosity can be eliminated by judiciously adding syntactic sugar and linguistic
abstractions. This section does just that:

e [t defines a set of syntactic conveniences that give a more concise and read-
able full syntax.

e [t defines an important linguistic abstraction, namely functions, that is
useful for concise and readable programming.

e [t explains the interactive interface of the Mozart system and shows how
it relates to the declarative model. This brings in the declare statement,
which is a variant of the local statement designed for interactive use.

The resulting language is used in Chapter 3 to explain the programming tech-

niques of the declarative model.

2.5.1 Syntactic conveniences

The kernel language defines a simple syntax for all its constructs and types. The
full language has the following conveniences to make this syntax more usable:

e Nested partial values can be written in a concise way.

e Variables can be both declared and initialized in one step.
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Expressions can be written in a concise way.

The if and case statements can be nested in a concise way.

The new operators andthen and orelse are defined as conveniences for
nested if statements.

Statements can be converted into expressions by using a nesting marker.

The nonterminal symbols used in the kernel syntax and semantics correspond as
follows to those in the full syntax:

Kernel syntax Full syntax

(x), (y), (2) (variable)
(s) (statement), (stmt)

Nested partial values

In Table 2.2, the syntax of records and patterns implies that their arguments are
variables. In practice, many partial values are nested deeper than this. Because
nested values are so often used, we give syntactic sugar for them. For example,
we extend the syntax to let us write person(name:"George" age:25) instead
of the more cumbersome version:

local A B in A="George" B=25 X=person(hame:A age:B) end

where X is bound to the nested record.

Implicit variable initialization

To make programs shorter and easier to read, there is syntactic sugar to bind a
variable immediately when it is declared. The idea is to put a bind operation
between local and in . Instead of local X in X=10 {Browse X} end, in
which X is mentioned three times, the short-cut lets one write local X=10 in
{Browse X} end, which mentions X only twice. A simple case is the following:

local  X=(expression) in (statement) end
This declares X and binds it to the result of (expression). The general case is:
local  (pattern)=(expression) in (statement) end

where (pattern) is any partial value. This declares all the variables in (pattern)
and then binds (pattern) to the result of (expression). In both cases, the variables
occurring on the left-hand side of the equality, i.e., X or the variables in (pattern),
are the ones declared.

Implicit variable initialization is convenient for taking apart a complex da-
ta structure. For example, if T is bound to the record tree(key:a left:L
right:R value:1) , then just one equality is enough to extract all four fields:
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(expression) ::= (variable) | (int) | (float) |
| (expressmn) (evalBinOp) (expression)
| (" (expression) (evalBinOp) (expression) ")~
| “{~ (expression) { (expression) } "}~
|-
(evalBinOp) ="+ | | ~*7 | 1 |d|v | mod |
== T e T T

Table 2.4: Expressions for calculating with numbers

local

tree(key:A left:B right:C value:D)=T
in

(statement)
end

This is a kind of pattern matching. T must have the right structure, otherwise
an exception is raised. This does part of the work of the case statement, which
generalizes this so that the programmer decides what to do if the pattern is not
matched. Without the short-cut, the following is needed:

local A B C Din
{Label T}=tree
A=T key
B=T.left
C=T.right
D=T.value
(statement)

end

which is both longer and harder to read. What if T has more than four fields,
but we want to extract just four? Then we can use the following notation:

local
tree(key:A left:B right:C value:D ...)=T
in
(statement)
end
The “... 7 means that there may be other fields in T.
Expressions

An expression is syntactic sugar for a sequence of operations that returns a value.
It is different from a statement, which is also a sequence of operations but does
not return a value. An expression can be used inside a statement whenever a
value is needed. For example, 11*11 is an expression and X=11*11 is a statement.
Semantically, an expression is defined by a straightforward translation into kernel
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(statement) = if (expression) then (inStatement)
{ elseif  (expression) then (inStatement) }
[ else (inStatement) | end

(inStatement) ::= [ { (declarationPart) }+ in | (statement)

Table 2.5: The if statement

(statement) ::= case (expression)
of (pattern) [ andthen (expression) | then (inStatement)
{"0 ~ (pattern) [ andthen (expression) | then (inStatement) }
[ else (inStatement) | end
(pattern) (varlab|e> | (atom) | (int) | (float)
(string) | un|t | true false
(
(

|
label) “ (© { [ (feature) ": " | (pattern) } ["... ~ ]")~
pattern > (consBinOp) (pattern)

|-

N

1

1 A (Pattern} H
(consBinOp) == "#" |°

Table 2.6: The case statement

syntax. So X=11*11 is translated into {Mul 11 11 X} , where Mul is a three-
argument procedure that does multiplication.!”

Table 2.4 shows the syntax of expressions that calculate with numbers. Later
on we will see expressions for calculating with other data types. Expressions are
built hierarchically, starting from basic expressions (e.g., variables and numbers)
and combining them together. There are two ways to combine them: using
operators (e.g., the addition 1+2+3+4 ) or using function calls (e.g., the square
root {Sqrt 5.0} ).

Nested if and case statements

We add syntactic sugar to make it easy to write if and case statements with
multiple alternatives and complicated conditions. Table 2.5 gives the syntax of
the full if statement. Table 2.6 gives the syntax of the full case statement and its
patterns. (Some of the nonterminals in these tables are defined in Appendix C.)
These statements are translated into the primitive if and case statements of
the kernel language. Here is an example of a full case statement:

case Xs#Ys
of nil#Ys then (s);

10Tts real name is Number. ~ *” | since it is part of the Number module.
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0 Xs#nil then (s)o
[0 (XIXr)#(Y]Yr) andthen X=<Y then (s)3
else (s); end

It consists of a sequence of alternative cases delimited with the “[] 7 symbol. The
alternatives are often called clauses. This statement translates into the following
kernel syntax:

case Xs of nil then (s);
else
case Ys of nil then (s),
else
case Xs of X|Xr then
case Ys of Y|Yr then
if X=<Y then (s)3 else (s); end
else (s); end
else (s), end
end
end

The translation illustrates an important property of the full case statement:
clauses are tested sequentially starting with the first clause. Execution continues
past a clause only if the clause’s pattern is inconsistent with the input argument.

Nested patterns are handled by looking first at the outermost pattern and then
working inwards. The nested pattern (X|Xr)#(Y|Yr) has one outer pattern of
the form A#B and two inner patterns of the form A|B . All three patterns are tuples
that are written with infix syntax, using the infix operators “#” and " | ~. They
could have been written with the usual syntax as“# (A B) and " | " (A B) . Each
inner pattern (X|Xr) and (Y|Yr) is put in its own primitive case statement.
The outer pattern using "~ #  disappears from the translation because it occurs
also in the case ’s input argument. The matching with “#" can therefore be done
at translation time.

The operators andthen and orelse
The operators andthen and orelse are used in calculations with boolean values.
The expression:
(expression); andthen (expression)s
translates into:
if  (expression); then (expression), else false end

The advantage of using andthen is that (expression), is not evaluated if (expression);
is false . There is an analogous operator orelse . The expression:

(expression); orelse  (expression)so
translates into:

if  (expression); then true else (expression)s end
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(statement) fun” { (variable) { (pattern) } "}~ (inExpression) end

(expression) = fun” {"" $ { (pattern) } "}  (inExpression) end
| proc” {"" $ { (pattern) } "}~ (inStatement) end
| “{" (expression) { (expression) } "}°
| local { (declarationPart) }+ in (expression) end
| if (expression) then (inExpression)
{ elseif  (expression) then (inExpression) }
[ else (inExpression) | end
| case (expression)
of (pattern) [ andthen (expression) | then (inExpression)

[ else (inExpression) | end

(inStatement) [ { (declarationPart) }+ in | (statement)
(inExpression) ::= [ { (declarationPart) }+ in | [ (statement) | (expression)

{"00 ~ (pattern) [ andthen (expression) | then (inExpression) }

Table 2.7: Function syntax
That is, (expression), is not evaluated if (expression); is true .

Nesting markers

The nesting marker “$” turns any statement into an expression. The expression’s
value is what is at the position indicated by the nesting marker. For example, the
statement {P X1 X2 X3} can be written as{P X1 $ X3} , which is an expression
whose value is X2. This makes the source code more concise, since it avoids having
to declare and use the identifier X2. The variable corresponding to X2 is hidden
from the source code.

Nesting markers can make source code more readable to a proficient program-
mer, while making it harder for a beginner to see how the code translates to the
kernel language. We will use them only when they greatly increase readability.
For example, instead of writing:

local X in {Obj get(X)} {Browse X} end

we will instead write {Browse {Obj get($)}} . Once you get used to nesting
markers, they are both concise and clear. Note that the syntax of procedure
values as explained in Section 2.3.3 is consistent with the nesting marker syntax.

2.5.2 Functions (the fun statement)

The declarative model provides a linguistic abstraction for programming with
functions. This is our first example of a linguistic abstraction, as defined in
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Section 2.1.2. We define the new syntax for function definitions and function
calls and show how they are translated into the kernel language.

Function definitions

A function definition differs from a procedure definition in two ways: it is intro-
duced with the keyword fun and the body must end with an expression. For
example, a simple definition is:

fun {F X1 ... XN}  (statement) (expression) end
This translates to the following procedure definition:
proc {F X1 .. XN ?R}  (statement) R=(expression) end

The extra argument R is bound to the expression in the procedure body. If the
function body is an if statement, then each alternative of the if can end in an
expression:

fun {Max X Y}
if X>=Y then X else Y end
end

This translates to:

proc {Max X Y ?R}
R =if X>=Y then X else Y end
end

We can further translate this by transforming the if from an expression to a
statement. This gives the final result:

proc {Max X Y ?R}
if X>=Y then R=X else R=Y end
end

Similar rules apply for the local and case statements, and for other statements
we will see later. Each statement can be used as an expression. Roughly speak-
ing, whenever an execution sequence in a procedure ends in a statement, the
corresponding sequence in a function ends in an expression. Table 2.7 gives the
complete syntax of expressions. This table takes all the statements we have seen
so far and shows how to use them as expressions. In particular, there are also
function values, which are simply procedure values written in functional syntax.

Function calls

A function call {F X1 ... XN} translates to the procedure call {F X1 ... XN
R}, where Rreplaces the function call where it is used. For example, the following
nested call of F:

{Q {F XL ... XN} ... }

is translated to:
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local R in
{F X1 ... XN R}

QR ..}

end

In general, nested functions are evaluated before the function in which they are
nested. If there are several, then they are evaluated in the order they appear in
the program.

Function calls in data structures

There is one more rule to remember for function calls. It has to do with a call
inside a data structure (record, tuple, or list). Here is an example:

Ys={F X}|{{Map Xr F}
In this case, the translation puts the nested calls after the bind operation:

local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}
end

This ensures that the recursive call is last. Section 2.4.6 explains why this is
important for execution efficiency. The full Map function is defined as follows:

fun {Map Xs F}
case Xs
of nil then nil
[0 X|Xr then {F X}{Map Xr F}
end
end

Map applies the function F to all elements of a list and returns the result. Here
is an example call:

{Browse {Map [1 2 3 4] fun {$ X} X*X end}}

This displays [L 4 9 16] . The definition of Map translates as follows to the
kernel language:

proc {Map Xs F ?Ys}
case Xs of nil then Ys=nil
else case Xs of X|Xr then
local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}
end
end end
end
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(interStatement) ::= (statement)
| declare  { (declarationPart) }+ [ (interStatement) |
| declare  { (declarationPart) }+ in (interStatement)
(declarationPart) ::= (variable) | (pattern) “=" (expression) | (statement)

Table 2.8: Interactive statement syntax

procedure value procedure value

# X, X, | unbound

- X, X, | unbound
» X, | unbound
» X, unbound

Result of first decl are X' Y Result of second decl are X Y

Figure 2.19: Declaring global variables

The dataflow variable Yr is used as a “placeholder” for the result in the recursive
call {Map Xr F Yr} . This lets the recursive call be the last call. In our model,
this means that the recursion executes with the same space and time efficiency
as an iterative construct like a while loop.

2.5.3 Interactive interface (the declare statement)

The Mozart system has an interactive interface that allows to introduce program
fragments incrementally and execute them as they are introduced. The fragments
have to respect the syntax of interactive statements, which is given in Table 2.8.
An interactive statement is either any legal statement or a new form, the declare
statement. We assume that the user feeds interactive statements to the system
one by one. (In the examples given throughout this book, the declare statement
is often left out. It should be added if the example declares new variables.)

The interactive interface allows to do much more than just feed statements.
It has all the functionality needed for software development. Appendix A gives
a summary of some of this functionality. For now, we assume that the user just
knows how to feed statements.

The interactive interface has a single, global environment. The declare
statement adds new mappings to this environment. It follows that declare can
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only be used interactively, not in standalone programs. Feeding the following
declaration:

declare X Y

creates two new variables in the store, 1 and x5. and adds mappings from X and
Y to them. Because the mappings are in the global environment we say that X
and Y are global variables or interactive variables. Feeding the same declaration
a second time will cause X and Y to map to two other new variables, x5 and x4.
Figure 2.19 shows what happens. The original variables, 1 and x5, are still in the
store, but they are no longer referred to by X and Y. In the figure, Browse maps
to a procedure value that implements the browser. The declare statement adds
new variables and mappings, but leaves existing variables in the store unchanged.

Adding a new mapping to an identifier that already maps to a variable may
cause the variable to become inaccessible, if there are no other references to it.
If the variable is part of a calculation, then it is still accessible from within the
calculation. For example:

declare X Y
X=25

declare A
A=person(age:X)
declare X Y

Just after the binding X=25, X maps to 25, but after the second declare X
Y it maps to a new unbound variable. The 25 is still accessible through the
global variable A, which is bound to the record person(age:25) . The record
contains 25 because X mapped to 25 when the binding A=person(age:X)  was
executed. The second declare X Y changes the mapping of X, but not the record
person(age:25) since the record already exists in the store. This behavior of
declare is designed to support a modular programming style. Executing a
program fragment will not cause the results of any previously-executed fragment
to change.
There is a second form of declare

declare X Y in (stmt)

which declares two global variables, as before, and then executes (stmt). The
difference with the first form is that (stmt) declares no variables (unless it contains
a declare ).

The Browser

The interactive interface has a tool, called the Browser, which allows to look into
the store. This tool is available to the programmer as a procedure called Browse .
The procedure Browse has one argument. It is called as {Browse (expr)}, where
(expr) is any expression. It can display partial values and it will update the
display whenever the partial values are bound more. Feeding the following:

{Browse 1}

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



90

Declarative Computation Model

==l 0z Browser - B X
Browser Selection Options
ST &
e onsnacassaasnccses asasacasa aecaacaadaeasesaeaaceasasacaacesaaasacas

/|

Figure 2.20: The Browser

displays the integer 1. Feeding:

declare Y in
{Browse Y}

displays just the name of the variable, namely Y. No value is displayed. This
means that Y is currently unbound. Figure 2.20 shows the browser window after
these two operations. If Y is bound, e.g., by doing Y=2, then the browser will
update its display to show this binding.

Dataflow execution

We saw earlier that declarative variables support dataflow execution, i.e., an
operation waits until all arguments are bound before executing. For sequential
programs this is not very useful, since the program will wait forever. On the
other hand, it is useful for concurrent programs, in which more than one instruc-
tion sequence can be executing at the same time. An independently-executing
instruction sequence is called a thread. Programming with more than one thread
is called concurrent programming; it is introduced in Chapter 4.

All examples in this chapter execute in a single thread. To be precise, each
program fragment fed into the interactive interface executes in its own thread.
This lets us give simple examples of dataflow execution in this chapter. For
example, feed the following statement:

declare A B Cin
C=A+B
{Browse C}

This will display nothing, since the instruction C=A+Bblocks (both of its argu-
ments are unbound). Now, feed the following statement:

A=10

This will bind A, but the instruction C=A+Bstill blocks since B is still unbound.
Finally, feed the following:
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B=200

This displays 210 in the browser. Any operation, not just addition, will block
if it does not get enough input information to calculate its result. For example,
comparisons can block. The equality comparison X==Y will block if it cannot
decide whether or not X is equal to or different from Y. This happens, e.g., if one
or both of the variables are unbound.

Programming errors often result in dataflow suspensions. If you feed a state-
ment that should display a result and nothing is displayed, then the probable
cause of the problem is a blocked operation. Carefully check all operations to
make sure that their arguments are bound. Ideally, the system’s debugger should
detect when a program has blocked operations that cannot continue.

2.6 Exceptions

How do we handle exceptional situations within a program? For example, dividing
by zero, opening a nonexistent file, or selecting a nonexistent field of a record?
These errors do not occur in a correct program, so they should not encumber
normal programming style. On the other hand, they do occur sometimes. It
should be possible for programs to manage these errors in a simple way. The
declarative model cannot do this without adding cumbersome checks throughout
the program. A more elegant way is to extend the model with an exception-
handling mechanism. This section does exactly that. We give the syntax and
semantics of the extended model and explain what exceptions look like in the full
language.

2.6.1 Motivation and basic concepts

In the semantics of Section 2.4, we speak of “raising an error” when a statement
cannot continue correctly. For example, a conditional raises an error when its
argument is a non-boolean value. Up to now, we have been deliberately vague
about exactly what happens next. Let us now be more precise. We would like to
be able to detect these errors and handle them from within a running program.
The program should not stop when they occur. Rather, it should in a controlled
way transfer execution to another part, called the exception handler, and pass
the exception handler a value that describes the error.

What should the exception-handling mechanism look like? We can make two
observations. First, it should be able to confine the error, i.e., quarantine it so that
it does not contaminate the whole program. We call this the error confinement
principle:

Assume that the program is made up of interacting “components”
organized in hierarchical fashion. Each component is built of smaller
components. We put “component” in quotes because the language
does not need to have a component concept. It just needs to be
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np (D = execution context

- exception-catching
execution context

X = raise exception

Figure 2.21: Exception handling

compositional, i.e., programs are built in layered fasion. Then the
error confinement principle states that an error in a component should
be catchable at the component boundary. Outside the component, the
error is either invisible or reported in a nice way.

Therefore, the mechanism causes a “jump” from inside the component to its
boundary. The second observation is that this jump should be a single operation.
The mechanism should be able, in a single operation, to exit from arbitrarily
many levels of nested context. Figure 2.21 illustrates this. In our semantics, a
contert is simply an entry on the semantic stack, i.e., an instruction that has to
be executed later. Nested contexts are created by procedure calls and sequential
compositions.

The declarative model cannot jump out in a single operation. The jump has
to be coded explicitly as little hops, one per context, using boolean variables and
conditionals. This makes programs more cumbersome, especially since the extra
coding has to be added everywhere that an error can possibly occur. It can be
shown theoretically that the only way to keep programs simple is to extend the
model [103, 105].

We propose a simple extension to the model that satisfies these conditions. We
add two statements: the try statement and the raise statement. The try state-
ment creates an exception-catching context together with an exception handler.
The raise statement jumps to the boundary of the innermost exception-catching
context and invokes the exception handler there. Nested try statements create
nested contexts. Executing try (s) catch (x) then (s); end is equivalent to ex-
ecuting (s), if (s) does not raise an exception. On the other hand, if (s) raises an
exception, i.e., by executing a raise statement, then the (still ongoing) execu-
tion of (s) is aborted. All information related to (s) is popped from the semantic
stack. Control is transferred to (s);, passing it a reference to the exception in (x).

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



2.6 Exceptions

93

Any partial value can be an exception. This means that the exception-
handling mechanism is extensible by the programmer, i.e., new exceptions can be
defined as they are needed by the program. This lets the programmer foresee new
exceptional situations. Because an exception can be an unbound variable, raising
an exception and determining what the exception is can be done concurrently. In
other words, an exception can be raised (and caught) before it is known which
exception it is! This is quite reasonable in a language with dataflow variables:
we may at some point know that there exists a problem but not know yet which
problem.

An example

Let us give a simple example of exception handling. Consider the following func-
tion, which evaluates simple arithmetic expressions and returns the result:

fun {Eval E}
if {IsNumber E} then E
else
case E
of plus(X Y) then {Eval X}+{Eval Y}
1 times(X Y) then {Eval X}*{Eval Y}
else raise illFormedExpr(E) end
end
end
end

For this example, we say an expression is ill-formed if it is not recognized by
Eval , i.e., if it contains other values than numbers, plus , and times . Trying
to evaluate an ill-formed expression E will raise an exception. The exception is

a tuple, illFormedExpr(E) , that contains the ill-formed expression. Here is an
example of using Eval :
try

{Browse {Eval plus(plus(5 5) 10)}}

{Browse {Eval times(6 11)}}

{Browse {Eval minus(7 10)}}
catch illFormedExpr(E) then

{Browse ~*** |llegal expression =
end

If any call to Eval raises an exception, then control transfers to the catch clause,
which displays an error message.

2.6.2 The declarative model with exceptions

We extend the declarative computation model with exceptions. Table 2.9 gives
the syntax of the extended kernel language. Programs can use two new state-
ments, try and raise . In addition, there is a third statement, catch (x) then
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(s) =
skip Empty statement
| (s)1 (s)2 Statement sequence
| local (x)in (s) end Variable creation
| (x)1=(x)2 Variable-variable binding
| (x)=(v) Value creation
| if (x) then (s); else (s), end Conditional
| case (x) of (pattern) then (s); else (s); end Pattern matching
[ {{x) {Y)1 ... {Y)n} Procedure application
| try (s); catch (x) then (s), end Exception context
| raise (x) end Raise exception

Table 2.9: The declarative kernel language with exceptions

(s) end, that is needed internally for the semantics and is not allowed in pro-
grams. The catch statement is a “marker” on the semantic stack that defines
the boundary of the exception-catching context. We now give the semantics of
these statements.

The try statement

The semantic statement is:
(try (s); catch (x) then (s); end, E)
Execution consists of the following actions:
e Push the semantic statement (catch (x) then (s), end, F) on the stack.

e Push ((s),, E) on the stack.

The raise statement

The semantic statement is:
(raise  (x) end, E)
Execution consists of the following actions:
e Pop elements off the stack looking for a catch statement.

— If a catch statement is found, pop it from the stack.

— If the stack is emptied and no catch is found, then stop execution
with the error message “Uncaught exception”.

e Let (catch (y) then (s) end, E.) be the catch statement that is found.
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(statement) = try (inStatement)

[ catch (pattern) then (inStatement)
{00 ~ (pattern) then (inStatement) } |

[ finally  (inStatement) | end

raise  (inExpression) end

(inStatement) [
(inExpression) = |

(declarationPart) }+ in | (statement)
(declarationPart) }+ in | [ (statement) | (expression)

(et Yata N

Table 2.10: Exception syntax

e Push ((s), E. + {{y) — E({(x))}) on the stack.

Let us see how an uncaught exception is handled by the Mozart system. For
interactive execution, an error message is printed in the Oz emulator window.
For standalone applications, the application terminates and an error message is
sent on the standard error output of the process. It is possible to change this
behavior to something else that is more desirable for particular applications, by
using the System module Property

The catch statement

The semantic statement is:
(catch (x) then (s) end, )

Execution is complete after this pair is popped from the semantic stack. I.e., the
catch statement does nothing, just like skip .

2.6.3 Full syntax

Table 2.10 gives the syntax of the try statement in the full language. It has an
optional finally clause. The catch clause has an optional series of patterns.
Let us see how these extensions are defined.

The finally clause
A try statement can specify a finally  clause which is always executed, whether
or not the statement raises an exception. The new syntax:
try (s); finally (s)2 end
is translated to the kernel language as:

try (s);
catch X then

(s)2

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



96

Declarative Computation Model

raise X end

end

(s)2
(where an identifier X is chosen that is not free in (s)s). It is possible to define a
translation in which (s) only occurs once; we leave this to the reader.

The finally clause is useful when dealing with entities that are external to
the computation model. With finally |, we can guarantee that some “cleanup”
action gets performed on the entity, whether or not an exception occurs. A typical
example is reading a file. Assume F is an open file!!, the procedure ProcessFile
manipulates the file in some way, and the procedure CloseFile  closes the file.
Then the following program ensures that F is always closed after ProcessFile
completes, whether or not an exception was raised:

try
{ProcessFile F}

finally {CloseFile F} end

Note that this try statement does not catch the exception; it just executes
CloseFile  whenever ProcessFile  completes. We can combine both catching
the exception and executing a final statement:

try
{ProcessFile F}

catch X then
{Browse ~ *** Exception " #X#  when processing file *** "}
finally {CloseFile F} end

This behaves like two nested try statements: the innermost with just a catch
clause and the outermost with just a finally clause.

Pattern matching

A try statement can use pattern matching to catch only exceptions that match a
given pattern. Other exceptions are passed to the next enclosing try statement.
The new syntax:
try {s)
catch (p); then (s);
[ (p)2 then (s)

0 (). then (s),
end

is translated to the kernel language as:

try (s)
catch X then
case X

HWe will see later how file input/output is handled.
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of <p>1 then <S>1
[] <p>2 then <S>2

0 (p)n then (s),
else raise X end
end

end

If the exception does not match any of the patterns, then it is simply raised again.

2.6.4 System exceptions

The Mozart system itself raises a few exceptions. They are called system ex-

ceptions. They are all records with one of the three labels failure | error , or
system :
e failure : indicates an attempt to perform an inconsistent bind operation

(e.g., 1=2) in the store (see Section 2.7.2).

e error : indicates a runtime error in the program, i.e., a situation that should
not occur during normal operation. These errors are either type or domain
errors. A type error occurs when invoking an operation with an argument of
incorrect type, e.g., applying a nonprocedure to some argument ({foo 1} |
where foo is an atom), or adding an integer to an atom (e.g., X=1+a). A
domain error occurs when invoking an operation with an argument that is
outside of its domain (even if it has the right type), e.g., taking the square
root of a negative number, dividing by zero, or selecting a nonexistent field
of a record.

e system : indicates a runtime condition occurring in the environment of the
Mozart operating system process, e.g., an unforeseeable situation like a
closed file or window or a failure to open a connection between two Mozart
processes in distributed programming (see Chapter 11).

What is stored inside the exception record depends on the Mozart system version.
Therefore programmers should rely only on the label. For example:

fun {One} 1 end
fun {Two} 2 end
try {One}={Two}

catch
failure(...) then {Browse caughtFailure}
end
The pattern failure(...) catches any record whose label is failure
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2.7 Advanced topics

This section gives additional information for deeper understanding of the declar-
ative model, its trade-offs, and possible variations.

2.7.1 Functional programming languages

Functional programming consists of defining functions on complete values, where
the functions are true functions in the mathematical sense. A language in which
this is the only possible way to calculate is called a pure functional language.
Let us examine how the declarative model relates to pure functional program-
ming. For further reading on the history, formal foundations, and motivations
for functional programming we recommend the survey article by Hudak [85].

The )\ calculus

Pure functional languages are based on a formalism called the A calculus. There
are many variants of the A\ calculus. All of these variants have in common two
basic operations, namely defining and evaluating functions. For example, the
function value fun {$ X} X*X end is identical to the A expression Ax. x * x.
This expression consists of two parts: the x before the dot, which is the function’s
argument, and the expression z * z, which is the function’s result. The Append
function, which appends two lists together, can be defined as a function value:

Append=fun {$ Xs Ys}
if  {IsNil Xs} then Xs
else {Cons {Car Xs} {Append {Cdr Xs} Ys}}
end
end

This is equivalent to the following A expression:

append = Axs,ys . if isNil(xs) then ys
else cons(car(zs), append(cdr(zs),ys))

The definition of Append uses the following helper functions:
fun {IsNil X} X==nil end
fun {IsCons X} case X of _|_ then true else false end end
fun {Car H|T} H end
fun {Cdr HIT} T end
fun {Cons H T} H|T end

Restricting the declarative model

The declarative model is more general than the A calculus in two ways. First,
it defines functions on partial values, i.e., with unbound variables. Second, it
uses a procedural syntax. We can define a pure functional language by putting
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two syntactic restrictions on the declarative model so that it always calculates
functions on complete values:

e Always bind a variable to a value immediately when it is declared. That is,
the local statement always has one of the following two forms:

local (x)=(v) in (s) end
local  (x)={(y) (y)1 ... (y)n} In (s) end

e Use only the function syntax, not the procedure syntax. For function calls
inside data structures, do the nested call before creating the data structure
(instead of after, as in Section 2.5.2). This avoids putting unbound variables
in data structures.

With these restrictions, the model no longer needs unbound variables. The declar-
ative model with these restrictions is called the (strict) functional model. This
model is close to well-known functional programming languages such as Scheme
and Standard ML. The full range of higher-order programming techniques is pos-
sible. Pattern matching is possible using the case statement.

Varieties of functional programming

Let us explore some variations on the theme of functional programming:'?

e The functional model of this chapter is dynamically typed like Scheme.
Many functional languages are statically typed. Section 2.7.3 explains the
differences between the two approaches. Furthermore, many statically-
typed languages, e.g., Haskell and Standard ML, do type inferencing, which
allows the compiler to infer the types of all functions.

e Thanks to dataflow variables and the single-assignment store, the declar-
ative model allows programming techniques that are not found in most
functional languages, including Scheme, Standard ML, Haskell, and Er-
lang. This includes certain forms of last call optimization and techniques
to compute with partial values as shown in Chapter 3.

e The declarative concurrent model of Chapter 4 adds concurrency while still
keeping all the good properties of functional programming. This is possible
because of dataflow variables and the single-assignment store.

e In the declarative model, functions are eager by default, i.e., function argu-
ments are evaluated before the function body is executed. This is also called
strict evaluation. The functional languages Scheme and Standard ML are
strict. There is another useful execution order, lazy evaluation, in which

12In addition to what is listed here, the functional model does not have any special syntactic
or implementation support for currying. Currying is a higher-order programming technique
that is explained in Section 3.6.6.
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(statement) ::= (expression) ~=" (expression) | ...
(expression) (expression) “==" (expression)
(expression) “\= " (expression) | ...

,,‘, ,|,\,|

(binaryOp)

Table 2.11: Equality (unification) and equality test (entailment check)

function arguments are evaluated only if their result is needed. Haskell is
a lazy functional language.'® Lazy evaluation is a powerful flow control
technique in functional programming [87]. It allows to program with po-
tentially infinite data structures without giving explicit bounds. Section 4.5
explains this in detail. An eager declarative program can evaluate functions
and then never use them, thus doing superfluous work. A lazy declarative
program, on the other hand, does the absolute minimum amount of work
to get its result.

2.7.2 Unification and entailment

In Section 2.2 we have seen how to bind dataflow variables to partial values
and to each other, using the equality (" =") operation as shown in Table 2.11.
In Section 2.3.5 we have seen how to compare values, using the equality test
("==" and "\=") operations. So far, we have seen only the simple cases of these
operations. Let us now examine the general cases.

Binding a variable to a value is a special case of an operation called unification.
The unification (Term1l)=(Term2) makes the partial values (Terml) and (Term2)
equal, if possible, by adding zero or more bindings to the store. For example, f(X
Y)=f(1 2) does two bindings: X=1 and Y=2. If the two terms cannot be made
equal, then an exception is raised. Unification exists because of partial values; if
there would be only complete values then it would have no meaning.

Testing whether a variable is equal to a value is a special case of the entailment
check and disentailment check operations. The entailment check (Term1)==(Term2)
(and its opposite, the disentailment check (Term1)\= (Term2)) is a two-argument
boolean function that blocks until it is known whether (Term1) and (Term2) are
equal or not equal.'* Entailment and disentailment checks never do any binding.

13To be precise, Haskell is a non-strict language. This is identical to laziness for most practical
purposes. The difference is explained in Section 4.9.2.

14The word “entailment” comes from logic. It is a form of logical implication. This is because
the equality (Terml)==(Term2) is true if the store, considered as a conjunction of equalities,
“logically implies” (Term1)==(Term2).
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Unification (the = operation)

A good way to conceptualize unification is as an operation that adds information
to the single-assignment store. The store is a set of dataflow variables, where
each variable is either unbound or bound to some other store entity. The store’s
information is just the set of all its bindings. Doing a new binding, for example
X=Y, will add the information that X and Y are equal. If X and Y are already
bound when doing X=Y, then some other bindings may be added to the store. For
example, if the store already has X=foo(A) and Y=foo(25) , then doing X=Y will
bind A to 25. Unification is a kind of “compiler” that is given new information
and “compiles it into the store”, taking account the bindings that are already
there. To understand how this works, let us look at some possibilities.

e The simplest cases are bindings to values, e.g., X=person(name:X1 age:X2)
and variable-variable bindings, e.g., X=Y. If X and Y are unbound, then these
operations each add one binding to the store.

e Unification is symmetric. For example, person(name:X1 age:X2)=X means

the same as X=person(name:X1 age:X2)

e Any two partial values can be unified. For example, unifying the two
records:

person(name:X1 age:X2)
person(name:"George" age:25)

This binds X1 to "George" and X2 to 25.

e If the partial values are already equal, then unification does nothing. For
example, unifying X and Y where the store contains the two records:

X=person(name:"George" age:25)
Y=person(name:"George" age:25)

This does nothing.

e If the partial values are incompatible then they cannot be unified. For
example, unifying the two records:

person(name: X1 age:26)
person(name:"George" age:25)

The records have different values for their age fields, namely 25 and 26,
so they cannot be unified. This unification will raise a failure  exception,
which can be caught by a try statement. The unification might or might
not bind X1 to "George" ; it depends on exactly when it finds out that
there is an incompatibility. Another way to get a unification failure is by
executing the statement fail
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X=f (a: X b: X)

v x i lalb
— (0
Y=f(a:_ b:Y)
Yt ]a]b]

Figure 2.22: Unification of cyclic structures

e Unification is symmetric in the arguments. For example, unifying the two
records:

person(name:"George" age:X2)
person(name:X1 age:25)

This binds X1 to "George" and X2 to 25, just like before.

e Unification can create cyclic structures, i.e., structures that refer to them-
selves. For example, the unification X=person(grandfather:X) . This
creates a record whose grandfather  field refers to itself. This situation
happens in some crazy time-travel stories.

e Unification can bind cyclic structures. For example, let’s create two cyclic
structures, in X and Y, by doing X=f(a:X b:_)  and Y=f(a:_ b:Y) . Now,
doing the unification X=Y creates a structure with two cycles, which we can
write as X=f(a:X b:X) . This example is illustrated in Figure 2.22.

The unification algorithm

Let us give a precise definition of unification. We will define the operation
unify(z,y) that unifies two partial values = and y in the store ¢. Unification
is a basic operation of logic programming. When used in the context of unifica-
tion, store variables are called logic variables. Logic programming, which is also
called relational programming, is discussed in Chapter 9.

The store The store consists of a set of k variables, xy, ..., x;, that are parti-
tioned as follows:
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e Sets of unbound variables that are equal (also called equivalence sets of
variables). The variables in each set are equal to each other but not to any
other variables.

e Variables bound to a number, record, or procedure (also called determined
variables).

An example is the store {x; = foo(a: x2),xe = 25,23 = x4 = x5, 76, 17 = T}
that has eight variables. It has three equivalence sets, namely {x3, x4, x5}, {26},
and {z7, xg}. It has two determined variables, namely z; and x.

The primitive bind operation We define unification in terms of a primitive
bind operation on the store o. The operation binds all variables in an equivalence
set:

e bind(ES, (v)) binds all variables in the equivalence set ES to the number or
record (v). For example, the operation bind({z7, zs},foo(a: xs) ) modifies
the example store so that x7 and xg are no longer in an equivalence set but
both become bound to foo(a: x3) .

e bind(ES), ESs) merges the equivalence set ES; with the equivalence set
ES;. For example, the operation bind({z3, x4, x5}, {xs}) modifies the ex-
ample store so that x3, x4, x5, and xg are in a single equivalence set, namely

{l’g, Ty, Ts, xG}‘

The algorithm We now define the operation unify(z,y) as follows:

1. If z is in the equivalence set ES, and y is in the equivalence set E.S,, then
do bind(ES,, ESy). If x and y are in the same equivalence set, this is the
same as doing nothing.

2. If z is in the equivalence set E'S, and y is determined, then do bind(ES,, y).
3. If y is in the equivalence set £'S, and z is determined, then do bind(ES,, ).

4. If z is bound to I(l; : x1,...,l, : x,) and y is bound to I'(l] : y1, ..., I\ : Ym)
with [ £ 1" or {ly,....,01,} # {l},..., 1/, }, then raise a failure exception.

5. If z is bound to {(ly : x1,...,0, : x,) and y is bound to I(l1 : Y1, ..., ln * Yn),
then for ¢ from 1 to n do unify(z;, y;).

Handling cycles The above algorithm does not handle unification of partial
values with cycles. For example, assume the store contains x = f(a: x) and
y = f(a: y). Calling unify(z,y) results in the recursive call unify(z,y), which
is identical to the original call. The algorithm loops forever! Yet it is clear
that z and y have exactly the same structure: what the unification should do is
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add exactly zero bindings to the store and then terminate. How can we fix this
problem?

A simple fix is to make sure that unify(x,y) is called at most once for each
possible pair of two variables (x,y). Since any attempt to call it again will not
do anything new, it can return immediately. With k variables in the store, this
means at most k% unify calls, so the algorithm is guaranteed to terminate. In
practice, the number of unify calls is much less than this. We can implement
the fix with a table that stores all called pairs. This gives the new algorithm

unify’(z, y):
e Let M be a new, empty table.
e Call unify”(z,y).

This needs the definition of unify”(x,y):
o If (z,y) € M then we are done.

e Otherwise, insert (z,y) in M and then do the original algorithm for unify(x, y),
in which the recursive calls to unify are replaced by calls to unify”.

This algorithm can be written in the declarative model by passing M as two extra
arguments to unify”. A table that remembers previous calls so that they can be
avoided in the future is called a memoization table.

Displaying cyclic structures

We have seen that unification can create cyclic structures. To display these in
the browser, it has to be configured right. In the browser’s Options menu, pick
the Representation entry and choose the Graph mode. There are three display
modes, namely Tree (the default), Graph, and Minimal Graph. Tree does not
take sharing or cycles into account. Graph correctly handles sharing and cycles by
displaying a graph. Minimal Graph shows the smallest graph that is consistent
with the data. We give some examples. Consider the following two unifications:

local X Y Zin

f(X b)=f(a Y)

f(z a)=z

{Browse [X Y Z]}
end

This shows the list [a b R14=f(R14 a)] in the browser, if the browser is set
up to show the Graph representation. The term R14=f(R14 a) is the textual
representation of a cyclic graph. The variable name R14 is introduced by the
browser; different versions of Mozart might introduce different variable names.
As a second example, feed the following unification when the browser is set up
for Graph, as before:
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declare X Y Zin
a(X ¢(2) 2)=a(b(Y) Y d(X))
{Browse X#Y#Z}

Now set up the browser for the Minimal Graph mode and display the term again.
How do you explain the difference?

Entailment and disentailment checks (the == and \= operations)

The entailment check X==Y is a boolean function that tests whether X and Y are
equal or not. The opposite check, X\=Y , is called a disentailment check. Both
checks use essentially the same algorithm.!®> The entailment check returns true
if the store implies the information X=Y in a way that is verifiable (the store
“entails” X=Y) and false if the store will never imply X=Y, again in a way that
is verifiable (the store “disentails” X=Y). The check blocks if it cannot determine
whether X and Y are equal or will never be equal. It is defined as follows:

e [t returns the value true if the graphs starting from the nodes of X and Y
have the same structure, i.e., all pairwise corresponding nodes have identical
values or are the same node. We call this structure equality.

e [t returns the value false if the graphs have different structure, or some
pairwise corresponding nodes have different values.

e [t blocks when it arrives at pairwise corresponding nodes that are different,
but at least one of them is unbound.

Here is an example:

declare L1 L2 L3 Head Tail in
L1=Head|Tail

Head=1

Tail=2|nil

L2=[1 2]
{Browse L1==L2}

L3="|"(1:12 2: " | (2 nil)
{Browse L1==L3}

All three lists L1, L2, and L3 are identical. Here is an example where the entail-
ment check cannot decide:

declare L1 L2 X in
L1=[1]

L2=[X]

{Browse L1==L2}

15Gtrictly speaking, there is a single algorithm that does both the entailment and disen-
tailment checks simultaneously. It returns true or false depending on which check calls
it.
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Feeding this example will not display anything, since the entailment check cannot
decide whether L1 and L2 are equal or not. In fact, both are possible: if X is
bound to 1 then they are equal and if X is bound to 2 then they are not. Try
feeding X=1 or X=2 to see what happens. What about the following example:

declare L1 L2 X in

L1=[X]

L2=[X]

{Browse L1==L2}
Both lists contain the same unbound variable X. What will happen? Think about
it before reading the answer in the footnote.'® Here is a final example:

declare L1 L2 X in
L1=[1 a]

L2=[X Db]

{Browse L1==L2}

This will display false . While the comparison 1==X blocks, further inspection of
the two graphs shows that there is a definite difference, so the full check returns
false

2.7.3 Dynamic and static typing

“The only way of discovering the limits of the possible is to venture
a little way past them into the impossible.”
— Clarke’s Second Law, Arthur C. Clarke (1917-)

It is important for a language to be strongly-typed, i.e., to have a type system
that is enforced by the language. (This is contrast to a weakly-typed language,
in which the internal representation of a type can be manipulated by a program.
We will not speak further of weakly-typed languages in this book.) There are
two major families of strong typing: dynamic typing and static typing. We have
introduced the declarative model as being dynamically typed, but we have not
yet explained the motivation for this design decision, nor the differences between
static and dynamic typing that underlie it. In a dynamically-typed language,
variables can be bound to entities of any type, so in general their type is known
only at run time. In a statically-typed language, on the other hand, all variable
types are known at compile time. The type can be declared by the programmer or
inferred by the compiler. When designing a language, one of the major decisions
to make is whether the language is to be dynamically typed, statically typed, or
some mixture of both. What are the advantages and disadvantages of dynamic
and static typing? The basic principle is that static typing puts restrictions on
what programs one can write, reducing expressiveness of the language in return
for giving advantages such as improved error catching ability, efficiency, security,
and partial program verification. Let us examine this closer:

16The browser will display true , since L1 and L2 are equal no matter what X might be
bound to.
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e Dynamic typing puts no restrictions on what programs one can write. To be
precise, all syntactically-legal programs can be run. Some of these programs
will raise exceptions, possibly due to type errors, which can be caught by
an exception handler. Dynamic typing gives the widest possible variety of
programming techniques. The increased flexibility is felt quite strongly in
practice. The programmer spends much less time adjusting the program to
fit the type system.

e Dynamic typing makes it a trivial matter to do separate compilation, i.e.,
modules can be compiled without knowing anything about each other. This
allows truly open programming, in which independently-written modules
can come together at run time and interact with each other. It also makes
program development scalable, i.e., extremely large programs can be divided
into modules that can be compiled individually without recompiling other
modules. This is harder to do with static typing because the type discipline
must be enforced across module boundaries.

e Dynamic typing shortens the turnaround time between an idea and its
implementation. It enables an incremental development environment that
is part of the run-time system. It allows to test programs or program
fragments even when they are in an incomplete or inconsistent state.

e Static typing allows to catch more program errors at compile time. The
static type declarations are a partial specification of the program, i.e., they
specify part of the program’s behavior. The compiler’s type checker veri-
fies that the program satisfies this partial specification. This can be quite
powerful. Modern static type systems can catch a surprising number of
semantic errors.

e Static typing allows a more efficient implementation. Since the compiler has
more information about what values a variable can contain, it can choose a
more efficient representation. For example, if a variable is of boolean type,
the compile can implement it with a single bit. In a dynamically-typed
language, the compiler cannot always deduce the type of a variable. When
it cannot, then it usually has to allocate a full memory word, so that any
possible value (or a pointer to a value) can be accommodated.

e Static typing can improve the security of a program. Secure ADTs can be
constructed based solely on the protection offered by the type system.

Unfortunately, the choice between dynamic and static typing is most often based
on emotional (“gut”) reactions, not on rational argument. Adherents of dynamic
typing relish the expressive freedom and rapid turnaround it gives them and
criticize the reduced expressiveness of static typing. On the other hand, adherents
of static typing emphasize the aid it gives them for writing correct and efficient
programs and point out that it finds many program errors at compile time. Little
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hard data exists to quantify these differences. In our experience, the differences
are not great. Programming with static typing is like word processing with a
spelling checker: a good writer can get along without it, but it can improve the
quality of a text.

Each approach has a role in practical application development. Static typ-
ing is recommended when the programming techniques are well-understood and
when efficiency and correctness are paramount. Dynamic typing is recommended
for rapid development and when programs must be as flexible as possible, such
as application prototypes, operating systems, and some artificial intelligence ap-
plications.

The choice between static or dynamic typing does not have to be all or noth-
ing. In each approach, a bit of the other can be added, gaining some of its ad-
vantages. For example, different kinds of polymorphism (where a variable might
have values of several different types) add flexibility to statically-typed function-
al and object-oriented languages. It is an active research area to design static
type systems that capture as much as possible of the flexibility of dynamic type
systems, while encouraging good programming style and still permitting compile
time verification.

The computation models given in this book are all subsets of the Oz lan-
guage, which is dynamically typed. One research goal of the Oz project is to
explore what programming techniques are possible in a computation model that
integrates several programming paradigms. The only way to achieve this goal is
with dynamic typing.

When the programming techniques are known, then a possible next step is to
design a static type system. While research in increasing the functionality and
expressiveness of Oz is still ongoing in the Mozart Consortium, the Alice project
at Saarland University in Saarbriicken, Germany, has chosen to add a static type
system. Alice is a statically-typed language that has much of the expressiveness
of Oz. At the time of writing, Alice is interoperable with Oz (programs can
be written partly in Alice and partly in Oz) since it is based on the Mozart
implementation.

2.8 Exercises
1. Consider the following statement:
proc {P X}

if X>0 then {P X-1} end
end

Is the identifier occurrence of P in the procedure body free or bound? Justify
your answer. Hint: this is easy to answer if you first translate to kernel

syntax.
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2. Section 2.4 explains how a procedure call is executed. Consider the following
procedure MulByN:

declare  MulByN N in

N=3

proc {MulByN X ?Y}
Y=N*X

end

together with the call {MulByN A B} . Assume that the environment at the
call contains {A — 10, B — z1}. When the procedure body is executed, the
mapping N — 3 is added to the environment. Why is this a necessary step?
In particular, would not N — 3 already exist somewhere in the environment
at the call? Would not this be enough to ensure that the identifier N already
maps to 37 Give an example where N does not exist in the environment
at the call. Then give a second example where N does exist there, but is
bound to a different value than 3.

3. If a function body has an if statement with a missing else case, then an
exception is raised if the if condition is false. Explain why this behavior
is correct. This situation does not occur for procedures. Explain why not.

4. This exercise explores the relationship between the if statement and the
case statement.

(a) Define the if statement in terms of the case statement. This shows
that the conditional does not add any expressiveness over pattern
matching. It could have been added as a linguistic abstraction.

(b) Define the case statement in terms of the if statement, using the
operations Label , Arity | and .  (feature selection).

This shows that the if statement is essentially a more primitive version of
the case statement.

5. This exercise tests your understanding of the full case statement. Given
the following procedure:

proc {Test X}
case X
of a|Z then {Browse ~case’ (1)}
[l f(a) then {Browse ~case  (2)}
[ Y|Z andthen Y==Z then {Browse case  (3)}
[l Y|z then {Browse case’ (4)}
0 fy) then {Browse ’case’ (5)}
else {Browse “case’  (6)} end
end

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



110

Declarative Computation Model

Without executing any code, predict what will happen when you feed {Test
[b c a]} ,{Test f(b(3))} ,{Test f(a)} ,{Test f(a(3))} ,{Test f(d)}
{Test [a b c]} , {Test [c a b]} ,{Test alJa} ,and {Test "|"(a b
c)} . Use the kernel translation and the semantics if necessary to make the
predictions. After making the predictions, check your understanding by
running the examples in Mozart.

. Given the following procedure:

proc {Test X}
case X of fla Y c) then {Browse ’case’ (1)}
else {Browse “case” (2)} end

end

Without executing any code, predict what will happen when you feed:
declare X Y {Test f(X b Y)}

Same for:
declare X Y {Test f(a Y d)}

Same for:
declare X Y {Test f(X Y d)}

Use the kernel translation and the semantics if necessary to make the predic-
tions. After making the predictions, check your understanding by running
the examples in Mozart. Now run the following example:

declare XY
if f(X Y d)==f(a Y c) then {Browse ’case (1)}
else {Browse “case  (2)} end

Does this give the same result or a different result than the previous exam-
ple? Explain the result.

7. Given the following code:

declare Max3 Max5
proc {SpecialMax Value ?SMax}
fun {SMax X}
if X>Value then X else Value end
end
end
{SpecialMax 3 Max3}
{SpecialMax 5 Max5}

Without executing any code, predict what will happen when you feed:
{Browse [{Max3 4} {Max5 4}]}
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Check your understanding by running this example in Mozart.

8. This exercise explores the relationship between linguistic abstractions and
higher-order programming.

(a) Define the function AndThen as follows:

fun {AndThen BP1 BP2}
if {BP1} then {BP2} else false end
end

Does the following call:

{AndThen fun {$} (expression); end
fun {$} (expression)s end}

give the same result as (expression); andthen (expression)s? Does it
avoid the evaluation of (expression)s in the same situations?

(b) Write a function OrElse that is to orelse as AndThen is to andthen .
Explain its behavior.

9. This exercise examines the importance of tail recursion, in the light of the
semantics given in the chapter. Consider the following two functions:

fun {Suml N}
if N==0 then 0 else N+{Suml N-1} end
end

fun {Sum2 N S}
if N==0 then S else {Sum2 N-1 N+S} end
end

(a) Expand the two definitions into kernel syntax. It should be clear that
Sum2is tail recursive and Sum1is not.

(b) Execute the two calls {Sum1l 10} and {Sum2 10 0} by hand, using
the semantics of this chapter to follow what happens to the stack and
the store. How large does the stack become in either case?

(¢) What would happen in the Mozart system if you would call {Sum1l
100000000} or {Sum2 100000000 0} ? Which one is likely to work?
Which one is not? Try both on Mozart to verify your reasoning.

10. Consider the following function SMerge that merges two sorted lists:

fun {SMerge Xs Ys}
case Xs#Ys
of nil#Ys then Ys
[ Xs#nil then Xs
0 XIXn#(Y]YT) then
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11.

12.

if X=<Y then
X|{SMerge Xr Ys}
else
Y|{SMerge Xs Yr}
end
end
end

Expand SMerge into the kernel syntax. Note that X#Y is a tuple of two
arguments that can also be written “# (X Y) . The resulting procedure
should be tail recursive, if the rules of Section 2.5.2 are followed correctly.

Last call optimization is important for much more than just recursive calls.
Consider the following mutually recursive definition of the functions IsOdd
and IsEven :

fun {Iseven X}
if X==0 then true else {IsOdd X-1} end
end

fun {IsOdd X}
if X==0 then false else {IsEven X-1} end
end

We say that these functions are mutually recursive since each function calls
the other. Mutual recursion can be generalized to any number of functions.
A set of functions is mutually recursive if they can be put in a sequence
such that each function calls the next and the last calls the first. For this
exercise, show that the calls {IsOdd N} and {IsEven N} execute with
constant stack size for all nonnegative N. In general, if each function in
a mutually-recursive set has just one function call in its body, and this
function call is a last call, then all functions in the set will execute with
their stack size bounded by a constant.

Section 2.7.2 explains that the bind operation is actually much more gen-
eral than just binding variables: it makes two partial values equal (if they
are compatible). This operation is called wunification. The purpose of this
exercise is to explore why unification is interesting. Consider the three uni-
fications X=[a Z] , Y=[W b], and X=Y. Show that the variables X, Y, Z, and
Ware bound to the same values, no matter in which order the three unifi-
cations are done. In Chapter 4 we will see that this order-independence is
important for declarative concurrency.
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Chapter 3

Declarative Programming
Techniques

“S’il vous plait... dessine-moi un arbre!”

“If you please — draw me a treel’

— Freely adapted from Le Petit Prince, Antoine de Saint-Exupéry
(1900-1944)

“The nice thing about declarative programming is that you can write
a specification and run it as a program. The nasty thing about declar-
ative programming is that some clear specifications make incredibly
bad programs. The hope of declarative programming is that you can
move from a specification to a reasonable program without leaving
the language.”

— The Craft of Prolog, Richard O’Keefe (7-)

Consider any computational operation, i.e., a program fragment with inputs and
outputs. We say the operation is declarative if, whenever called with the same
arguments, it returns the same results independent of any other computation
state. Figure 3.1 illustrates the concept. A declarative operation is independent
(does not depend on any execution state outside of itself), stateless' (has no
internal execution state that is remembered between calls), and deterministic
(always gives the same results when given the same arguments). We will show
that all programs written using the computation model of the last chapter are
declarative.

Why declarative programming is important

Declarative programming is important because of two properties:

e Declarative programs are compositional. A declarative program con-
sists of components that can each be written, tested, and proved correct

IThe concept of “stateless” is sometimes called “immutable”.
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Arguments

Rest of computation

Figure 3.1: A declarative operation inside a general computation

independently of other components and of its own past history (previous
calls).

e Reasoning about declarative programs is simple. Programs written
in the declarative model are easier to reason about than programs written in
more expressive models. Since declarative programs compute only values,
simple algebraic and logical reasoning techniques can be used.

These two properties are important both for programming in the large and in the
small, respectively. It would be nice if all programs could easily be written in the
declarative model. Unfortunately, this is not the case. The declarative model is
a good fit for certain kinds of programs and a bad fit for others. This chapter
and the next examine the programming techniques of the declarative model and
explain what kinds of programs can and cannot be easily written in it.

We start by looking more closely at the first property. Let us define a com-
ponent as a precisely delimited program fragment with well-defined nputs and
outputs. A component can be defined in terms of a set of simpler components. For
example, in the declarative model a procedure is one kind of component. The
application program is the topmost component in a hierarchy of components.
The hierarchy bottoms out in primitive components which are provided by the
system.

In a declarative program, the interaction between components is determined
solely by each component’s inputs and outputs. Consider a program with a
declarative component. This component can be understood on its own, without
having to understand the rest of the program. The effort needed to understand
the whole program is the sum of the efforts needed for the declarative component
and for the rest.
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Definition What is declarativeness?
Programming Iterative and recursive computation
with recursion Programming with lists and trees
Procedural Data
. Control abstractions Abstract data types
Abstraction Higher—order programming Secure abstract data types

Time and space efficiency
The real world Large—-scale program structure
Nondeclarative needs

Limitations and extensions

The model Relation to other declarative models

Figure 3.2: Structure of the chapter

If there would be a more intimate interaction between the component and
the rest of the program, then they could not be understood independently. They
would have to be understood together, and the effort needed would be much big-
ger. For example, it might be (roughly) proportional to the product of the efforts
needed for each part. For a program with many components that interact inti-
mately, this very quickly explodes, making understanding difficult or impossible.
An example of such an intimate interaction is a concurrent program with shared
state, as explained in Chapter 8.

Intimate interactions are often necessary. They cannot be “legislated away”
by programming in a model that does not directly support them (as Section 4.7
clearly explains). But an important principle is that they should only be used
when necessary and not otherwise. To support this principle, as many components
as possible should be declarative.

Writing declarative programs

The simplest way to write a declarative program is to use the declarative mod-
el of the last chapter. The basic operations on data types are declarative, e.g.,
the arithmetic, list, and record operations. It is possible to combine declara-
tive operations to make new declarative operations, if certain rules are followed.
Combining declarative operations according to the operations of the declarative
model will result in a declarative operation. This is explained in Section 3.1.3.
The standard rule in algebra that “equals can be replaced by equals” is another
example of a declarative combination. In programming languages, this property
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Descriptive

Declarative
programming Observationa

Programmable Declarative model
Definitional Functional programming

Logic programming

Figure 3.3: A classification of declarative programming

is called referential transparency. It greatly simplifies reasoning about programs.
For example, if we know that f(a) = a?, then we can replace f(a) by a? in any
other place where it occurs. The equation b = 7f(a)? then becomes b = 7a*. This
is possible because f(a) is declarative: it depends only on its arguments and not
on any other computation state.

The basic technique for writing declarative programs is to consider the pro-
gram as a set of recursive function definitions, using higher-orderness to simplify
the program structure. A recursive function is one whose definition body refers
to the function itself, either directly or indirectly. Direct recursion means that
the function itself is used in the body. Indirect recursion means that the function
refers to another function that directly or indirectly refers to the original function.
Higher-orderness means that functions can have other functions as arguments and
results. This ability underlies all the techniques for building abstractions that we
will show in the book. Higher-orderness can compensate somewhat for the lack
of expressiveness of the declarative model, i.e., it makes it easy to code limited
forms of concurrency and state in the declarative model.

Structure of the chapter

This chapter explains how to write practical declarative programs. The chap-
ter is roughly organized into the six parts shown in Figure 3.2. The first part
defines “declarativeness”. The second part gives an overview of programming
techniques. The third and fourth parts explain procedural and data abstraction.
The fifth part shows how declarative programming interacts with the rest of the
computing environment. The sixth part steps back to reflect on the usefulness of
the declarative model and situate it with respect to other models.
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(s) ==
skip Empty statement
| (s)1 (s)2 Statement sequence
| local (x)in (s)end Variable creation
| (x)1=(X)2 Variable-variable binding
| (x)=(v) Value creation

Table 3.1: The descriptive declarative kernel language

3.1 What is declarativeness?

The declarative model of Chapter 2 is an especially powerful way of writing declar-
ative programs, since all programs written in it will be declarative by this fact
alone. But it is still only one way out of many for doing declarative programming.
Before explaining how to program in the declarative model, let us situate it with
respect to the other ways of being declarative. Let us also explain why programs
written in it are always declarative.

3.1.1 A classification of declarative programming

We have defined declarativeness in one particular way, so that reasoning about
programs is simplified. But this is not the only way to make precise what declar-
ative programming is. Intuitively, it is programming by defining the what (the
results we want to achieve) without explaining the how (the algorithms, etc., need-
ed to achieve the results). This vague intuition covers many different ideas. Let
us try to explain them. Figure 3.3 classifies the most important ones. The first
level of classification is based on the expressiveness. There are two possibilities:

o A descriptive declarativeness. This is the least expressive. The declarative
“program” just defines a data structure. Table 3.1 defines a language at
this level. This language can only define records! It contains just the first
five statements of the kernel language in Table 2.1. Section 3.8.2 shows how
to use this language to define graphical user interfaces. Other examples are
a formatting language like HTML, which gives the structure of a document
without telling how to do the formatting, or an information exchange lan-
guage like XML, which is used to exchange information in an open format
that is easily readable by all. The descriptive level is too weak to write
general programs. So why is it interesting? Because it consists of data
structures that are easy to calculate with. The records of Table 3.1, HTML
and XML documents, and the declarative user interfaces of Section 3.8.2
can all be created and transformed easily by a program.

o A programmable declarativeness. This is as expressive as a Turing machine.?

2A Turing machine is a simple formal model of computation that is as powerful as any
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For example, Table 2.1 defines a language at this level. See the introduc-
tion to Chapter 6 for more on the relationship between the descriptive and
programmable levels.

There are two fundamentally different ways to view programmable declarative-
ness:

o A definitional view, where declarativeness is a property of the component
implementation. For example, programs written in the declarative model
are guaranteed to be declarative, because of properties of the model.

e An observational view, where declarativeness is a property of the component
interface. The observational view follows the principle of abstraction: that
to use a component it is enough to know its specification without knowing
its implementation. The component just has to behave declaratively, i.e.,
as if it were independent, stateless, and deterministic, without necessarily
being written in a declarative computation model.

This book uses both the definitional and observational views. When we are
interested in looking inside a component, we will use the definitional view. When
we are interested in how a component behaves, we will use the observational view.

Two styles of definitional declarative programming have become particularly
popular: the functional and the logical. In the functional style, we say that a
component defined as a mathematical function is declarative. Functional lan-
guages such as Haskell and Standard ML follow this approach. In the logical
style, we say that a component defined as a logical relation is declarative. Log-
ic languages such as Prolog and Mercury follow this approach. It is harder to
formally manipulate functional or logical programs than descriptive programs,
but they still follow simple algebraic laws.> The declarative model used in this
chapter encompasses both functional and logic styles.

The observational view lets us use declarative components in a declarative
program even if they are written in a nondeclarative model. For example, a
database interface can be a valuable addition to a declarative language. Yet,
the implementation of this interface is almost certainly not going to be logical
or functional. It suffices that it could have been defined declaratively. Some-
times a declarative component will be written in a functional or logical style, and
sometimes it will not be. In later chapters we will build declarative components
in nondeclarative models. We will not be dogmatic about the matter; we will
consider the component to be declarative if it behaves declaratively.

computer that can be built, as far as is known in the current state of computer science. That
is, any computation that can be programmed on any computer can also be programmed on a
Turing machine.

3For programs that do not use the nondeclarative abilities of these languages.
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3.1.2 Specification languages

Proponents of declarative programming sometimes claim that it allows to dispense
with the implementation, since the specification is all there is. That is, the
specification s the program. This is true in a formal sense, but not in a practical
sense. Practically, declarative programs are very much like other programs: they
require algorithms, data structures, structuring, and reasoning about the order of
operations. This is because declarative languages can only use mathematics that
can be implemented efficiently. There is a trade-off between expressiveness and
efficiency. Declarative programs are usually a lot longer than what a specification
could be. So the distinction between specification and implementation still makes
sense, even for declarative programs.

It is possible to define a declarative language that is much more expressive
than what we use in this book. Such a language is called a specification language.
It is usually impossible to implement specification languages efficiently. This does
not mean that they are impractical; on the contrary. They are an important tool
for thinking about programs. They can be used together with a theorem prover,
i.e., a program that can do certain kinds of mathematical reasoning. Practical
theorem provers are not completely automatic; they need human help. But they
can take over much of the drudgery of reasoning about programs, i.e., the tedious
manipulation of mathematical formulas. With the aid of the theorem prover,
a developer can often prove very strong properties about his or her program.
Using a theorem prover in this way is called proof engineering. Up to now, proof
engineering is only practical for small programs. But this is enough for it to be
used successfully when safety is of critical importance, e.g., when lives are at
stake, such as in medical apparatus or public transportation.

Specification languages are outside the scope of this book.

3.1.3 Implementing components in the declarative model

Combining declarative operations according to the operations of the declarative
model always results in a declarative operation. This section explains why this
is so. We first define more precisely what it means for a statement to be declar-
ative. Given any statement in the declarative model. Partition the free variable
identifiers in the statement into inputs and outputs. Then, given any binding
of the input identifiers to partial values and the output identifiers to unbound
variables, executing the statement will give one of three results: (1) some binding
of the output variables, (2) suspension, or (3) an exception. If the statement is
declarative, then for the same bindings of the inputs, the result is always the
same.

For example, consider the statement Z=X. Assume that X is the input and Z
is the output. For any binding of X to a partial value, executing this statement
will bind Z to the same partial value. Therefore the statement is declarative.

We can use this result to prove that the statement
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if X>Y then Z=X else Z=Y end

is declarative. Partition the statement’s three free identifiers, X, Y, Z, into two
input identifiers X and Y and one output identifier Z. Then, if X and Y are bound
to any partial values, the statement’s execution will either block or bind Z to the
same partial value. Therefore the statement is declarative.

We can do this reasoning for all operations in the declarative model:

e First, all basic operations in the declarative model are declarative. This
includes all operations on basic types, which are explained in Chapter 2.

e Second, combining declarative operations with the constructs of the declar-
ative model gives a declarative operation. The following five compound
statements exist in the declarative model:

— The statement sequence.

— The local statement.

— The if statement.

— The case statement.

— Procedure declaration, i.e., the statement (x)=(v) where (v) is a pro-

cedure value.

They allow building statements out of other statements. All these ways of
combining statements are deterministic (if their component statements are
deterministic, then so are they) and they do not depend on any context.

3.2 Iterative computation

We will now look at how to program in the declarative model. We start by
looking at a very simple kind of program, the iterative computation. An iterative
computation is a loop whose stack size is bounded by a constant, independent
of the number of iterations. This kind of computation is a basic programming
tool. There are many ways to write iterative programs. It is not always obvious
when a program is iterative. Therefore, we start by giving a general schema that
shows how to construct many interesting iterative computations in the declarative
model.

3.2.1 A general schema

An important class of iterative computations starts with an initial state Sy and
transforms the state in successive steps until reaching a final state Sgna:

SO _>Sl — o Sﬁnal

An iterative computation of this class can be written as a general schema:
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fun {Sart X}
Guess=1.0
in
{Sartiter Guess X}
end
fun {Sqrtliter Guess X}
if {GoodEnough Guess X} then Guess
else
{Sqrtiter {Improve Guess X} X}
end
end
fun {Improve Guess X}
(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}
{Abs X-Guess*Guess}/X < 0.00001
end
fun {Abs X} if X<0.0 then "X else X end end

Figure 3.4: Finding roots using Newton’s method (first version)

fun {lterate Si}
if {IsDone S;} then §;
else S;11 in
Si+1={ Transform S;}
{Iterate Sit1}
end
end

In this schema, the functions IsDone and Transform are problem dependent.
Let us prove that any program that follows this schema is iterative. We will show
that the stack size does not grow when executing Iterate . For clarity, we give
just the statements on the semantic stack, leaving out the environments and the
store:

e Assume the initial semantic stack is [R={lterate ~ Sp}|.

e Assume that { IsDone Sy} returns false . Just after executing the if , the
semantic stack is [S1={ Transform Sy} , R={lterate S}

e After executing { Transform  Si}, the semantic stack is [R={Iterate S1}].

We see that the semantic stack has just one element at every recursive call, namely
[R={lterate ~ S;;1}].
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3.2.2 Iteration with numbers

A good example of iterative computation is Newton’s method for calculating the
square root of a positive real number x. The idea is to start with a guess g of
the square root, and to improve this guess iteratively until it is accurate enough.
The improved guess ¢’ is the average of g and z/g:

g =(g+z/9)/2.

To see that the improved guess is beter, let us study the difference between the
guess and +/z:

e=g—+r

Then the difference between ¢’ and /x is:

=g —Va=(9+z/9)/2—Vr=¢/2g

For convergence, ¢’ should be smaller than e. Let us see what conditions that this
imposes on z and g. The condition € < ¢ is the same as €2/2g < ¢, which is the
same as € < 2g. (Assuming that € > 0, since if it is not, we start with ¢, which
is always greater than 0.) Substituting the definition of €, we get the condition
Ve +g>0. If z >0 and the initial guess g > 0, then this is always true. The
algorithm therefore always converges.

Figure 3.4 shows one way of defining Newton’s method as an iterative compu-
tation. The function {Sqrtlter Guess X} calls {Sqrtlter {Improve Guess
X} X} until Guess satisfies the condition {GoodEnough Guess X} . It is clear
that this is an instance of the general schema, so it is an iterative computation.
The improved guess is calculated according to the formula given above. The
“good enough” check is |z — ¢*|/x < 0.00001, i.e., the square root has to be
accurate to five decimal places. This check is relative, i.e., the error is divided by
x. We could also use an absolute check, e.g., something like |2 — ¢g?| < 0.00001,
where the magnitude of the error has to be less than some constant. Why is using
a relative check better when calculating square roots?

3.2.3 Using local procedures

In the Newton’s method program of Figure 3.4, several “helper” routines are
defined: Sqrtlter | Improve , GoodEnough, and Abs. These routines are used as
building blocks for the main function Sqgrt . In this section, we will discuss where
to define helper routines. The basic principle is that a helper routine defined only
as an aid to define another routine should not be visible elsewhere. (We use the
word “routine” for both functions and procedures.)

In the Newton example, Sqrtiter  is only needed inside Sqgrt , Improve and
GoodEnough are only needed inside Sqrtlter | and Abs is a utility function that
could be used elsewhere. There are two basic ways to express this visibility, with
somewhat different semantics. The first way is shown in Figure 3.5: the helper
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local
fun {Improve Guess X}
(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}
{Abs X-Guess*Guess}/X < 0.00001
end
fun {Sqrtliter Guess X}
if {GoodEnough Guess X} then Guess

else
{Sqrtiter {Improve Guess X} X}
end
end
in
fun {Sqrt X}
Guess=1.0
in
{Sqrtiter Guess X}
end
end

Figure 3.5: Finding roots using Newton’s method (second version)

routines are defined outside of Sqrt in a local statement. The second way is
shown in Figure 3.6: each helper routine is defined inside of the routine that
needs it.4

In Figure 3.5, there is a trade-off between readability and visibility: Improve
and GoodEnough could be defined local to Sqrtiter  only. This would result in
two levels of local declarations, which is harder to read. We have decided to put
all three helper routines in the same local declaration.

In Figure 3.6, each helper routine sees the arguments of its enclosing routine
as external references. These arguments are precisely those with which the helper
routines are called. This means we could simplify the definition by removing these
arguments from the helper routines. This gives Figure 3.7.

There is a trade-off between putting the helper definitions outside the routine
that needs them or putting them inside:

e Putting them inside (Figures 3.6 and 3.7) lets them see the arguments of
the main routines as external references, according to the lexical scoping
rule (see Section 2.4.3). Therefore, they need fewer arguments. But each
time the main routine is invoked, new helper routines are created. This
means that new procedure values are created.

e Putting them outside (Figures 3.4 and 3.5) means that the procedure values
are created once and for all, for all calls to the main routine. But then the

4We leave out the definition of AbS to avoid needless repetition.
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fun {Sqrt X}
fun {Sqrtlter Guess X}
fun {Improve Guess X}
(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}
{Abs X-Guess*Guess}/X < 0.00001
end

if {GoodEnough Guess X} then Guess
else
{Sqrtiter {Improve Guess X} X}
end
end
Guess=1.0
in
{Sqrtiter Guess X}
end

Figure 3.6: Finding roots using Newton’s method (third version)

fun {Sart X}
fun {Sqrtlter Guess}
fun {Improve}
(Guess + X/Guess) / 2.0
end
fun {GoodEnough}
{Abs X-Guess*Guess}/X < 0.00001
end

if {GoodEnough} then Guess
else
{Sartlter {Improve}}
end
end
Guess=1.0
in
{Sqrtiter Guess}
end

Figure 3.7: Finding roots using Newton’s method (fourth version)
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fun {Sart X}
fun {Improve Guess}
(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess}
{Abs X-Guess*Guess}/X < 0.00001
end
fun {Sgrtiter Guess}
if {GoodEnough Guess} then Guess

else
{Sqrtiter {Improve Guess}}
end
end
Guess=1.0
in
{Sqrtiter Guess}
end

Figure 3.8: Finding roots using Newton’s method (fifth version)

helper routines need more arguments so that the main routine can pass
information to them.

In Figure 3.7, new definitions of Improve and GoodEnough are created on each
iteration of Sqrtlter |, whereas Sqrtlter  itself is only created once. This sug-
gests a good trade-off, where Sqrtlter  is local to Sqrt and both Improve and
GoodEnough are outside Sqrtlter . This gives the final definition of Figure 3.8,
which we consider the best in terms of both efficiency and visibility.

3.2.4 From general schema to control abstraction

The general schema of Section 3.2.1 is a programmer aid. It helps the programmer
design efficient programs but it is not seen by the computation model. Let us go
one step further and provide the general schema as a program component that
can be used by other components. We say that the schema becomes a control
abstraction, i.e., an abstraction that can be used to provide a desired control flow.
Here is the general schema:

fun {lterate Si}
if {IsDone §S;} then §;
else  S;11 in
Sir1={ Transform  S;}
{Iterate Sit+1}
end
end
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This schema implements a general while loop with a calculated result. To make
the schema into a control abstraction, we have to parameterize it by extracting
the parts that vary from one use to another. There are two such parts: the
functions IsDone and Transform . We make these two parts into parameters of
lterate

fun {lterate S IsDone Transform}
if {lsDone S} then S
else S1 in
S1={Transform S}
{lIterate S1 IsDone Transform}
end
end

To use this control abstraction, the arguments IsDone and Transform are given
one-argument functions. Passing functions as arguments to functions is part
of a range of programming techniques called higher-order programming. These
techniques are further explained in Section 3.6. We can make Iterate  behave
exactly like Sqrtlter by passing it the functions GoodEnough and Improve .
This can be written as follows:

fun {Sqrt X}
{Iterate
1.0
fun {$ G} {Abs X-G*G}/X<0.00001 end
fun {$ G} (G+X/G)/2.0 end}
end

This uses two function values as arguments to the control abstraction. This is
a powerful way to structure a program because it separates the general control
flow from this particular use. Higher-order programming is especially helpful for
structuring programs in this way. If this control abstraction is used often, the
next step could be to provide it as a linguistic abstraction.

3.3 Recursive computation

Iterative computations are a special case of a more general kind of computation,
called recursive computation. Let us see the difference between the two. Recall
that an iterative computation can be considered as simply a loop in which a
certain action is repeated some number of times. Section 3.2 implements this in
the declarative model by introducing a control abstraction, the function Iterate
The function first tests a condition. If the condition is false, it does an action
and then calls itself.

Recursion is more general than this. A recursive function can call itself any-
where in the body and can call itself more than once. In programming, recursion
occurs in two major ways: in functions and in data types. A function is recur-
sive if its definition has at least one call to itself. The iteration abstraction of

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



3.3 Recursive computation

127

Section 3.2 is a simple case. A data type is recursive if it is defined in terms of
itself. For example, a list is defined in terms of a smaller list. The two forms of
recursion are strongly related since recursive functions can be used to calculate
with recursive data types.

We saw that an iterative computation has a constant stack size. This is not
always the case for a recursive computation. Its stack size may grow as the input
grows. Sometimes this is unavoidable, e.g., when doing calculations with trees,
as we will see later. In other cases, it can be avoided. An important part of
declarative programming is to avoid a growing stack size whenever possible. This
section gives an example of how this is done. We start with a typical case of
a recursive computation that is not iterative, namely the naive definition of the
factorial function. The mathematical definition is:

ol=1
nl=n-(n—1)0ifn>0

This is a recurrence equation, i.e., the factorial n! is defined in terms of a factorial
with a smaller argument, namely (n—1)!. The naive program follows this mathe-
matical definition. To calculate {Fact N} there are two possibilities, namely N=0
or N>0. In the first case, return 1. In the second case, calculate {Fact N-1}
multiply by N, and return the result. This gives the following program:

fun {Fact N}
if N==0 then 1
elseif ~ N>0 then N*{Fact N-1}
else raise domainError end
end

end

This defines the factorial of a big number in terms of the factorial of a smaller
number. Since all numbers are nonnegative, they will bottom out at zero and the
execution will finish.

Note that factorial is a partial function. It is not defined for negative N. The
program reflects this by raising an exception for negative N. The definition in
Chapter 1 has an error since for negative N it goes into an infinite loop.

We have done two things when writing Fact . First, we followed the mathe-
matical definition to get a correct implementation. Second, we reasoned about
termination, i.e., we showed that the program terminates for all legal arguments,
i.e., arguments inside the function’s domain.

3.3.1 Growing stack size

This definition of factorial gives a computation whose maximum stack size is
proportional to the function argument N. We can see this by using the semantics.
First translate Fact into the kernel language:

proc {Fact N ?R}
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if N==0 then R=1
elseif N>0 then N1 R1 in

N1=N-1
{Fact N1 R1}
R=N*R1
else raise domainError end

end
end

Already we can guess that the stack size might grow, since the multiplication
comes after the recursive call. That is, during the recursive call the stack has to
keep information about the multiplication for when the recursive call returns. Let
us follow the semantics and calculate by hand what happens when executing the
call {Fact 5 R} . For clarity, we simplify slightly the presentation of the abstract
machine by substituting the value of a store variable into the environment. That
is, the environment {...,N — n,...} is written as {...,N — 5, ...} if the store is

{..,n=05,...}.
e The initial semantic stack is [{Fact N R} ,{N— 5,R— 19})].

At the first call:

[ ({Fact N1 R1} ,{N1—4,R1—ry,..}),
(R=N*R1, {R — r9,R1 — 1N — 5, ..})]
o At the second call:

[ ({Fact N1 R1} ,{N1— 3,R1— rs,...}),
(R=N*R1, {R — r1,R1 — 75, N— 4, ...}),
(R=N*RL, {R — rg,R1 — r{,N— 5, ...})]

At the third call:
[

{Fact N1 R1} ,{N1— 2,R1—rj,..}),
R=N*R1 {R— 75, R1 — r3,N— 3,...}),
R=N*RL {R— 71,R1 — ro,N— 4, ...}),
R=N*RL {R — ro,R1 — r;,N—5,...})]

N N N N

It is clear that the stack grows bigger by one statement per call. The last recursive
call is the fifth, which returns immediately with r5 = 1. Then five multiplications
are done to get the final result rq = 120.

3.3.2 Substitution-based abstract machine

This example shows that the abstract machine of Chapter 2 can be rather cum-
bersome for hand calculation. This is because it keeps both variable identifiers
and store variables, using environments to map from one to the other. This is
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realistic; it is how the abstract machine is implemented on a real computer. But
it is not so nice for hand calculation.

We can make a simple change to the abstract machine that makes it much
easier to use for hand calculation. The idea is to replace the identifiers in the
statements by the store entities that they refer to. This is called doing a substi-
tution. For example, the statement R=N*R1 becomes ry = 313 when substituted
according to {R— ry,N— 3,R1 — r3}.

The substitution-based abstract machine has no environments. It directly
substitutes identifiers by store entities in statements. For the recursive factorial
example, this gives the following:

e The initial semantic stack is [{Fact 5 rg}].

e At the first call: [{Fact 4 r},ro=b*ry].

e At the second call: [{Fact 3 1o}, ri=4*ry, ro=5*rq].

e At the third call: [{Fact 2 73}, ro=3*r3, r1=4* 1o, ro=5*11].

As before, we see that the stack grows by one statement per call. We summarize
the differences between the two versions of the abstract machine:

e The environment-based abstract machine, defined in Chapter 2, is faithful
to the implementation on a real computer, which uses environments. How-
ever, environments introduce an extra level of indirection, so they are hard
to use for hand calculation.

e The substitution-based abstract machine is easier to use for hand calcu-
lation, because there are many fewer symbols to manipulate. However,
substitutions are costly to implement, so they are generally not used in a
real implementation.

Both versions do the same store bindings and the same manipulations of the
semantic stack.

3.3.3 Converting a recursive to an iterative computation

Factorial is simple enough that is can be rearranged to become iterative. Let us
see how this is done. Later on, we will give a systematic way of making iterative
computations. For now, we just give a hint. In the previous calculation:

R=(5*(4*(3*(2*(1*1)))))
it is enough to rearrange the numbers:
R=(((((1*5)*4)*3)*2)*1)

Then the calculation can be done incrementally, starting with 1*5 . This gives 5,
then 20, then 60, then 120, and finally 120. The iterative definition of factorial
that does things this way is:
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fun {Fact N}
fun {Factlter N A}
if N==0 then A
elseif N>0 then {Factlter N-1 A*N}
else raise domainError  end
end
end
in
{Factlter N 1}
end

The function that does the iteration, Factlter |, has a second argument A. This
argument is crucial; without it an iterative factorial is impossible. The second
argument is not apparent in the simple mathematical definition of factorial we
used first. We had to do some reasoning to bring it in.

3.4 Programming with recursion

Recursive computations are at the heart of declarative programming. This section
shows how to write in this style. We show the basic techniques for programming
with lists, trees, and other recursive data types. We show how to make the
computation iterative when possible. The section is organized as follows:

e The first step is defining recursive data types. Section 3.4.1 gives a simple
notation that lets us define the most important recursive data types.

e The most important recursive data type is the list. Section 3.4.2 presents
the basic programming techniques for lists.

e Efficient declarative programs have to define iterative computations. Sec-
tion 3.4.3 presents accumulators, a systematic technique to achieve this.

e Computations often build data structures incrementally. Section 3.4.4 presents
difference lists, an efficient technique to achieve this while keeping the
computation iterative.

e An important data type related to the list is the queue. Section 3.4.5
shows how to implement queues efficiently. It also introduces the basic idea
of amortized efficiency.

e The second most important recursive data type, next to linear structures
such as lists and queues, is the tree. Section 3.4.6 gives the basic program-
ming techniques for trees.

e Sections 3.4.7 and 3.4.8 give two realistic case studies, a tree drawing
algorithm and a parser, that between them use many of the techniques of
this section.
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3.4.1 Type notation

The list type is a subset of the record type. There are other useful subsets of
the record type, e.g., binary trees. Before going into writing programs, let us
introduce a simple notation to define lists, trees, and other subtypes of records.
This will help us to write functions on these types.

A list Xs is either nil or X|Xr where Xr is a list. Other subsets of the record
type are also useful. For example, a binary tree can be defined as leaf(key:K
value:V) or tree(key:K value:V left:.LT right:RT) where LT and RT are
both binary trees. How can we write these types in a concise way? Let us create
a notation based on the context-free grammar notation for defining the syntax of
the kernel language. The nonterminals represent either types or values. Let us
use the type hierarchy of Figure 2.16 as a basis: all the types in this hierarchy
will be available as predefined nonterminals. So (Value) and (Record) both exist,
and since they are sets of values, we can say (Record) C (Value). Now we can
define lists:

(List) == (Value) "|~ (List)
| nil

This means that a value is in (List) if it has one of two forms. Either it is X|Xr
where Xis in (Value) and Xr is in (List). Or it is the atom nil . This is a recursive
definition of (List). It can be proved that there is just one set (List) that is the
smallest set that satisfies this definition. The proof is beyond the scope of this
book, but can be found in any introductory book on semantics, e.g., [208]. We
take this smallest set as the value of (List). Intuitively, (List) can be constructed
by starting with nil and repeatedly applying the grammar rule to build bigger
and bigger lists.
We can also define lists whose elements are of a given type:

(List T) == T7|" (List T)
| nil

Here T is a type variable and (List T) is a type function. Applying the type func-
tion to any type returns the type of a list of that type. For example, (List (Int))
is the list of integer type. Observe that (List (Value)) is equal to (List) (since they
have identical definitions).

Let us define a binary tree whose keys are literals and whose elements are of
type T:

(BTree T) == tree(key:  (Literal) value: T
left: ~ (BTree T) right:  (BTree T))
| leaf(key: (Literal) value: T)

The type of a procedure is (proc {$ Ty, ...,T,.}), where Ty, ..., T,, are the types
of its arguments. The procedure’s type is sometimes called the signature of the
procedure, because it gives some key information about the procedure in a concise
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form. The type of a function is (fun {$ Ty, .., T,}: T), which is equivalent to
(proc {$ Ty, ....,T,, T}). For example, the type (fun {$ (List) (List)}: (List) )
is a function with two list arguments that returns a list.

Limits of the notation

This type notation can define many useful sets of values, but its expressiveness
is definitely limited. Here are some cases where the notation is not good enough:

e The notation cannot define the positive integers, i.e., the subset of (Int)
whose elements are all greater than zero.

e The notation cannot define sets of partial values. For example, difference
lists cannot be defined.

We can extend the notation to handle the first case, e.g., by adding boolean
conditions.” In the examples that follow, we will add these conditions in the
text when they are needed. This means that the type notation is descriptive: it
gives logical assertions about the set of values that a variable may take. There
is no claim that the types could be checkable by a compiler. On the contrary,
they often cannot be checked. Even types that are simple to specify, such as the
positive integers, cannot in general be checked by a compiler.

3.4.2 Programming with lists

List values are very concise to create and to take apart, yet they are powerful
enough to encode any kind of complex data structure. The original Lisp language
got much of its power from this idea [120]. Because of lists’ simple structure,
declarative programming with them is easy and powerful. This section gives the
basic techniques of programming with lists:

o Thinking recursively: the basic approach is to solve a problem in terms of
smaller versions of the problem.

e (Converting recursive to iterative computations: naive list programs are often
wasteful because their stack size grows with the input size. We show how
to use state transformations to make them practical.

o Correctness of iterative computations: a simple and powerful way to reason
about iterative computations is by using state invariants.

e (Constructing programs by following the type: a function that calculates with
a given type almost always has a recursive structure that closely mirrors
the type definition.

5This is similar to the way we define language syntax in Section 2.1.1: a context-free notation
with extra conditions when they are needed.
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We end up this section with a bigger example, the mergesort algorithm. Later
sections show how to make the writing of iterative functions more systematic
by introducing accumulators and difference lists. This lets us write iterative
functions from the start. We find that these techniques “scale up”, i.e., they
work well even for large declarative programs.

Thinking recursively

A list is a recursive data structure: it is defined in terms of a smaller version of
itself. To write a function that calculates on lists we have to follow this recursive
structure. The function consists of two parts:

e A base case. For small lists (say, of zero, one, or two elements), the function
computes the answer directly.

e A recursive case. For bigger lists, the function computes the result in terms
of the results of one or more smaller lists.

As our first example, we take a simple recursive function that calculates the length
of a list according to this technique:

fun {Length Ls}
case Ls
of nil then O
0 _JLr then 1+{Length Lr}
end
end
{Browse {Length [a b c]}}

Its type signature is (fun {$ (List)}: (Int)), a function of one list that returns
an integer. The base case is the empty list nil , for which the function returns 0.
The recursive case is any other list. If the list has length n, then its tail has length
n — 1. The tail is smaller than the original list, so the program will terminate.

Our second example is a function that appends two lists Ls and Ms together
to make a third list. The question is, on which list do we use induction? Is it the
first or the second?” We claim that the induction has to be done on the first list.
Here is the function:

fun {Append Ls Ms}
case Ls
of nil then Ms
0 X|Lr  then X[{Append Lr Ms}
end
end

Its type signature is (fun  {$ (List) (List)}: (List)). This function follows exactly
the following two properties of append:

e append(nil , m) = m
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e append(z| I, m) = x| append(l,m)

The recursive case always calls Append with a smaller first argument, so the
program terminates.

Recursive functions and their domains

Let us define the function Nth to get the nth element of a list.

fun {Nth Xs N}
if N==1 then Xs.1
elseif ~ N>1 then {Nth Xs.2 N-1}
end

end

Its type is (fun {$ (List) (Int)}: (Value)). Remember that a list Xs is either
nil  or a tuple X|Y with two arguments. Xs.1 gives X and Xs.2 gives Y. What
happens when we feed the following:

{Browse {Nth [ a b c d] 5}

The list has only four elements. Trying to ask for the fifth element means trying
to do Xs.1 or Xs.2 when Xs=nil . This will raise an exception. An exception is
also raised if Nis not a positive integer, e.g., when N=0. This is because there is
no else clause in the if statement.

This is an example of a general technique to define functions: always use
statements that raise exceptions when values are given outside their domains.
This will maximize the chances that the function as a whole will raise an exception
when called with an input outside its domain. We cannot guarantee that an
exception will always be raised in this case, e.g., {Nth 1|2|3 2}  returns 2 while
1|2|3 is not a list. Such guarantees are hard to come by. They can sometimes
be obtained in statically-typed languages.

The case statement also behaves correctly in this regard. Using a case
statement to recurse over a list will raise an exception when its argument is not
a list. For example, let us define a function that sums all the elements of a list
of integers:

fun {SumList Xs}

case Xs

of nil then O

0 X|Xr  then X+{SumList Xr}
end

end

Its type is (fun {$ (List (Int))}: (Int)). The input must be a list of integers
because SumList internally uses the integer 0. The following call:

{Browse {SumdList [1 2 3]}}

displays 6. Since Xs can be one of two values, namely nil or X|Xr , it is natural
to use a case statement. As in the Nth example, not using an else in the case
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will raise an exception if the argument is outside the domain of the function. For
example:

{Browse {SumlList 1|foo}}

raises an exception because 1|foo is not a list, and the definition of SumList
assumes that its input is a list.

Naive definitions are often slow

Let us define a function to reverse the elements of a list. Start with a recursive
definition of list reversal:

e Reverse of nil 1is nil

e Reverse of X|Xs is Z, where
reverse of Xs is Ys, and
append Ys and [X] to get Z.

This works because X is moved from the front to the back. Following this recursive
definition, we can immediately write a function:

fun {Reverse Xs}
case Xs
of nil then nil
[0 X|Xr  then
{Append {Reverse Xr} [X]}
end
end

Its type is (fun {$ (List)}: (List)). Is this function efficient? To find out, we
have to calculate its execution time given an input list of length n. We can do this
rigorously with the techniques of Section 3.5. But even without these techniques,
we can see intuitively what happens. There will be n recursive calls followed by
n calls to Append. Each Append call will have a list of length n/2 on average.
The total execution time is therefore proportional to n - n/2, namely n?. This
is rather slow. We would expect that reversing a list, which is not exactly a
complex calculation, would take time proportional to the input length and not
to its square.

This program has a second defect: the stack size grows with the input list
length, i.e., it defines a recursive computation that is not iterative. Naively
following the recursive definition of reverse has given us a rather inefficient result!
Luckily, there are simple techniques for getting around both these inefficiencies.
They will let us define linear-time iterative computations whenever possible. We
will see two useful techniques: state transformations and difference lists.

Converting recursive to iterative computations

Let us see how to convert recursive computations into iterative ones. Instead of
using Reverse , we take a simpler function that calculates the length of a list:
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fun {Length Xs}
case Xs of nil then O
0 _|Xr then 1+{Length Xr}
end

end

Note that the SumList function has the same structure. This function is linear-
time but the stack size is proportional to the recursion depth, which is equal
to the length of Xs. Why does this problem occur? It is because the addition
1+{Length Xr}  happens after the recursive call. The recursive call is not last,
so the function’s environment cannot be recovered before it.

How can we calculate the list length with an iterative computation, which has
bounded stack size? To do this, we have to formulate the problem as a sequence
of state transformations. That is, we start with a state Sy and we transform it
successively, giving S7, Ss, ..., until we reach the final state Sgna, which contains
the answer. To calculate the list length, we can take the length i of the part of
the list already seen as the state. Actually, this is only part of the state. The rest
of the state is the part Ys of the list not yet seen. The complete state S; is then
the pair (i,Ys). The general intermediate case is as follows for state S; (where
the full list Xs is [e; e3 -+ €,]):

Xs

A\

€1 €9 RN €i+1 ces ey

Ys

At each recursive call, ¢ will be incremented by 1 and Ys reduced by one element.
This gives us the function:

fun {lterLength | Ys}
case Ys
of nil then |
0 _|IYr then {lterLength I+1 Yr}
end
end

Its type is (fun {$ (Int) (List)}: (Int)). Note the difference with the previous
definition. Here the addition I+1 is done before the recursive call to lterLength |
which is the last call. We have defined an iterative computation.

In the call {IterLength | Ys} , the initial value of I is 0. We can hide this
initialization by defining IterLength  as a local procedure. The final definition
of Length is therefore:

local
fun {lterLength | Ys}
case Ys
of nil then |
0 _IYr then {lterLength I+1 Yr}
end
end
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fun {Length Xs}
{lterLength 0 Xs}
end
end

This defines an iterative computation to calculate the list length. Note that we
define IterLength outside of Length . This avoids creating a new procedure
value each time Length is called. There is no advantage to defining IterLength
inside Length | since it does not use Length ’s argument Xs.

We can use the same technique on Reverse as we used for Length . In the
case of Reverse , the state uses the reverse of the part of the list already seen
instead of its length. Updating the state is easy: we just put a new list element
in front. The initial state is nil . This gives the following version of Reverse :

local
fun {lterReverse Rs Ys}
case Ys
of nil then Rs
[l YIYr then {lterReverse Y|Rs Yr}
end
end
in

fun {Reverse Xs}
{lterReverse nil Xs}
end
end

This version of Reverse is both a linear-time and an iterative computation.

Correctness with state invariants

Let us prove that IterLength is correct. We will use a general technique that
works well for IterReverse  and other iterative computations. The idea is to
define a property P(.S;) of the state that we can prove is always true, i.e., it is
a state invariant. If P is chosen well, then the correctness of the computation
follows from P(Sgnar). For IterLength  we define P as follows:

P((i,Ys)) = (length(Xs) =i+ length(Ys))
where length(L) gives the length of the list L. This combines i and Ys in such a
way that we suspect it is a state invariant. We use induction to prove this:
e First prove P(Sy). This follows directly from Sy = (0, Xs).
e Assuming P(S;) and S; is not the final state, prove P(S;;;). This follows
from the semantics of the case statement and the function call. Write
S; = (i,Ys). We are not in the final state, so Ys is of nonzero length. From

the semantics, I+1 adds 1 to ¢ and the case statement removes one element
from Ys. Therefore P(S;41) holds.
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Since Ys is reduced by one element at each call, we eventually arrive at the final
state Sgnar = (i, nil ), and the function returns i. Since length(nil ) = 0, from
P(Skpa1) it follows that ¢ = length(Xs).

The difficult step in this proof is to choose the property P. It has to satisfy two
constraints. First, it has to combine the arguments of the iterative computation
such that the result does not change as the computation progresses. Second, it
has to be strong enough that the correctness follows from P(Sgna). A rule of
thumb for finding a good P is to execute the program by hand in a few small
cases, and from them to picture what the general intermediate case is.

Constructing programs by following the type

The above examples of list functions all have a curious property. They all have a
list argument, (List T), which is defined as:

(List T) == nil
| T (List T)

and they all use a case statement which has the form:

case Xs

of nil then (expr) % Base case

0 X[Xr then (expr) % Recursive call
end

What is going on here? The recursive structure of the list functions exactly
follows the recursive structure of the type definition. We find that this property
is almost always true of list functions.

We can use this property to help us write list functions. This can be a tremen-
dous help when type definitions become complicated. For example, let us write a
function that counts the elements of a nested list. A nested list is a list in which
each element can itself be a list, e.g., [[1 2] 4 nil [[5] 10]] . We define the
type (NestedList T) as follows:

= nil
| (NestedList T) "| ~ (NestedList T)
| T 7]  (NestedList T)

(NestedList T)

To avoid ambiguity, we have to add a condition on T, namely that T is neither nil
nor a cons. Now let us write the function {LengthL  (NestedList T)}: (Int) which
counts the number of elements in a nested list. Following the type definition gives
this skeleton:

fun {LengthL Xs}
case Xs
of nil then (expr)
[ X|Xr  andthen {lIsList X} then
(expr) % Recursive calls for X and Xr
[l X|Xr then
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(expr) % Recursive call for Xr

end
end
(The third case does not have to mention {Not {IsList X}} since it follows
from the negation of the second case.) Here {IsList X} is a function that
checks whether X is nil or a cons:
fun {IsCons X} case X of _|_ then true else false end end
fun {IsList X} X==nil orelse {IsCons X} end

Fleshing out the skeleton gives the following function:

fun {LengthL Xs}
case Xs
of nil then O
[l X|Xr  andthen {lIsList X} then
{LengthL X}+{LengthL Xr}
[l X|Xr then
1+{LengthL Xr}
end
end

Here are two example calls:
X=[[1 2] 4 nil [[5] 10]]
{Browse {LengthL X}}
{Browse {LengthL [X X]}}

What do these calls display?
Using a different type definition for nested lists gives a different length func-
tion. For example, let us define the type (NestedList2 T) as follows:

(NestedList2 T) nil
(NestedList2 T) " | © (NestedList2 T)
T

Again, we have to add the condition that T is neither nil nor a cons. Note
the subtle difference between (NestedList T) and (NestedList2 T)! Following the
definition of (NestedList2 T) gives a different and simpler function LengthL2 :

fun {LengthL2 Xs}

case Xs
of nil then O
0 X|Xr  then

{LengthL2 X}+{LengthL2 Xr}
else 1 end
end

What is the difference between LengthL and LengthL2 7 We can deduce it by
comparing the types (NestedList T) and (NestedList2 T). A (NestedList T) always
has to be a list, whereas a (NestedList2 T) can also be of type T. Therefore the
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Figure 3.9: Sorting with mergesort

call {LengthL2 foo}  is legal (it returns 1), wherease {LengthL foo} is illegal
(it raises an exception). It is reasonable to consider this as an error in LengthL2 .

There is an important lesson to be learned here. It is important to define a
recursive type before writing the recursive function that uses it. Otherwise it is
easy to be misled by an apparently simple function that is incorrect. This is true
even in functional languages that do type inference, such as Standard ML and
Haskell. Type inference can verify that a recursive type is used correctly, but the
design of a recursive type remains the programmer’s responsibility.

Sorting with mergesort

We define a function that takes a list of numbers or atoms and returns a new list
sorted in ascending order. It uses the comparison operator <, so all elements have
to be of the same type (all integers, all floats, or all atoms). We use the mergesort
algorithm, which is efficient and can be programmed easily in a declarative model.
The mergesort algorithm is based on a simple strategy called divide-and-conquer:

e Split the list into two smaller lists of approximately equal length.
e Use mergesort recursively to sort the two smaller lists.
e Merge the two sorted lists together to get the final result.

Figure 3.9 shows the recursive structure. Mergesort is efficient because the split
and merge operations are both linear-time iterative computations. We first define
the merge and split operations and then mergesort itself:

fun {Merge Xs Ys}

case Xs # Ys

of nil # Ys then Ys

0 Xs # nil then Xs

0 (X|Xr) # (Y|Yr) then
if X<Y then X|{Merge Xr Ys}
else Y|{Merge Xs Yr}
end
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P
s1 . Base case Sn
if
Recursive case
P1 P2 P3
Sl 2 3 Sn
Figure 3.10: Control flow with threaded state
end

end

The typeis (fun {$ (List T) (List T)}: (List T)), where T is either (Int), (Float),
or (Atom). We define split as a procedure because it has two outputs. It could
also be defined as a function returning a pair as a single output.

proc {Split Xs ?Ys ?Zs}
case Xs
of nil then Ys=nil Zs=nil
0 X] then Ys=[X] Zs=nil
[ X1|X2|Xr then Yr Zr in
Ys=X1]|Yr
Zs=X2|Zr
{Split Xr Yr Zr}
end
end

The typeis (proc  {$ (List T) (List T) (List T)}). Here is the definition of merge-
sort itself:

fun {MergeSort Xs}
case Xs
of nil then nil
[0 [XI then [X]
else Ys Zs in
{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}
end
end

Its type is (fun {$ (List T)}: (List T)) with the same restriction on T as in
Merge . The splitting up of the input list bottoms out at lists of length zero and
one, which can be sorted immediately.
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3.4.3 Accumulators

We have seen how to program simple list functions and how to make them itera-
tive. Realistic declarative programming is usually done in a different way, namely
by writing functions that are iterative from the start. The idea is to carry state
forward at all times and never do a return calculation. A state S is represented
by adding a pair of arguments, S1 and Sn, to each procedure. This pair is called
an accumulator. S1 represents the input state and Sn represents the output state.
Each procedure definition is then written in a style that looks like this:

proc {P X S1 ?Sn}
if {BaseCase X} then Sn=S1
else
{P1 S1 S2}
{P2 S2 S3}
{P3 S3 Sn}
end
end

The base case does no calculation, so the output state is the same as the input
state (Sn=S1). The recursive case threads the state through each recursive call
(P1, P2, and P3) and eventually returns it to P. Figure 3.10 gives an illustration.
Each arrow represents one state variable. The state value is given at the arrow’s
tail and passed to the arrow’s head. By state threading we mean that each proce-
dure’s output is the next procedure’s input. The technique of threading a state
through nested procedure calls is called accumulator programming.

Accumulator programming is used in the IterLength and lterReverse
functions we saw before. In these functions the accumulator structure is not so
clear, because they are functions. What is happening is that the input state is
passed to the function and the output state is what the function returns.

Multiple accumulators

Consider the following procedure, which takes an expression containing identifiers,
integers, and addition operations (using label plus ). It calculates two results:
it translates the expression into machine code for a simple stack machine and it
calculates the number of instructions in the resulting code.

proc {ExprCode E C1 ?Cn S1 ?Sn}

case E

of plus(A B) then C2 C3 S2 S3in
C2=plus|C1
S2=S1+1
{ExprCode B C2 C3 S2 S3}
{ExprCode A C3 Cn S3 Sn}

[l 1 then
Cn=push(l)|C1
Sn=S1+1
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end
end

This procedure has two accumulators: one to build the list of machine instructions
and another to hold the number of instructions. Here is a sample execution:

declare Code Size in
{ExprCode plus(plus(a 3) b) nil Code 0 Size}
{Browse Size#Code}

This displays:
5#[push(a) push(3) plus push(b) plus]

More complicated programs usually need more accumulators. When writing large
declarative programs, we have typically used around half a dozen accumulators
simultaneously. The Aquarius Prolog compiler was written in this style [198,
194]. Some of its procedures have as many as 12 accumulators. This means 24
additional arguments! This is difficult to do without mechanical aid. We used an
extended DCG preprocessor® that takes declarations of accumulators and adds
the arguments automatically [96].

We no longer program in this style; we find that programming with explicit
state is simpler and more efficient (see Chapter 6). It is reasonable to use a few
accumulators in a declarative program; it is actually quite rare that a declarative
program does not need a few. On the other hand, using many is a sign that some
of them would probably be better written with explicit state.

Mergesort with an accumulator

In the previous definition of mergesort, we first called the function Split to
divide the input list into two halves. There is a simpler way to do the mergesort,
by using an accumulator. The parameter represents “the part of the list still to
be sorted’. The specification of MergeSortAcc is:

o S#lL2={MergeSortAcc L1 N} takes an input list L1 and an integer N. It
returns two results: S, the sorted list of the first N elements of L1, and L2,
the remaining elements of L1. The two results are paired together with the
# tupling constructor.

The accumulator is defined by L1 and L2. This gives the following definition:

fun {MergeSort Xs}
fun {MergeSortAcc L1 N}

if N==0 then
nil # L1

elseif N==1 then
[L1.1] # L1.2

elseif N>1 then

SDCG (Definite Clause Grammar) is a grammar notation that is used to hide the explicit
threading of accumulators.
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NL=N div 2
NR=N-NL
Ys # L2 = {MergeSortAcc L1 NL}
Zs # L3 = {MergeSortAcc L2 NR}
in
{Merge Ys Zs} # L3
end
end
in
{MergeSortAcc Xs {Length Xs}}.1
end

The Merge function is unchanged. Remark that this mergesort does a different
split than the previous one. In this version, the split separates the first half of
the input list from the second half. In the previous version, split separates the
odd-numbered list elements from the even-numbered elements.

This version has the same time complexity as the previous version. It uses less
memory because it does not create the two split lists. They are defined implicitly
by the combination of the accumulating parameter and the number of elements.

3.4.4 Difference lists

A difference list is a pair of two lists, each of which might have an unbound tail.
The two lists have a special relationship: it must be possible to get the second
list from the first by removing zero or more elements from the front. Here are
some examples:

X#X % Represents the empty list
nil#nil % idem

[a]#[a] % idem

(alb]c|X)#X % Represents [a b c]
(alblc|d[X)#(d|X) % idem

[a b c dJ#[d] % idem

A difference list is a representation of a standard list. We will talk of the difference
list sometimes as a data structure by itself, and sometimes as representing a
standard list. Be careful not to confuse these two viewpoints. The difference list
[a b c dJ#[d] might contain the lists [a b ¢ d] and [d] , but it represents
neither of these. It represents the list [a b c]

Difference lists are a special case of difference structures. A difference struc-
ture is a pair of two partial values where the second value is embedded in the first.
The difference structure represents a value that is the first structure minus the
second structure. Using difference structures makes it easy to construct iterative
computations on many recursive datatypes, e.g., lists or trees. Difference lists
and difference structures are special cases of accumulators in which one of the
accumulator arguments can be an unbound variable.
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The advantage of using difference lists is that when the second list is an
unbound variable, another difference list can be appended to it in constant time.
To append (alb|c|X)#X and (d|e]f|Y)#Y , just bind X to (d|e]f|Y) . This
creates the difference list (alb|c|d|e|f]Y)#Y . We have just appended the lists
[@ bc] and[d e f] with a single binding. Here is a function that appends
any two difference lists:

fun {AppendD D1 D2}

S1#E1=D1
S2#E2=D2
in
E1=S2
S1#E2
end

It can be used like a list append:

local X Y in {Browse {AppendD (1]|2|3|X)#X (4|5]Y)#Y}} end
This displays (1]2|3]4|5]Y)#Y . The standard list append function, defined as
follows:
fun {Append L1 L2}
case L1

of X|T then X|{Append T L2}
0 nil then L2
end

end

iterates on its first argument, and therefore takes time proportional to the length
of the first argument. The difference list append is much more efficient: it takes
constant time.

The limitation of using difference lists is that they can be appended only once.
This property means that difference lists can only be used in special circum-
stances. For example, they are a natural way to write programs that construct
big lists in terms of lots of little lists that must be appended together.

Difference lists as defined here originated from Prolog and logic program-
ming [182]. They are the basis of many advanced Prolog programming tech-
niques. As a concept, a difference list lives somewhere between the concept of
value and the concept of state. It has the good properties of a value (programs
using them are declarative), but it also has some of the power of state because it
can be appended once in constant time.

Flattening a nested list

Consider the problem of flattening a nested list, i.e., calculating a list that has
all the elements of the nested list but is no longer nested. We first give a solution
using lists and then we show that a much better solution is possible with difference
lists. For the list solution, let us reason with mathematical induction based on the
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type (NestedList) we defined earlier, in the same way we did with the LengthL

function:
e Flatten of nil 1is nil

e Flatten of X|Xr where X is a nested list, is Z where
flatten of Xis Y,
flatten of Xr is Yr, and
append Y and Yr to get Z.

e Flatten of X|Xr where X is not a list, is Z where
flatten of Xr is Yr, and
Z is X|Yr .

Following this reasoning, we get the following definition:

fun {Flatten Xs}
case Xs
of nil then nil
[l X|Xr andthen {lIsList X} then
{Append {Flatten X} {Flatten Xr}}
0 X|Xr  then
X|{Flatten Xr}
end
end

Calling:
{Browse {Flatten [[a b] [[c] [d]] nil [e [f]I}}

displays [a b ¢ d e f] . This program is very inefficient because it needs to do
many append operations (see Exercises). Now let us reason again in the same
way, but with difference lists instead of standard lists:

e Flatten of nil is X#X (empty difference list).

e Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2,
flatten of Xr is Y3#Y4, and
equate Y2 and Y3 to append the difference lists.

e Flatten of X|Xr where X is not a list, is (X|Y1)#Y2 where
flatten of Xr is Y1#Y2.

We can write the second case as follows:

e Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2 and
flatten of Xr is Y2#Y4.

This gives the following program:
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fun {Flatten Xs}
proc {FlattenD Xs ?Ds}
case Xs
of nil then Y in Ds=Y#Y
[0 X|Xr andthen {lIsList X} then Y1 Y2 Y4 in
Ds=Y1#Y4
{FlattenD X Y1#Y2}
{FlattenD Xr Y2#Y4}
[l X|Xr then Y1 Y2 in
Ds=(X|Y1)#Y2
{FlattenD Xr Y1#Y2}
end
end Ys
in
{FlattenD Xs Ys#nil} Ys
end

This program is efficient: it does a single cons operation for each non-list in the
input. We convert the difference list returned by FlattenD into a regular list by
binding its second argument to nil . We write FlattenD as a procedure because
its output is part of its last argument, not the whole argument (see Section 2.5.2).
It is common style to write a difference list in two arguments:

fun {Flatten Xs}
proc {FlattenD Xs ?S E}
case Xs
of nil then S=E
[0 X|Xr andthen {lIsList X} then Y2 in
{FlattenD X S Y2}
{FlattenD Xr Y2 E}
0 X|Xr then Y1 in
S=X|Y1
{FlattenD Xr Y1 E}
end
end Ys
in
{FlattenD Xs Ys nil} Ys
end

As a further simplification, we can write FlattenD as a function. To do this, we
use the fact that Sis the output:

fun {Flatten Xs}
fun {FlattenD Xs E}
case Xs
of nil then E
[0 X|Xr andthen {lIsList X} then
{FlattenD X {FlattenD Xr E}}
[l X|Xr  then
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X|{FlattenD Xr E}
end
end
in
{FlattenD Xs nil}
end

What is the role of E? It gives the “rest” of the output, i.e., when the FlattenD
call exhausts its own contribution to the output.

Reversing a list

Let us look again at the naive list reverse of the last section. The problem with
naive reverse is that it uses a costly append function. Perhaps it will be more
efficient with the constant-time append of difference lists? Let us do the naive
reverse with difference lists:

e Reverse of nil is X#X (empty difference list).

e Reverse of X|Xs is Z, where
reverse of Xs is Y1#Y2 and
append Y1#Y2 and (X|Y)#Y together to get Z.

Rewrite the last case as follows, by doing the append:

e Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#Y2 and
equate Y2 and X|Y .

It is perfectly allowable to move the equate before the reverse (why?). This gives:

e Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#(X|Y) .

Here is the final definition:

fun {Reverse Xs}
proc {ReverseD Xs ?Y1 Y}

case Xs
of nil then Yl1=Y
0 X|Xr  then
{ReverseD Xr Y1 X|Y}
end
end Y1
in
{ReverseD Xs Y1 nil} Y1
end
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Look carefully and you will see that this is almost exactly the same iterative
solution as in the last section. The only difference between IterReverse  and
ReverseD is the argument order: the output of IterReverse is the second
argument of ReverseD . So what’s the advantage of using difference lists? With
them, we derived ReverseD without thinking, whereas to derive IterReverse
we had to guess an intermediate state that could be updated.

3.4.5 Queues

An important basic data structure is the queue. A queueis a sequence of elements
with an ensert and a delete operation. The insert operation adds an element to
one end of the queue and the delete operation removes an element from the other
end. We say the queue has FIFO (First-In-First-Out) behavior. Let us investigate
how to program queues in the declarative model.

A naive queue

An obvious way to implement queues is by using lists. If L represents the queue
content, then inserting X gives the new queue X|L and deleting X is done by
calling {ButLast L X L1} , which binds X to the deleted element and returns
the new queue in L1. ButLast returns the last element of L in X and all elements
but the last in L1. It can be defined as:

proc {ButLast L ?X ?L1}
case L
of [Y] then X=Y Ll1=nil
[l Y|IL2 then L3 in
L1=Y|L3
{ButLast L2 X L3}
end
end

The problem with this implementation is that ButLast is slow: it takes time
proportional to the number of elements in the queue. On the contrary, we would
like both the insert and delete operations to be constant-time. That is, doing an
operation on a given implementation and machine always takes time less than
some constant number of seconds. The value of the constant depends on the
implementation and machine. Whether or not we can achieve the constant-time
goal depends on the expressiveness of the computation model:

e In a strict functional programming language, i.e., the declarative model
without dataflow variables (see Section 2.7.1), we cannot achieve it. The
best we can do is to get amortized constant-time operations [138]. That
is, any sequence of n insert and delete operations takes a total time that
is proportional to some constant times n. Any individual operation might
not be constant-time, however.
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e In the declarative model, which extends the strict functional model with
dataflow variables, we can achieve the constant-time goal.

We will show how to define both solutions. In both definitions, each operation
takes a queue as input and returns a new queue as output. As soon as a queue
is used by the program as input to an operation, then it can no longer be used
as input to another operation. In other words, there can be only one version of
the queue in use at any time. We say that the queue is ephemeral.” Each version
exists from the moment it is created to the moment it can no longer be used.

Amortized constant-time ephemeral queue

Here is the definition of a queue whose insert and delete operations have constant
amortized time bounds. The definition is taken from Okasaki [138]:

fun {NewQueue} q(nil nil) end

fun {Check Q}
case Q of q(nil R) then qg({Reverse R} nil) else Q end
end

fun {Insert Q X}
case Q of ¢g(F R) then {Check q(F X|R)} end
end

fun {Delete Q X}
case Q of qg(F R) then F1 in F=X|F1 {Check q(F1 R)} end
end

fun {IsEmpty Q}
case Q of gq(F R) then F==nil end
end

This uses the pair q(F R) to represent the queue. F and R are lists. F represents
the front of the queue and R represents the back of the queue in reversed form.
At any instant, the queue content is given by {Append F {Reverse R}} . An
element can be inserted by adding it to the front of R and deleted by removing it
from the front of F. For example, say that F=[a b] and R=[d c¢] . Deleting the
first element returns a and makes F=[b] . Inserting the element e makes R=[e d
c] . Both operations are constant-time.

To make this representation work, each element in R has to be moved to F
sooner or later. When should the move be done? Doing it element by element is
inefficient, since it means replacing F by {Append F {Reverse R}} each time,
which takes time at least proportional to the length of F. The trick is to do it only
occasionally. We do it when F becomes empty, so that F is non-nil if and only

"Queues implemented with explicit state (see Chapters 6 and 7) are also usually ephemeral.
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if the queue is non-empty. This invariant is maintained by the Check function,
which moves the content of R to F whenever F is nil.

The Check function does a list reverse operation on R. The reverse takes time
proportional to the length of R, i.e., to the number of elements it reverses. Each
element that goes through the queue is passed exactly once from Rto F. Allocating
the reverse’s execution time to each element therefore gives a constant time per
element. This is why the queue is amortized.

Worst-case constant-time ephemeral queue

We can use difference lists to implement queues whose insert and delete operations
have constant worst-case execution times. We use a difference list that ends in
an unbound dataflow variable. This lets us insert elements in constant time by
binding the dataflow variable. Here is the definition:

fun {NewQueue} X in g(0 X X) end

fun {Insert Q X}
case Qof gq(N S E) then E1 in E=X|E1l q(N+1 S E1) end
end

fun {Delete Q X}
case Qof gq(N S E) then S1 in S=X|S1 q(N-1 S1 E) end
end

fun {IsEmpty Q}
case Qof (N S E) then N==0 end
end

This uses the triple q(N S E) to represent the queue. At any instant, the queue
content is given by the difference list S#E. N is the number of elements in the
queue. Why is N needed? Without it, we would not know how many elements
were in the queue.

Example use

The following example works with either of the above definitions:

declare Q1 Q2 Q3 Q4 Q5 Q6 Qin
Q1={NewQueue}

Q2={Insert Q1 peter}

Q3={Insert Q2 paul}

local X in Q4={Delete Q3 X} {Browse X} end
Q5={Insert Q4 mary}

local X in Q6={Delete Q5 X} {Browse X} end
local X in Q7={Delete Q6 X} {Browse X} end

This inserts three elements and deletes them. Each element is inserted before it
is deleted. Now let us see what each definition can do that the other cannot.
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With the second definition, we can delete an element before it is inserted.
Doing such a delete returns an unbound variable that will be bound to the cor-
responding inserted element. So the last four calls in the above example can be
changed as follows:

local X in Q4={Delete Q3 X} {Browse X} end
local X in Q5={Delete Q4 X} {Browse X} end
local X in Q6={Delete Q5 X} {Browse X} end
Q7={Insert Q6 mary}

This works because the bind operation of dataflow variables, which is used both
to insert and delete elements, is symmetric.

With the first definition, maintaining multiple versions of the queue simul-
taneously gives correct results, although the amortized time bounds no longer
hold.® Here is an example with two versions:

declare Q1 Q2 Q3 Q4 Q5 Q€n

Q1={NewQueue}

Q2={Insert Q1 peter}

Q3={Insert Q2 paul}

Q4={Insert Q2 mary}

local X in Q5={Delete Q3 X} {Browse X} end
local X in Q6={Delete Q4 X} {Browse X} end

Both Q3 and Q4 are calculated from their common ancestor Q2. Q3 contains
peter and paul . Q4 contains peter and mary. What do the two Browse calls
display?

Persistent queues

Both definitions given above are ephemeral. What can we do if we need to
use multiple versions and still require constant-time execution? A queue that
supports multiple simultaneous versions is called persistent.” Some applications
need persistent queues. For example, if during a calculation we pass a queue
value to another routine:

{éomeProc Qa}
Qb={Insert Qa x}
Qc={Insert Qb vy}

8To see why not, consider any sequence of n queue operations. For the amortized constant-
time bound to hold, the total time for all operations in the sequence must be proportional to
n. But what happens if the sequence repeats an “expensive” operation in many versions? This
is possible, since we are talking of any sequence. Since the time for an expensive operation and
the number of versions can both be proportional to n, the total time bound grows as n?.

9This meaning of persistence should not be confused with persistence as used in transactions

and databases (Sections 8.5 and 9.6), which is a completely different concept.
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We assume that SomeProc can do queue operations but that the caller does not
want to see their effects. It follows that we may have two versions of the queue.
Can we write queues that keep the time bounds for this case? It can be done if
we extend the declarative model with lazy execution. Then both the amortized
and worst-case queues can be made persistent. We defer this solution until we
present lazy execution in Section 4.5.

For now, let us propose a simple workaround that is often sufficient to make the
worst-case queue persistent. It depends on there not being too many simultaneous
versions. We define an operation ForkQ that takes a queue Q and creates two
identical versions Ql and Q2 As a preliminary, we first define a procedure ForkD
that creates two versions of a difference list:

proc {ForkD D ?E ?F}
D1#nil=D
E1#EO=E {Append D1 EO E1}
F1#FO0=F {Append D1 FO F1}
in skip end

The call {ForkD D E F} takes a difference list D and returns two fresh copies
of it, E and F. Append is used to convert a list into a fresh difference list. Note
that ForkD consumes D, i.e., D can no longer be used afterwards since its tail is
bound. Now we can define ForkQ , which uses ForkD to make two versions of a
queue:

proc {ForkQ Q ?Ql1 ?Q2}
aiN S E)=Q
g(N S1 E1)=Q1
g(N S2 E2)=Q2
in
{ForkD S#E SI1#E1 S2#E2}
end

ForkQ consumes Q and takes time proportional to the size of the queue. We can
rewrite the example as follows using ForkQ :

{ForkQ Qa Qal Qa2}
{SomeProc Qal}
Qb={Insert Qa2 x}
Qc={Insert Qb y}

This works well if it is acceptable for ForkQ to be an expensive operation.

3.4.6 Trees

Next to linear data structures such as lists and queues, trees are the most im-
portant recursive data structure in a programmer’s repertory. A tree is either a
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leaf node or a node that contains one or more trees. Nodes can carry additional
information. Here is one possible definition:

(Tree) == leaf( (Value))
| tree( (Value) (Tree); ... (Tree),)

The basic difference between a list and a tree is that a list always has a linear
structure whereas a tree can have a branching structure. A list always has an
element followed by ezactly one smaller list. A tree has an element followed by
some number of smaller trees. This number can be any natural number, i.e., zero
for leaf nodes and any positive number for non-leaf nodes.

There exist an enormous number of different kinds of trees, with different
conditions imposed on their structure. For example, a list is a tree in which
non-leaf nodes always have exactly one subtree. In a binary tree the non-leaf
nodes always have exactly two subtrees. In a ternary tree they have exactly three
subtrees. In a balanced tree, all subtrees of the same node have the same size
(i.e., the same number of nodes) or approximately the same size.

Each kind of tree has its own class of algorithms to construct trees, traverse
trees, and look up information in trees. This chapter uses several different kinds
of trees. We give an algorithm for drawing binary trees in a pleasing way, we show
how to use higher-order techniques for calculating with trees, and we implement
dictionaries with ordered binary trees.

This section sets the stage for these developments. We will give the basic
algorithms that underlie many of these more sophisticated variations. We define
ordered binary trees and show how to insert information, look up information,
and delete information from them.

Ordered binary tree

An ordered binary tree (OBTree) is a binary tree in which each node includes a
pair of values:

(OBTree) = leaf
| tree( (OValue) (Value) (OBTree); (OBTree)s)

Each non-leaf node includes the values (OValue) and (Value). The first value
(OValue) is any subtype of (Value) that is totally ordered, i.e., it has boolean
comparison functions. For example, (Int) (the integer type) is one possibility.
The second value (Value) is carried along for the ride. No particular condition is
imposed on it.

Let us call the ordered value the key and the second value the information.
Then a binary tree is ordered if for each non-leaf node, all the keys in the first
subtree are less than the node key, and all the keys in the second subtree are
greater than the node key.
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Storing information in trees

An ordered binary tree can be used as a repository of information, if we define
three operations: looking up, inserting, and deleting entries.

To look up information in an ordered binary tree means to search whether a
given key is present in one of the tree nodes, and if so, to return the information
present at that node. With the orderedness condition, the search algorithm can
eliminate half the remaining nodes at each step. This is called binary search. The
number of operations it needs is proportional to the depth of the tree, i.e., the
length of the longest path from the root to a leaf. The look up can be programmed
as follows:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) then
if X<Y then {Lookup X T1}
elseif X>Y then {Lookup X T2}
else found(V) end
end
end

Calling {Lookup X T} returnsfound(V) if a node with Xis found, and notfound
otherwise. Another way to write Lookup is by using andthen in the case state-
ment:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) andthen X==Y then found(V)
[] tree(Y V T1 T2) andthen X<Y then {Lookup X T1}
[] tree(Y V T1 T2) andthen X>Y then {Lookup X T2}
end

end

Many developers find the second way more readable because it is more visual, i.e.,
it gives patterns that show what the tree looks like instead of giving instructions
to decompose the tree. In a word, it is more declarative. This makes it easier to
verify that it is correct, i.e., to make sure that no cases have been overlooked. In
more complicated tree algorithms, pattern matching with andthen is a definite
advantage over explicit if statements.

To insert or delete information in an ordered binary tree, we construct a new
tree that is identical to the original except that it has more or less information.
Here is the insertion operation:

fun {Insert X V T}

case T
of leaf then tree(X V leaf leaf)
[] tree(Y W T1 T2) andthen ==Y then
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Figure 3.11: Deleting node Y when one subtree is a leaf (easy case)

tree(X V T1 T2)
[] tree(Y W T1 T2) andthen X<Y then
tree(Y W {lnsert X V T1} T2)
[] tree(Y W T1 T2) andthen X>Y then
tree(Y W T1 {Insert X V T2}
end
end

Calling {Insert X V T} returns a new tree that has the pair (X V) inserted
in the right place. If T already contains X, then the new tree replaces the old
information with V.

Deletion and tree reorganizing

The deletion operation holds a surprise in store. Here is a first try at it:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then leaf
[] tree(Y W T1 T2) andthen X<Y then
tree(Y W {Delete X T1} T2)
[] tree(Y W T1 T2) andthen X>Y then
tree(Y W T1 {Delete X T2})
end
end

Calling {Delete X T} should return a new tree that has no node with key X.
If T does not contain X, then T is returned unchanged. Deletion seems simple
enough, but the above definition is incorrect. Can you see why?

It turns out that Delete is not as simple as Lookup or Insert . The error in
the above definition is that when X==Y, the whole subtree is removed instead of
just a single node. This is only correct if the subtree is degenerate, i.e., if both
T1 and T2 are leaf nodes. The fix is not completely obvious: when X==Y, we have
to reorganize the subtree so that it no longer has the key Y but is still an ordered
binary tree. There are two cases, illustrated in Figures 3.11 and 3.12.
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PN Smallest
Y Remove Y L2 Move up Yp Yp key of T2

T2 minus Yp
T1 T2 T1 T2 T1
LYp]

Figure 3.12: Deleting node Y when neither subtree is a leaf (hard case)

Figure 3.11 is the easy case, when one subtree is a leaf. The reorganized tree
is simply the other subtree. Figure 3.12 is the hard case, when both subtrees are
not leaves. How do we fill the gap after removing Y? Another key has to take the
place of Y, “percolating up” from inside one of the subtrees. The idea is to pick
the smallest key of T2, call it Yp, and make it the root of the reorganized tree.
The remaining nodes of T2 make a smaller subtree, call it Tp, which is put in the
reorganized tree. This ensures that the reorganized tree is still ordered, since by
construction all keys of T1 are less than Yp, which is less than all keys of Tp.

It is interesting to see what happens when we repeatedly delete a tree’s roots.
This will “hollow out” the tree from the inside, removing more and more of the
left-hand part of T2. Eventually, T2’s left subtree is removed completely and the
right subtree takes its place. Continuing in this way, T2 shrinks more and more,
passing through intermediate stages in which it is a complete, but smaller ordered
binary tree. Finally, it disappears completely.

To implement the fix, we use a function {RemoveSmallest T2}  that returns
the smallest key of T2, its associated value, and a new tree that lacks this key.
With this function, we can write a correct version of Delete as follows:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then
case {RemoveSmallest T2}
of none then T1
[l Yp#Vp#Tp then tree(Yp Vp T1 Tp)
end
[] tree(Y W T1 T2) andthen X<Y then
tree(Y W {Delete X T1} T2)
[] tree(Y W T1 T2) andthen X>Y then
tree(Y W T1 {Delete X T2})
end
end

The function RemoveSmallest returns either a triple Yp#Vp#Tp or the atom
none. We define it recursively as follows:

fun {RemoveSmallest T}
case T
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of leaf then none

[] tree(Y V T1 T2) then
case {RemoveSmallest T1}
of none then Y#V#T2
[ Yp#Vp#Tp then Yp#Vpi#tree(Y V Tp T2)
end

end

end

One could also pick the largest element of T1 instead of the smallest element of
T2. This gives much the same result.

The extra difficulty of Delete compared to Insert or Lookup occurs fre-
quently with tree algorithms. The difficulty occurs because an ordered tree sat-
isfies a global condition, namely being ordered. Many kinds of trees are defined
by global conditions. Algorithms for these trees are complex because they have
to maintain the global condition. In addition, tree algorithms are harder to write
than list algorithms because the recursion has to combine results from several
smaller problems, not just one.

Tree traversal

Traversing a tree means to perform an operation on its nodes in some well-defined
order. There are many ways to traverse a tree. Many of these are derived from
one of two basic traversals, called depth-first and breadth-first traversal. Let us
look at these traversals.

Depth-first is the simplest traversal. For each node, it visits first the left-most
subtree, then the node itself, and then the right-most subtree. This makes it easy
to program since it closely follows how nested procedure calls execute. Here is a
traversal that displays each node’s key and information:

proc {DFS T}
case T
of leaf then skip
[] tree(Key Val L R) then
{DFS L}
{Browse Key#Val}
{DFS R}
end
end

The astute reader will realize that this depth-first traversal does not make much
sense in the declarative model, because it does not calculate any result.!® We can
fix this by adding an accumulator. Here is a traversal that calculates a list of all
key /value pairs:

proc {DFSAcc T S1 Sn}
case T

10Browse cannot be defined in the declarative model.
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proc {BFS T}
fun {Treelnsert Q T}
if T\=leaf then {Insert Q T} else Q end
end

proc {BFSQueue Q1}
if {IsEmpty Q1} then skip
else
X Q2={Delete Q1 X}
tree(Key Val L R)=X

in
{Browse Key#Val}
{BFSQueue {Treelnsert {Treelnsert Q2 L} R}}
end
end
in
{BFSQueue {Treelnsert {NewQueue} T}}
end
Figure 3.13: Breadth-first traversal
of leaf then Sn=S1
[] tree(Key Val L R) then S2 S3 in
{DFSAcc L S1 S2}
S3=Key#Val|S2
{DFSAcc R S3 Sn}
end
end

Breadth-first is a second basic traversal. It first traverses all nodes at depth 0,
then all nodes at depth 1, and so forth, going one level deeper at a time. At each
level, it traverses the nodes from left to right. The depth of a node is the length
of the path from the root to the current node, not including the current node. To
implement breadth-first traversal, we need a queue to keep track of all the nodes
at a given depth. Figure 3.13 shows how it is done. It uses the queue data type
we defined in the previous section. The next node to visit comes from the head
of the queue. The node’s two subtrees are added to the tail of the queue. The
traversal will get around to visiting them when all the other nodes of the queue
have been visited, i.e., all the nodes at the current depth.

Just like for the depth-first traversal, breadth-first traversal is only useful in
the declarative model if supplemented by an accumulator. Figure 3.14 gives an
example that calculates a list of all key/value pairs in a tree.

Depth-first traveral can be implemented in a similar way as breadth-first
traversal, by using an explicit data structure to keep track of the nodes to vis-
it. To make the traversal depth-first, we simply use a stack instead of a queue.
Figure 3.15 defines the traversal, using a list to implement the stack.
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proc {BFSAcc T S1 ?Sn}
fun {Treelnsert Q T}
if T\=leaf then {lnsert Q T} else Q end
end

proc {BFSQueue Q1 S1 ?Sn}
if {IsEmpty Q1} then Sn=S1
else
X Q2={Delete Q1 X}
tree(Key Val L R)=X
S2=Key#Val|S1
in
{BFSQueue {Treelnsert {Treelnsert Q2 R} L} S2 Sn}
end
end
in
{BFSQueue {Treelnsert {NewQueue} T} S1 Sn}
end

Figure 3.14: Breadth-first traversal with accumulator

proc {DFS T}
fun {Treelnsert S T}
if T\=leaf then T|S else S end
end

proc {DFSStack S1}
case S1
of nil then skip
[l X|S2 then
tree(Key Val L R)=X
in
{Browse Key#Val}
{DFSStack {Treelnsert {Treelnsert S2 R} L}}
end
end
in
{DFSStack {Treelnsert nil T}}
end

Figure 3.15: Depth-first traversal with explicit stack
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How does the new version of DFS compare with the original? Both versions
use a stack to remember the subtrees to be visited. In the original, the stack is
hidden: it is the semantic stack. There are two recursive calls. When the first call
is taken, the second one is waiting on the semantic stack. In the new version, the
stack is explicit. The new version is tail recursive, just like BFS, so the semantic
stack does not grow. The new version simply trades space on the semantic stack
for space on the store.

Let us see how much memory the DFS and BFS algorithms use. Assume we
have a tree of depth n with 2" leaf nodes and 2" — 1 non-leaf nodes. How big do
the stack and queue arguments get? We can prove that the stack has at most n
elements and the queue has at most 2("~1 elements. Therefore, DFSis much more
economical: it uses memory proportional to the tree depth. BFS uses memory
proportional to the size of the tree.

3.4.7 Drawing trees

Now that we have introduced trees and programming with them, let us write
a more significant program. We will write a program to draw a binary tree in
an aesthetically pleasing way. The program calculates the coordinates of each
node. This program is interesting because it traverses the tree for two reasons:
to calculate the coordinates and to add the coordinates to the tree itself.

The tree drawing constraints

We first define the tree’s type:

(Tree) == tree(key: (Literal) val: (Value) left:  (Tree) right:  (Tree))

| leaf

Each node is either a leaf or has two children. In contrast to Section 3.4.6, this
uses a record to define the tree instead of a tuple. There is a very good reason for
this which will become clear when we talk about the principle of independence.
Assume that we have the following constraints on how the tree is drawn:

1. There is a minimum horizontal spacing between both subtrees of every
node. To be precise, the rightmost node of the left subtree is at a minimal
horizontal distance from the leftmost node of the right subtree.

2. If a node has two child nodes, then its horizontal position is the arithmetic
average of their horizontal positions.

3. If a node has only one child node, then the child is directly underneath it.

4. The vertical position of a node is proportional to its level in the tree.

In addition, to avoid clutter the drawing shows only the nodes of type tree .
Figure 3.16 shows these constraints graphically in terms of the coordinates of
each node. The example tree of Figure 3.17 is drawn as shown in Figure 3.19.
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@y) @y)
1. Distance d between subtrees has minimum value
@y) by') cy) 2. If two children exist, ais average of b and ¢
3. If only one child exists, it is directly below parent
4. Vertical positiony is proportional to level in the tree
d

Figure 3.16: The tree drawing constraints

tree(key:a val:111
left:tree(key:b val:55
left:tree(key:x val:100
left:tree(key:z val:56 left:leaf right:leaf)
right:tree(key:w val:23 left:leaf right:leaf))
right:tree(key:y val:105 left:leaf
right:tree(key:r val:77 left:leaf right:leaf)))
right:tree(key:c val:123
left:tree(key:d val:119
left:tree(key:g val:44 left:leaf right:leaf)
right:tree(key:h val:50
left:tree(key:i val:5 left:leaf right:leaf)
right:tree(key:j val:6 left:leaf right:leaf)))
right:tree(key:e val:133 left:leaf right:leaf)))

Figure 3.17: An example tree

Calculating the node positions

The tree drawing algorithm calculates node positions by traversing the tree, pass-
ing information between nodes, and calculating values at each node. The traversal
has to be done carefully so that all the information is available at the right time.
Exactly what traversal is the right one depends on what the constraints are. For
the above four constraints, it is sufficient to traverse the tree in a depth-first order.
In this order, each left subtree of a node is visited before the right subtree. A
basic depth-first traversal looks like this:

proc {DepthFirst Tree}
case Tree
of tree(left:L right:R ...) then
{DepthFirst L}
{DepthFirst R}
[] leaf then
skip
end
end
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The tree drawing algorithm does a depth-first traversal and calculates the (z,y)
coordinates of each node during the traversal. As a preliminary to running the
algorithm, we extend the tree mnodes with the fields x and y at each node:

fun {AddXY Tree}
case Tree
of tree(left:.L right:R ...) then
{Adjoin Tree
tree(x;_ y:_ left:{AddXY L} right:{AddXY R})}
[] leaf then
leaf
end
end

The function AddXY returns a new tree with the two fields x and y added to
all nodes. It uses the Adjoin function which can add new fields to records
and override old ones. This is explained in Appendix B.3.2. The tree drawing
algorithm will fill in these two fields with the coordinates of each node. If the two
fields exist nowhere else in the record, then there is no conflict with any other
information in the record.

To implement the tree drawing algorithm, we extend the depth-first traversal
by passing two arguments down (namely, level in the tree and limit on leftmost
position of subtree) and two arguments up (namely, horizontal position of the
subtree’s root and rightmost position of subtree). Downward-passed arguments
are sometimes called inherited arguments. Upward-passed arguments are some-
times called synthesized arguments. With these extra arguments, we have enough
information to calculate the positions of all nodes. Figure 3.18 gives the com-
plete tree drawing algorithm. The Scale parameter gives the basic size unit of
the drawn tree, i.e., the minimum distance between nodes. The initial arguments
are Level =1 and LeftLim =Scale . There are four cases, depending on whether
a node has two subtrees, one subtree (left or right), or zero subtrees. Pattern
matching in the case statement picks the right case. This takes advantage of the
fact that the tests are done in sequential order.

3.4.8 Parsing

As a second case study of declarative programming, let us write a parser for a
small imperative language with syntax similar to Pascal. This uses many of the
techniques we have seen, in particular, it uses an accumulator and builds a tree.

What is a parser

A parser is part of a compiler. A compiler is a program that translates a sequence
of characters, which represents a program, into a sequence of low-level instructions
that can be executed on a machine. In its most basic form, a compiler consists
of three parts:
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Scale=30

proc {DepthFirst Tree Level LeftLim ?RootX ?RightLim}
case Tree
of tree(x:X y:Y left:leaf right:leaf ...) then
X=RootX=RightLim=LeftLim
Y=Scale*Level
[ tree(x:X y:Y left:.L right:leaf ...) then
X=RootX
Y=Scale*Level
{DepthFirst L Level+1 LeftLim RootX RightLim}
[] tree(x:X y:Y left:leaf right:R ...) then
X=RootX
Y=Scale*Level
{DepthFirst R Level+1l LeftLim RootX RightLim}
[ tree(x:X y:Y left:.L right:R ...) then
LRootX LRightLim RRootX RLeftLim
in
Y=Scale*Level
{DepthFirst L Level+1 LeftLim LRootX LRightLim}
RLeftLim=LRightLim+Scale
{DepthFirst R Level+1 RLeftLim RRootX RightLim}
X=RootX=(LRootX+RRootX) div 2
end
end

Figure 3.18: Tree drawing algorithm

e Tokenizer. The tokenizer reads a sequence of characters and outputs a
sequence of tokens.

e Parser. The parser reads a sequence of tokens and outputs an abstract
syntax tree. This is sometimes called a parse tree.

e Code generator. The code generator traverses the syntax tree and gen-
erates low-level instructions for a real machine or an abstract machine.

Usually this structure is extended by optimizers to improve the generated code.
In this section, we will just write the parser. We first define the input and output
formats of the parser.

The parser’s input and output languages

The parser accepts a sequence of tokens according to the grammar given in Ta-
ble 3.2 and outputs an abstract syntax tree. The grammar is carefully designed
to be right recursive and deterministic. This means that the choice of grammar
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Figure 3.19: The example tree displayed with the tree drawing algorithm

rule is completely determined by the next token. This makes it possible to write
a top down, left to right parser with only one token lookahead.

For example, say we want to parse a (Term). It consists of a non-empty series
of (Fact) separated by (TOP) tokens. To parse it, we first parse a (Fact). Then we
examine the next token. If it is a (TOP), then we know the series continues. If it
is not a (TOP), then we know the series has ended, i.e., the (Term) has ended. For
this parsing strategy to work, there must be no overlap between (TOP) tokens and
the other possible tokens that come after a (Fact). By inspecting the grammar
rules, we see that the other tokens must be taken from {(EOP), (COP), ;, end,
then, do, else, ) }. We confirm that all the tokens defined by this set are different
from the tokens defined by (TOP).

There are two kinds of symbols in Table 3.2: nonterminals and terminals.
A nonterminal symbol is one that is further expanded according to a grammar
rule. A terminal symbol corresponds directly to a token in the input. It is
not expanded. The nonterminal symbols are (Prog) (complete program), (Stat)
(statement), (Comp) (comparison), (Expr) (expression), (Term) (term), (Fact)
(factor), (COP) (comparison operator), (EOP) (expression operator), and (TOP)
(term operator). To parse a program, start with (Prog) and expand until finding
a sequence of tokens that matches the input.

The parser output is a tree (i.e., a nested record) with syntax given in Ta-
ble 3.3. Superficially, Tables 3.2 and 3.3 have very similar content, but they are
actually quite different: the first defines a sequence of tokens and the second
defines a tree. The first does not show the structure of the input program—we
say it is flat. The second exposes this structure—we say it is nested. Because
it exposes the program’s structure, we call the nested record an abstract syntax
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(Prog) = program (Id) ; (Stat) end
(Stat) := Dbegin { (Stat) ; } (Stat) end
| (id) = (Expr)
| if (Comp) then (Stat) else (Stat)
| while (Comp) do (Stat)
| read (Id)
| write (Expr)
(Comp) == { (Expr) (COP) } (Expr)
(Expr) = { (Term) (EOP) } (Term)
(Term) == { (Fact) (TOP) } (Fact)
(Fact) = (Integer) | (Id) | ( (Expr) )
(COP) = == 1127 "> | < | =< | >
(EOP) n= T+ |-
(TOP)  w= " |7]°
(Integer) := (integer)
(Id) = (atom)

Table 3.2: The parser’s input language (which is a token sequence)

tree. 1t is abstract because it is encoded as a data structure in the language, and
no longer in terms of tokens. The parser’s role is to extract the structure from
the flat input. Without this structure, it is extremely difficult to write the code
generator and code optimizers.

The parser program

The main parser call is the function {Prog S1 Sn} , where S1 is an input list of
tokens and Sn is the rest of the list after parsing. This call returns the parsed
output. For example:

declare A Sn in

A={Prog
[program foo ;" whilea "+ 3 < b “do” b ;=" b '+ 1 "end’]
Sn}
{Browse A}
displays:
prog(foo while( "< (" + (a 3) b) assign(b "+ (b 1))

We give commented program code for the complete parser. Prog is written as
follows:

fun {Prog S1 Sn}

Y Z S2 S3 S4 S5
in

S1=program|S2
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end

(Prog) = prog( (Id) (Stat) )
(Stat) = 7; 7 ( (Stat) (Stat))
| assign( (ld) (Expr))
| “if “( (Comp) (Stat) (Stat) )
| while( (Comp) (Stat) )
| read( (Id))
| write(  (Expr) )
(Comp) = (COP)( (Expr) (Expr))
(Bor) = ()| (nteger) | (OP)( (Expr) (Expr))
(COP)  u= 7==" [71=7 | 7>7 [ 1< [7=< [ 7>
(OP) = '+'|'-'|'* |
(Integer) = (integer)
(1d) = (atom)

Table 3.3: The parser’s output language (which is a tree)

Y={ld S2 S3}
S3=";"|s4
Z={Stat S4 S5}
S5="end” [Sn
prog(Y Z)

The accumulator is threaded through all terminal and nonterminal symbols. Each
nonterminal symbol has a procedure to parse it. Statements are parsed with Stat
which is written as follows:

fun {Stat S1 Sn}

in

T|S2=S1

case T
of begin then
{Sequence Stat fun {$ X} X==";" end S2 “end’ |Sn}
[ 7if " then C X1 X2 S3 S4 S5 S6in
{Comp C S2 S3}
S3="then " |S4
X1={Stat S4 S5}
S5="else " |S6
X2={Stat S6 Sn}
if ~(C X1 X2)
[0 while then C X S3 S4in
C={Comp S2 S3}
S3="do" |S4
X={Stat S4 Sn}
while(C X)
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[] read then [ in
I={ld S2 Sn}
read(l)

[l write then E in
E={Expr S2 Sn}

write(E)
elseif ~ {Isldent T} then E S3 in
S2=":="|S3
E={Expr S3 Sn}
assign(T E)
else
S1=Sn
raise error(Sl) end

end
end

The one-token lookahead is put in T. With a case statement, the correct branch
of the Stat grammar rule is found. Statement sequences (surrounded by begin
— end) are parsed by the procedure Sequence . This is a generic procedure that
also handles comparison sequences, expression sequences, and term sequences. It
is written as follows:

fun {Sequence NonTerm Sep S1 Sn}

X1 S2 T S3
in
X1={NonTerm S1 S2}
S2=T|S3
if {Sep T} then X2 in
X2={Sequence NonTerm Sep S3 Sn}
T(X1 X2) % Dynamic record creation
else
S2=Sn
X1
end
end

This takes two input functions, NonTerm, which is passed any nonterminal, and
Sep, which detects the separator symbol in a sequence. Comparisons, expressions,
and terms are parsed as follows with Sequence :

fun {Comp S1 Sn} {Sequence Expr COP S1 Sn} end
fun {Expr S1 Sn} {Sequence Term EOP S1 Sn} end
fun {Term S1 Sn} {Sequence Fact TOP S1 Sn} end

Each of these three functions has its corresponding function for detecting sepa-

rators:
fun {COP Y}
Y=="<" orelse ==">" orelse Y=="=<" orelse
Y==">=" orelse Y=="==" orelse Y=="1="
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end
fun {EOP Y} Y=="+" orelse =="-" end
fun {TOP Y} Y=="*" orelse Y=="/" end

Finally, factors and identifiers are parsed as follows:

fun {Fact S1 Sn}

T|S2=S1
in
if {IsInt T} orelse  {Isldent T} then
S2=Sn
T
else E S2 S3in
S1="("|S2
E={Expr S2 S3}
S3=")"|Sn
E
end
end

fun {Ild S1 Sn} X in S1=X|Sn true ={Isldent X} X end
fun {Isldent X} {IsAtom X} end

Integers are represented as built-in integer values and detected using the built-in
Isint  function.

This parsing technique works for grammars where one-token lookahead is
enough. Some grammars, called ambiguous grammars, require to look at more
than one token to decide which grammar rule is needed. A simple way to parse
them is with nondeterministic choice, as explained in Chapter 9.

3.5 Time and space efficiency

Declarative programming is still programming; even though it has strong math-
ematical properties it still results in real programs that run on real computers.
Therefore, it is important to think about computational efficiency. There are two
parts to efficiency: execution time (e.g., in seconds) and memory usage (e.g., in
bytes). We will show how to calculate both of these.

3.5.1 Execution time

Using the kernel language and its semantics, we can calculate the execution time
up to a constant factor. For example, for a mergesort algorithm we will be able
to say that the execution time is proportional to nlogn, given an input list of
length n. The asymptotic time complexity of an algorithm is the tightest upper
bound on its execution time as a function of the input size, up to a constant
factor. This is sometimes called the worst-case time complexity.
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local 2(x> in (s) end +T(s)

proc {(x) (y)1 .. (y)n} (s) end

if (x) then (s); else (s), end k+ max (T (s1),T(s2))
ase (x) of (pattern) then (s); else (s)s end k+ max(7T'(s1),T(s2))

~ 0O
s
X
<
—~
<
=
—
—~
<
~

n} Tz(Sizez([x({yh 7yn}))

Table 3.4: Execution times of kernel instructions

To find the constant factor, it is necessary to measure actual runs of the pro-
gram on its implementation. Calculating the constant factor a priori is extremely
difficult. This is because modern computer systems have a complex hardware and
software structure that introduces much unpredictability in the execution time:
they do memory management (see Section 3.5.2), they have complex memory
systems (with virtual memory and several levels of caches), they have complex
pipelined and superscalar architectures (many instructions are simultaneously in
various stages of execution; an instruction’s execution time often depends on the
other instructions present), and the operating system does context switches at un-
predictable times. This unpredictability improves the average performance at the
price of increasing performance fluctuations. For more information on measuring
performance and its pitfalls, we recommend [91].

Big-oh notation

We will give the execution time of the program in terms of the “big-oh” notation
O(f(n)). This notation lets us talk about the execution time without having
to specify the constant factor. Let T(n) be a function that gives the execution
time of some program, measured in the size of the input n. Let f(n) be some
other function defined on nonnegative integers. Then we say 7'(n) is of O(f(n))
(pronounced T'(n) is of order f(n)) if T'(n) < c.f(n) for some positive constant
¢, for all n except for some small values n < ng. That is, as n grows there is a
point after which T'(n) never gets bigger than c.f(n).

Sometimes this is written 7'(n) = O(f(n)). Be carefull This use of equals
is an abuse of notation, since there is no equality involved. If g(n) = O(f(n))
and h(n) = O(f(n)), then it is not true that g(n) = h(n). A better way to
understand the big-oh notation is in terms of sets and membership: O(f(n)) is
a set of functions, and saying 7T'(n) is of O(f(n)) means simply that T'(n) is a
member of the set.
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Calculating the execution time

We use the kernel language as a guide. FEach kernel instruction has a well-defined
execution time, which may be a function of the size of its arguments. Assume
we have a program that consists of the p functions F1, ..., Fp. We would like to
calculate the p functions TfFq, ..., TFp. This is done in three steps:

1. Translate the program into the kernel language.

2. Use the kernel execution times to set up a collection of equations that
contain Tf1, ..., TFp. We call these equations recurrence equations since
they define the result for n in terms of results for values smaller than n.

3. Solve the recurrence equations for Tgq, ..., TFp.

Table 3.4 gives the execution time 7'(s) for each kernel statement (s). In this
table, s is an integer and the arguments y; = E((y),) for 1 <i < n, for the ap-
propriate environment E. Each instance of k is a different positive real constant.
The function I,.({y1, ..., yn}) returns the subset of a procedure’s arguments that
are used as inputs. The function size,({y1, ..., yx}) is the “size” of the input
arguments for the procedure . We are free to define size in any way we like; if
it is defined badly then the recurrence equations will have no solution. For the
instructions (x)=(y) and (x)=(v) there is a rare case when they can take more
than constant time, namely, when the two arguments are bound to large partial
values. In that case, the time is proportional to the size of the common part of
the two partial values.

Example: Append function

Let us give a simple example to show how this works. Consider the Append
function:

fun {Append Xs Ys}
case Xs
of nil then Ys
0 X|Xr  then X|{Append Xr Ys}
end
end

This has the following translation into the kernel language:

proc {Append Xs Ys ?Zs}
case Xs
of nil then Zs=Ys
0 X|Xr  then Zr in
Zs=X|Zr
{Append Xr Ys Zr}

"N This can sometimes differ from call to call. For example, when a procedure is used to
perform different tasks at different calls.
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end
end

Using Table 3.4, we get the following recurrence equation for the recursive call:
Tappend (size(I({Xs,Ys,Zs}))) = ki+max(ks, ks+Tappend (size(I({Xr,Ys,Zr })))

(The subscripts for size and I are not needed here.) Let us simplify this. We
know that I({Xs,Ys,Zs}) = {Xs} and we assume that size({Xs}) = n, where n
is the length of Xs. This gives:

Tappend (n) = ki + max(ky, k3 + Tappend (n — 1))
Further simplifying gives:
Tappend (n) = ka+ Tappend (n — 1)

We handle the base case by picking a particular value of Xs for which we can
directly calculate the result. Let us pick Xs=nil . This gives:

Tappend (0) = ks
Solving the two equations gives:
TAppend (n) = k4.n + k5
Therefore Tappend (1) is of O(n).

Recurrence equations

Before looking at more examples, let us take a step back and look at recurrence
equations in general. A recurrence equation has one of two forms:

e An equation that defines a function 7'(n) in terms of T'(my), ..., T(my),
where myq, ..., mp <n.

e An equation that gives T'(n) directly for certain values of n, e.g., T(0) or
T(1).

When calculating execution times, recurrence equations of many different kinds
pop up. Here is a table of some frequently occurring equations and their solutions:

Equation Solution
Tn)=k+T(n—-1) O(n)
T(n) =k +kyen+T(n—1) O(n?)
T(n)=k+T(n/2) O(logn)
T(n) =k +ken+T(n/2) O(n)
T(n) O(
O(

n)=k+2T(n/2)
T(n) =ky + ken+2.T(n/2)

n)
nlogn)

There are many techniques to derive these solutions. We will see a few in the
examples that follow. The box explains two of the most generally useful ones.
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Solving recurrence equations

The following techniques are often useful:

e A simple three-step technique that almost always works in
practice. First, get exact numbers for some small inputs
(for example: T(0) = k, T(1) = k+ 3, T(2) = k + 6).
Second, guess the form of the result (for example: T'(n) =
an + b, for some as yet unknown a and b). Third, plug
the guessed form into the equations. In our example this
gives b = k and (an +b) = 3+ (a.(n — 1) + b). This gives
a = 3, for a final result of T'(n) = 3n + k. The three-step
technique works if the guessed form is correct.

e A much more powerful technique, called generating func-
tions, that gives closed-form or asymptotic results in a
wide variety of cases without having to guess the form. It
requires some technical knowledge of infinite series and cal-
culus, but not more than is seen in a first university-level
course on these subjects. See Knuth [102] and Wilf [207]
for good introductions to generating functions.

Example: FastPascal

In Chapter 1, we introduced the function FastPascal and claimed with a bit of
handwaving that {FastPascal N}  is of O(n?). Let us see if we can derive this
more rigorously. Here is the definition again:

fun {FastPascal N}
if N==1 then [1]
else L in
L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}
end
end

We can derive the equations directly from looking at this definition, without
translating functions into procedures. Looking at the definition, it is easy to see
that ShiftRight  is of O(1), i.e., it is constant time. Using similar reasoning as
for Append, we can derive that AddList and ShiftLeft are of O(n) where n is
the length of L. This gives us the following recurrence equation for the recursive
call:

TrastPascal (1) = k1 + max(ky, k3 + TrastPascal (7 — 1) + ka.n)
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where n is the value of the argument N. Simplifying gives:

TrastPascal (7) = ks + ksn + Trastpascal (n—1)

For the base case, we pick N=1. This gives:

TrastPascal (1) = ks

To solve these two equations, we first “guess” that the solution is of the form:

TrastPascal () = an®+bn+c

This guess comes from an intuitive argument like the one given in Chapter 1. We
then insert this form into the two equations. If we can successfully solve for a,
b, and ¢, then this means that our guess was correct. Inserting the form into the
two equations gives the following three equations in a, b, and c:

k:4—2a = 0
k:5+a—b = O
a—i—b—l—c—kG = 0

We do not have to solve this system completely; it suffices to verify that a # 0.12
Therefore TrastPascal (1) is of O(n?).

Example: MergeSort

In the previous section we saw three mergesort algorithms. They all have the same
execution time, with different constant factors. Let us calculate the execution
time of the first algorithm. Here is the main function again:

fun {MergeSort Xs}
case Xs
of nil then nil
0 XI then [X]
else Ys Zs in
{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}
end
end

Let T'(n) be the execution time of {MergeSort Xs} , where n is the length of
Xs. Assume that Split and Merge are of O(n) in the length of their inputs.
We know that Split  outputs two lists of lengths [n/2] and |n/2], From the
definition of MergeSort , this lets us define the following recurrence equations:

® T(O) = k?l

121f we guess a.n? + b.n + ¢ and the actual solution is of the form b.n + ¢, then we will get
a=0.
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[ ] T(l) = ]{72
e T'(n) = ky+kyn+T([n/2])+T(|n/2])if n>2

This uses the ceiling and floor functions, which are a bit tricky. To get rid of
them, assume that n is a power of 2, i.e., n = 2¥ for some k. Then the equations
become:

e T(0) = Kk
e T(1) = ke
o I'(n) = ky+kyn+2T(n/2)ifn>2
Expanding the last equation gives (where L(n) = k3 + kyn):

k

A\

Ve

o T(n) = L(n)+2L(n/2) +A4L(n/4) + ... + (n/2)L(2) + 2T(1)
Replacing L(n) and T'(1) by their values gives:
k

Ve

o T(n) = (han + ka) 1 (kam & 2ha) + (kars + Ahg) .+ Cearr & (n/2)Fa) + ko

Doing the sum gives:
° T(n) = k4kn + (n — 1)/€3 + kQ

We conclude that T'(n) = O(nlogn). For values of n that are not powers of 2, we
use the easily-proved fact that n < m = T'(n) < T'(m) to show that the big-oh
bound still holds. The bound is independent of the content of the input list. This
means that the O(nlogn) bound is also a worst-case bound.

3.5.2 Memory usage

Memory usage is not a single figure like execution time. It consists of two quite
different concepts:

e The instantaneous active memory size my(t), in memory words. This
number gives how much memory the program needs to continue to exe-
cute successfully. A related number is the mazimum active memory size,
M, (t) = maxo<y<t Mq(w). This number is useful for calculating how much
physical memory your computer needs to execute the program successfully.

e The instantaneous memory consumption m.(t), in memory words/second.
This number gives how much memory the program allocates during its
execution. A large value for this number means that memory management
has more work to do, e.g., the garbage collector will be invoked more often.
This will increase execution time. A related number is the total memory
consumption, M.(t) = f(f me(u)du, which is a measure for how much total
work memory management has to do to run the program.
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(s) ==
skip 0
| ()1=(x)2 0
| (x)=(v memsize(v)
| {s)1 {s)2 M(s1) + M(s2)
| local (x)in (s) end 1+ T(s)
| if (x) then (s); else (s), end max (M (s1), M(sz))
| case (x) of (pattern) then (s); else (s); end max(M(sy), M(s2))
[ {00 W) (y)ad M, (sizes (L:({y1, -, yn}))

Table 3.5: Memory consumption of kernel instructions

These two numbers should not be confused. The first is much more important.
A program can allocate memory very slowly (e.g., 1 KB/s) and yet have a large
active memory (e.g., 100 MB). For example, a large in-memory database that han-
dles only simple queries. The opposite is also possible. A program can consume
memory at a high rate (e.g., 100 MB/s) and yet have a quite small active memo-
ry (e.g., 10 KB). For example, a simulation algorithm running in the declarative
model.!3

Instantaneous active memory size

The active memory size can be calculated at any point during execution by fol-
lowing all the references from the semantic stack into the store and totaling the
size of all the reachable variables and partial values. It is roughly equal to the
size of all the data structures needed by the program during its execution.

Total memory consumption

The total memory consumption can be calculated with a technique similar to
that used for execution time. Each kernel language operation has a well-defined
memory consumption. Table 3.5 gives the memory consumption M (s) for each
kernel statement (s). Using this table, recurrence equations can be set up for
the program, from which the total memory consumption of the program can be
calculated as a function of the input size. To this number should be added the
memory consumption of the semantic stack. For the instruction (x)=(v) there
is a rare case in which memory consumption is less than memsize(v), namely
when (x) is partly instantiated. In that case, only the memory of the new entities
should be counted. The function memsize(v) is defined as follows, according to
the type and value of v:

13Because of this behavior, the declarative model is not good for running simulations unless
it has an excellent garbage collector!
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e For an integer: 0 for small integers, otherwise proportional to integer size.
Calculate the number of bits needed to represent the integer in two’s com-
plement form. If this number is less than 28, then 0. Else divide by 32 and
round up to the nearest integer.

e For a float: 2.
e For a list pair: 2.
e For a tuple or record: 1+ n, where n = length(arity(v)).

e For a procedure value: k+n, where n is the number of external references of
the procedure body and k£ is a constant that depends on the implementation.

All figures are in number of 32-bit memory words, correct for Mozart 1.3.0. For
nested values, take the sum of all the values. For records and procedure values
there is an additional one-time cost. For each distinct record arity the additional
cost is roughly proportional to n (because the arity is stored once in a symbol
table). For each distinct procedure in the source code, the additional cost depends
on the size of the compiled code, which is roughly proportional to the total number
of statements and identifiers in the procedure body. In most cases, these one-time
costs add a constant to the total memory consumption; for the calculation they
can usually be ignored.

3.5.3 Amortized complexity

Sometimes we are not interested in the complexity of single operations, but rather
in the total complexity of a sequence of operations. As long as the total complex-
ity is reasonable, we might not care whether individual operations are sometimes
more expensive. Section 3.4.5 gives an example with queues: as long as a se-
quence of n insert and delete operations has a total execution time that is O(n),
we might not care whether individual operations are always O(1). They are al-
lowed occasionally to be more expensive, as long as this does not happen too
frequently. In general, if a sequence of n operations has a total execution time
O(f(n)), then we say that it has an amortized complexity of O(f(n)/n).

Amortized versus worst-case complexity

For many application domains, having a good amortized complexity is good
enough. However, there are three application domains that need guarantees on
the execution time of individual operations. They are hard real-time systems,
parallel systems, and interactive systems.

A hard real-time system has to satisfy strict deadlines on the completion of
calculations. Missing such a deadline can have dire consequences including loss
of lives. Such systems exist, e.g., in pacemakers and train collision avoidance (see
also Section 4.6.1).
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A parallel system executes several calculations simultaneously to achieve speedup
of the whole computation. Often, the whole computation can only advance after
all the simultaneous calculations complete. If one of these calculations occasion-
ally takes much more time, then the whole computation slows down.

An interactive system, such as a computer game, should have a uniform reac-
tion time. For example, if a multi-user action game sometimes delays its reaction
to a player’s input then the player’s satisfaction is much reduced.

The banker’s method and the physicist’s method

Calculating the amortized complexity is a little harder than calculating the worst-
case complexity. (And it will get harder still when we introduce lazy execution
in Section 4.5.) There are basically two methods, called the banker’s method and
the physicist’s method.

The banker’s method counts credits, where a “credit” represents a unit of
execution time or memory space. Each operation puts aside some credits. An
expensive operation is allowed when enough credits have been put aside to cover
its execution.

The physicist’s method is based on finding a potential function. This is a
kind of “height above sea level”. Each operation changes the potential, i.e., it
climbs or descends a bit. The cost of each operation is the change in potential,
namely, how much it climbs or descends. The total complexity is a function of
the difference between the initial and final potentials. As long as this difference
remains small, large variations are allowed in between.

For more information on these methods and many examples of their use with
declarative algorithms, we recommend the book by Okasaki [138].

3.5.4 Reflections on performance

Ever since the beginning of the computer era in the 1940’s, both space and time
have been becoming cheaper at an exponential rate (a constant factor improve-
ment each year). They are currently very cheap, both in absolute terms and in
perceived terms: a low-cost personal computer of the year 2000 typically has at
least 64MB of random-access memory and 4 GB of persistent storage on disk,
with a performance of several hundred million instructions per second, where
each instruction can perform a full 64-bit operation including floating point. It
is comparable to or faster than a Cray-1, the world’s fastest supercomputer in
1975. A supercomputer is defined to be one of the fastest computers existing at
a particular time. The first Cray-1 had a clock frequency of 80 MHz and could
perform several 64-bit floating point operations per cycle [178]. At constant cost,
personal computer performance is still improving according to Moore’s Law (that
is, doubling every two years), and this is predicted to continue at least throughout
the first decade of the 21st century.

Because of this situation, performance is usually not a critical issue. If your
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problem is tractable, i.e., there exists an efficient algorithm for it, then if you use
good techniques for algorithm design, the actual time and space that the algo-
rithm takes will almost always be acceptable. In other words, given a reasonable
asymptotic complexity of a program, the constant factor is almost never critical.
This is even true for most multimedia applications (which use video and audio)
because of the excellent graphics libraries that exist.

Not all problems are tractable, though. There are problems that are com-
putationally expensive, for example in the areas of combinatorial optimization,
operational research, scientific computation and simulation, machine learning,
speech and vision recognition, and computer graphics. Some of these problems
are expensive simply because they have to do a lot of work. For example, games
with realistic graphics, which by definition are always at the edge of what is pos-
sible. Other problems are expensive for more fundamental reasons. For example,
NP-complete problems. These problems are in NP, i.e., it is easy to check a solu-
tion, if you are given a candidate.'* But finding a solution may be much harder. A
simple example is the circuit satisfiability problem. Given a combinational digital
circuit that consists of And, Or, and Not gates. Does there exist a set of input val-
ues that makes the output 17 This problem is NP-complete [41]. An NP-complete
problem is a special kind of NP problem with the property that if you can solve
one in polynomial time, then you can solve all in polynomial time. Many com-
puter scientists have tried over several decades to find polynomial-time solutions
to NP-complete problems, and none have succeeded. Therefore, most comput-
er scientists suspect that NP-complete problems cannot be solved in polynomial
time. In this book, we will not talk any more about computationally-expensive
problems. Since our purpose is to show how to program, we limit ourselves to
tractable problems.

In some cases, the performance of a program can be insufficient, even if the
problem is theoretically tractable. Then the program has to be rewritten to im-
prove performance. Rewriting a program to improve some characteristic is called
optimizing it, although it is never “optimal” in any mathematical sense. Usually,
the program can easily be improved up to a point, after which diminishing returns
set in and the program rapidly becomes more complex for ever smaller improve-
ments. Optimization should therefore not be done unless necessary. Premature
optimization is the bane of computing.

Optimization has a good side and a bad side. The good side is that the overall
execution time of most applications is largely determined by a very small part of
the program text. Therefore performance optimization, if necessary, can almost
always be done by rewriting just this small part (sometimes a few lines suffice).
The bad side is that it is usually not obvious, even to experienced programmers,
where this part is a priori. Therefore, this part should be identified after the
application is running and only if a performance problem is noticed. If no such
problem exists, then no performance optimization should be done. The best

MNP stands for “nondeterministic polynomial time”.
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technique to identify the “hotspots” is profiling, which instruments the application
to measure its run-time characteristics.

Reducing a program’s space use is easier than reducing its execution time.
The overall space use of a program depends on the data representation chosen. If
space is a critical issue, then a good technique is to use a compression algorithm
on the data when it is not part of an immediate computation. This trades space
for time.

3.6 Higher-order programming

Higher-order programming is the collection of programming techniques that be-
come available when using procedure values in programs. Procedure values are
also known as lexically-scoped closures. The term higher-order comes from the
concept of order of a procedure. A procedure all of whose arguments are not pro-
cedures is of order zero. A procedure that has at least one zero-order procedure
in an argument is of order one. And so forth: a procedure is of order n + 1 if
it has at least one argument of order n and none of higher order. Higher-order
programming means simply that procedures can be of any order, not just order
Zero.

3.6.1 Basic operations

There are four basic operations that underlie all the techniques of higher-order
programming;:

e Procedural abstraction: the ability to convert any statement into a pro-
cedure value.

e Genericity: the ability to pass procedure values as arguments to a proce-
dure call.

e Instantiation: the ability to return procedure values as results from a
procedure call.

e Embedding: the ability to put procedure values in data structures.

Let us first examine each of these operations in turn. Subsequently, we will see
more sophisticated techniques, such as loop abstractions, that use these basic
operations.

Procedural abstraction

We have already introduced procedural abstraction. Let us briefly recall the
basic idea. Any statement (stmt) can be “packaged” into a procedure by writing
it as proc {$} (stmt) end. This does not execute the statement, but instead
creates a procedure value (a closure). Because the procedure value contains a

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



3.6 Higher-order programming 181

Executea  <stmt> ““Package’’ X=proc{$}

statement a statement <stmt>
end

Execute the {X}
statement

y time y time

Normal execution Delayed execution
Figure 3.20: Delayed execution of a procedure value

contextual environment, executing it gives exactly the same result as executing
(stmt). The decision whether or not to execute the statement is not made where
the statement is defined, but somewhere else in the program. Figure 3.20 shows
the two possibilities: either executing (stmt) immediately or with a delay.

Procedure values allow more than just delaying execution of a statement.
They can have arguments, which allows some of their behavior to be influenced
by the call. As we will see throughout the book, procedural abstraction is enor-
mously powerful. It underlies higher-order programming and object-oriented pro-
gramming, and is extremely useful for building abstractions. Let us give another
example of procedural abstraction. Consider the statement:

local A=1.0 B=3.0 C=2.0 D RealSol X1 X2 in
D=B*B-4.0*A*C
if D>=0.0 then
RealSol= true
X1=("B+{Sqgrt D})/(2.0*A)
X2=("B-{Sqrt D})/(2.0*A)
else
RealSol= false
X1="B/(2.0*A)
X2={Sqrt “D}/(2.0*A)
end
{Browse RealSol#X1#X2}
end

This calculates the solutions of the quadratic equation 22 + 3z + 2 = 0. It uses

—b+ Vb —4dac
2a

the quadratic formula , which gives the two solutions of the

equation az?+ bx + ¢ = 0. The value d = b? — 4ac is called the discriminant: if it
is positive or zero, then there are two real solutions. Otherwise, the two solutions
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are conjugate complex numbers. The above statement can be converted into a
procedure by using it as the body of a procedure definition and passing the free
variables as arguments:

declare
proc {QuadraticEquation A B C ?RealSol ?X1 ?X2}
D=B*B-4.0*A*C
in
if D>=0.0 then
RealSol= true
X1=("B+{Sqrt D})/(2.0*A)
X2=("B-{Sqrt D})/(2.0*A)
else
RealSol= false
X1="B/(2.0*A)
X2={Sqrt "D}/(2.0*A)
end
end

This procedure will solve any quadratic equation. Just call it with the equation’s
coefficients as arguments:

declare RS X1 X2in
{QuadraticEquation 1.0 3.0 2.0 RS X1 X2}
{Browse RS#X1#X2}

A common limitation

Many older imperative languages have a restricted form of procedural abstraction.
To understand this, let us look at Pascal and C [94, 99]. In C, all procedure def-
initions are global (they cannot be nested). This means that only one procedure
value can exist corresponding to each procedure definition. In Pascal, procedure
definitions can be nested, but procedure values can only be used in the same
scope as the procedure definition, and then only while the program is executing
in that scope. These restrictions make it impossible in general to “package up”
a statement and execute it somewhere else.

This means that many higher-order programming techniques are impossible.
For example, it is impossible to program new control abstractions. Instead, each
language provides a predefined set of control abstractions (such as loops, condi-
tionals, and exceptions). A few higher-order techniques are still possible. For
example, the quadratic equation example works because it has no external refer-
ences: it can be defined as a global procedure in C and Pascal. Generic operations
also often work for the same reason (see below).

The restrictions of C and Pascal are a consequence of the way these languages
do memory management. In both languages, the implementation puts part of the
store on the semantic stack. This part of the store is usually called local variables.
Allocation is done using a stack discipline. E.g., some local variables are allocated
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at each procedure entry and deallocated at the corresponding exit. This is a
form of automatic memory management that is much simpler to implement than
garbage collection. Unfortunately, it is easy to create dangling references. It is
extremely difficult to debug a large program that occasionally behaves incorrectly
because of a dangling reference.

Now we can explain the restrictions. In both C and Pascal, creating a proce-
dure value is restricted so that the contextual environment never has any dangling
references. There are some language-specific techniques that can be used to light-
en this restriction. For example, in object-oriented languages such as C++ or
Java it is possible for objects to play the role of procedure values. This technique
is explained in Chapter 7.

Genericity

We have already seen an example of higher-order programming in an earlier
section. It was introduced so gently that perhaps you have not noticed that
it is doing higher-order programming. It is the control abstraction Iterate  of
Section 3.2.4, which uses two procedure arguments, Transform and IsDone .

To make a function generic is to let any specific entity (i.e., any operation
or value) in the function body become an argument of the function. We say the
entity is abstracted out of the function body. The specific entity is given when the
function is called. Each time the function is called another entity can be given.

Let us look at a second example of a generic function. Consider the function
SumList :

fun {SumList L}
case L
of nil then O
0 X|L1 then X+{SumList L1}
end
end

This function has two specific entities: the number zero (0) and the operation
plus (+). The zero is a neutral element for the plus operation. These two entities
can be abstracted out. Any neutral element and any operation are possible. We
give them as parameters. This gives the following generic function:

fun {FoldR L F U}
case L
of nil then U
[ X|L1 then {F X {FoldR L1 F U}}
end
end

This function is usually called FoldR because it associates to the right. We can
define SumList as a special case of FoldR :

fun {SumList L}
{FoldR L fun {$ X Y} X+Y end 0}
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end

We can use FoldR to define other functions on lists. Here is function that calcu-
lates the product:

fun {ProductList L}
{FoldR L fun {$ X Y} X*¥ end 1}
end

Here is another that returns true if there is at least one true in the list:

fun {Some L}
{FoldR L fun {$ X Y} X orelse Y end false }
end

FoldR is an example of a loop abstraction. Section 3.6.2 looks at other kinds of
loop abstraction.

Mergesort made generic

The mergesort algorithm we saw in Section 3.4.2 is hardwired to use the "<’
comparison function. Let us make mergesort generic by passing the comparison
function as an argument. We change the Merge function to reference the function
argument F and the MergeSort function to reference the new Merge:

fun {GenericMergeSort F Xs}
fun {Merge Xs Ys}

case Xs # Ys

of nil # Ys then Ys

[ Xs # nil then Xs

0 X|IXr) # (Y|Yr) then
if {F X Y} then X|{Merge Xr Ys}
else Y|{Merge Xs Yr} end

end

end

fun {MergeSort Xs}
case Xs
of nil then nil
0 [X] then [X]

else Ys Zs in
{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}

end
end
in
{MergeSort Xs}
end
This uses the old definition of Split . We put the definitions of Merge and
MergeSort inside the new function GenericMergeSort . This avoids passing

the function F as an argument to Merge and MergeSort . Instead, the two
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procedures are defined once per call of GenericMergeSort . We can define the
original mergesort in terms of GenericMergeSort

fun {MergeSort Xs}
{GenericMergeSort fun {$ A B} A<B end Xs}
end

Instead of fun {$ A B} A<B end, we could have written Number. "~ <" because
the comparison “ <" is part of the module Number.

Instantiation

An example of instantiation is a function MakeSort that returns a sorting func-
tion. Functions like MakeSort are sometimes called “factories” or “generators”.
MakeSort takes a boolean comparison function F and returns a sorting routine
that uses F as comparison function. Let us see how to build MakeSort using a
generic sorting routine Sort . Assume that Sort takes two inputs, a list L and a
boolean function F, and returns a sorted list. Now we can define MakeSort :

fun {MakeSort F}
fun {$ L}
{Sort L F}
end
end

We can see MakeSort as specifying a set of possible sorting routines. Calling
MakeSort instantiates the specification. It returns an element of the set, which
we call an instance of the specification.

Embedding

Procedure values can be put in data structures. This has many uses:

e Explicit lazy evaluation, also called delayed evaluation. The idea
is not to build a complete data structure in one go, but to build it on
demand. Build only a small part of the data structure with procedures at
the extremities that can be called to build more. For example, the consumer
of a data structure is given a pair: part of the data structure and a new
function to calculate another pair. This means the consumer can control
explicitly how much of the data structure is evaluated.

e Modules. A module is a record that groups together a set of related oper-
ations.

e Software component. A software component is a generic procedure that
takes a set of modules as input arguments and returns a new module. It
can be seen as specifying a module in terms of the modules it needs (see
Section 6.7).
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proc {For A B S P}
proc {LoopUp C}
if C=<B then {P C} {LoopUp C+S} end
end
proc {LoopDown C}
if C>=B then {P C} {LoopDown C+S} end

end
in
if S>0 then {LoopUp A} end
if S<0 then {LoopDown A} end
end

Figure 3.21: Defining an integer loop

proc {ForAll L P}
case L
of nil then skip
[l X|L2  then
{P X}
{ForAll L2 P}
end
end

Figure 3.22: Defining a list loop

3.6.2 Loop abstractions

As the examples in the previous sections show, loops in the declarative model
tend to be verbose because they need explicit recursive calls. Loops can be made
more concise by defining them as control abstractions. There are many different
kinds of loops that we can define. In this section, we first define simple for-loops
over integers and lists and then we add accumulators to them to make them more
useful.

Integer loop

Let us define an integer loop, i.e., a loop that repeats an operation with a sequence
of integers. The procedure {For A B S P} calls {P 1} for integers | that start
with A and continue to B, in steps of S. For example, executing {For 1 10 1
Browse} displays the integers 1, 2, ..., 10. Executing {For 10 1 "2 Browse}
displays 10, 8, 6, 4, 2. The For loop is defined in Figure 3.21. This definition
works for both positive and negative steps. It uses LoopUp for positive S and
LoopDown for negative S. Because of lexical scoping, LoopUp and LoopDown each
needs only one argument. They see B, S, and P as external references.
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Integer loop List loop
{For A B S P} {ForAl'l L P}
{P A } {P X1}
{P A+S } {P X2}
{P A+2* S} {P X3}
{P Acn* S} {P .Xn}
(if S>0: aslong as A+n*S=<B) (where L=[X1 X2 ... Xn])

(if S<0: aslong as A+n*S>=B)
Figure 3.23: Simple loops over integers and lists

List loop

Let us define a list loop, i.e., a loop that repeats an operation for all elements of
a list. The procedure {ForAll L P}  calls {P X} for all elements X of the list L.
For example, {ForAll [a b c] Browse} displays a, b, c. The ForAll loop is
defined in Figure 3.21. Figure 3.23 compares For and ForAll in a graphic way.

Accumulator loops

The For and ForAll loops just repeat an action on different arguments, but
they do not calculate any result. This makes them quite useless in the declara-
tive model. They will show their worth only in the stateful model of Chapter 6.
To be useful in the declarative model, the loops can be extended with an accu-
mulator. In this way, they can calculate a result. Figure 3.24 defines ForAcc and
ForAllAcc , which extend For and ForAll with an accumulator.'® ForAcc and
ForAllAcc  are the workhorses of the declarative model. They are both defined
with a variable Mid that is used to pass the current state of the accumulator to
the rest of the loop. Figure 3.25 compares ForAcc and ForAllAcc in a graphic
way.

Folding a list

There is another way to look at accumulator loops over lists. They can be seen
as a “folding” operation on a list, where folding means to insert an infix operator
between elements of the list. Consider the list [ = [z1 x5 x3 ... z,]. Then folding
[ with the infix operator f gives:

ry fay fas [ fan

15Tn the Mozart system, FOrAcc and FOrAllAcc  are called ForThread and FoldL |,
respectively.
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proc {ForAcc A B S P In ?0ut}
proc {LoopUp C In ?Out}
Mid in
if C=<B then {P In C Mid} {LoopUp C+S Mid Out}
else In=Out end

end
proc {LoopDown C In ?0ut}
Mid in

if C>=B then {P In C Mid} {LoopDown C+S Mid Out}
else In=Out end

end
in

if S>0 then {LoopUp A In Out} end

if S<O0 then {LoopDown A In Out} end
end

proc {ForAllAcc L P In ?0ut}
case L
of nil then In=0Out
[0 X|L2 then Mid in
{P In X Mid}
{ForAllAcc L2 P Mid Out}
end
end

Figure 3.24: Defining accumulator loops

To calculate this expression unambiguously we have to add parentheses. There
are two possibilities. We can do the left-most operations first (associate to the

left):
((..((xy fag) fas) [ xpna) [ o)
or do the right-most operations first (associate to the right):

(w1 f (22 f (23 f oo (T [ 20)-0)))

As a finishing touch, we slightly modify these expressions so that each application
of f involves just one new element of /. This makes them easier to calculate and
reason with. To do this, we add a neutral element w. This gives the following
two expressions:

(((((u fa) fa) fas) fo xna) f o)
(@1 f (22 f (23 f oo (Tner f (2 fw)).)))

To calculate these expressions we define the two functions {FoldL L F U} and
{FoldR L F U} . The function {FoldL L F U} does the following:
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Accumulator loop over integers Accumulator loop over list

{ForAcc ABS P In CQut} {ForAllAcc L PIn Cut}

In

!

{P A }

'///

{P A+S }
K/J

I'n
{P¢ X1 }
{P X2 }

x|

(P A2rs ) (P X3}
(p/ AMI'S |} (p/ G
out ot

(if S0: aslong as A+n*S=<B)

(where L=[X1 X2 ... Xn])
(if S<0: aslong as A+n*S>=B)

Figure 3.25: Accumulator loops over integers and lists

{F .. {F {F {F U X1} X2} X3} ... Xn}
The function {FoldR L F U} does the following:
{F XL {F X2 {F X3 ... {F Xn U} ... }}}

Figure 3.26 shows FoldL and FoldR in a graphic way. We can relate FoldL
and FoldR to the accumulator loops we saw before. Comparing Figure 3.25 and
Figure 3.26, we can see that FoldL is just another name for ForAllAcc

Iterative definitions of folding

Figure 3.24 defines ForAllAcc iteratively, and therefore also FoldL . Here is the
same definition in functional notation:

fun {FoldL L F U}
case L
of nil then U
[l X|L2 then
{FoldL L2 F {F U X}}
end
end

This is compacter than the procedural definition but it hides the accumulator,
which obscures its relationship with the other kinds of loops. Compactness is not
always a good thing.

What about FoldR ? The discussion on genericity in Section 3.6.1 gives a
recursive definition, not an iterative one. At first glance, it does not seem so
easy to define FoldR iteratively. Can you give an iterative definition of FoldR 7
The way to do it is to define an intermediate state and a state transformation
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Folding from the | eft Folding from the right
{FoldL L P U Qut} {FoldR L P U Qut}
{PL¢J X1, } {P Xn lﬁ }
(P y/sz } /

(P vf)@i } (P X3 P }

. {P X2 }
(P 7 xn B (P X1 d }
Qut Qut

Figure 3.26: Folding a list

function. Look at the expression given above: what is the intermediate state?
How do you get to the next state? Before peeking at the answer, we suggest you
put down the book and try to define an iterative FoldR . Here is one possible
definition:

fun {FoldR L F U}
fun {Loop L U}

case L
of nil then U
[ X|L2 then
{Loop L2 {F X U}
end
end
in
{Loop {Reverse L} U}
end

Since FoldR starts by calculating with Xn, the last element of L, the idea is
to iterate over the reverse of L. We have seen before how to define an iterative
reverse.

3.6.3 Linguistic support for loops

Because loops are so useful, they are a perfect candidate for a linguistic abstrac-
tion. This section defines the declarative for loop, which is one way to do this.
The for loop is defined as part of the Mozart system [47]. The for loop is closely
related to the loop abstractions of the previous section. Using for loops is often
easier than using loop abstractions. When writing loops we recommend to try
them first.
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Iterating over integers

A common operation is iterating for successive integers from a lower bound | to
a higher bound J. Without loop syntax, the standard declarative way to do this
uses the {For A B S P} abstraction:

{For A B S proc {$ I} (stmt) end}
This is equivalent to the following for loop:
for | in A.B do (stmt) end

when the step Sis 1, or:
for 1 in A.B;S do (stmt) end

when S is different from 1. The for loop declares the loop counter | , which is a
variable whose scope extends over the loop body (stmt).

Declarative versus imperative loops

There is a fundamental difference between a declarative loop and an imperative
loop, i.e., a loop in an imperative language such as C or Java. In the latter, the
loop counter is an assignable variable which is assigned a different value on each
iteration. The declarative loop is quite different: on each iteration it declares a
new variable. All these variables are referred to by the same identifier. There is
no destructive assignment at all. This difference can have major consequences.
For example, the iterations of a declarative loop are completely independent of
each other. Therefore, it is possible to run them concurrently without changing
the loop’s final result. For example:

for | in A.B do thread (stmt) end end

runs all iterations concurrently but each of them still accesses the right value of I .
Putting (stmt) inside the statement thread ... end runs it as an independent
activity. This is an example of declarative concurrency, which is the subject of
Chapter 4. Doing this in an imperative loop would raise havoc since each iteration
would no longer be sure it accesses the right value of | . The increments of the
loop counter would no longer be synchronized with the iterations.

Iterating over lists

The for loop can be extended to iterate over lists as well as over integer intervals.
For example, the call:

{ForAll L proc {$ X} (stmt) end end}
is equivalent to:
for X in L do (stmt) end

Just as with ForAll | the list can be a stream of elements.
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Patterns

The for loop can be extended to contain patterns that implicitly declare vari-
ables. For example, if the elements of L are triplets of the form obj(name:N

price:P coordinates:C) , then we can loop over them as follows:
for obj(name:N price:P coordinates:C) in L do
if P<1000 then {Show N} end
end

This declares and binds the new variables N, P, and C for each iteration. Their
scope ranges over the loop body.

Collecting results

A useful extension of the for loop is to collect results. For example, let us make
a list of all integers from 1 to 1000 that are not multiples of either 2 or 3:

L=for | in 1..1000 collect:C do
if | mod2 \=0 andthen | mod 3 \= 0 then {C I} end
end
The for loop is an expression that returns a list. The “collect:C 7 declaration

defines a collection procedure C that can be used anywhere in the loop body.
The collection procedure uses an accumulator to collect the elements. The above
example is equivalent to:

{ForAcc 1 1000 1
proc {$ ?L1 | L2}
if I mod2 \=0 andthen | mod 3 \= 0 then L1=I|L2
else L1=L2 end
end
L nil}

In general, the for loop is more expressive than this, since the collection proce-
dure can be called deep inside nested loops and other procedures without having
to thread the accumulator explicitly. Here is an example with two nested loops:

L=for | in 1..1000 collect:C do
if I mod2 \=0 andthen | mod 3 \= 0 then
for Jin 2.10 do
if I modJ == 0 then {C I#J} end
end
end
end

How does the for loop achieve this without threading the accumulator? It uses
explicit state, as we will see in Chapter 6.
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Other useful extensions

The above examples give some of the most-used looping idioms in a declarative
loop syntax. Many more looping idioms are possible. For example: immediately
exiting the loop (break ), immediately exiting and returning an explicit result
(return ), immediately continuing with the next iteration (continue ), multiple
iterators that advance in lockstep, and other collection procedures (e.g., append
and prepend for lists and sum and maximize for integers). For other example
designs of declarative loops we recommend studying the loop macro of Common
Lisp [181] and the state threads package of SICStus Prolog [96].

3.6.4 Data-driven techniques

A common task is to do some operation over a big data structure, traversing the
data structure and calculating some other data structure based on this traversal.
This idea is used most often with lists and trees.

List-based techniques

Higher-order programming is often used together with lists. Some of the loop
abstractions can be seen in this way, e.g., FoldL and FoldR . Let us look at some
other list-based techniques.

A common list operation is Map, which calculates a new list from an old list
by applying a function to each element. For example, {Map [1 2 3] fun {$
1} 1%l end} returns [1 4 9] . It is defined as follows:

fun {Map Xs F}
case Xs
of nil then nil
0 X|Xr  then {F X}{Map Xr F}
end
end

Its type is (fun {$ (List T) (fun {$ T} U)}: (List U)). Map can be defined
with FoldR . The output list is constructed using FoldR ’s accumulator:

fun {Map Xs F}
{FoldR Xs fun {$ | A} {F I}JA end nil}
end

What would happen if we would use FoldL instead of FoldR ? Another common
list operation is Filter , which applies a boolean function to each list element
and outputs the list of all elements that give true . For example, {Filter [1 2

3 4] fun {$ A B} A<3 end} returns [1 2] . It is defined as follows:

fun {Filter Xs F}
case Xs
of nil then nil
[l X|Xr andthen {F X} then X|{Filter Xr F}
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0 X|Xr then {Filter Xr F}
end
end

Its type is (fun {$ (List T) (fun {$ T T} (bool))}: (List T)). Filter  can
also be defined with FoldR :

fun {Filter Xs F}
{FoldR Xs fun {$ 1 A} if {F I} then IJA else A end end nil}
end

It seems that FoldR is a surprisingly versatile function. This should not be a
surprise, since FoldR is simply a for-loop with an accumulator! FoldR itself can
be implemented in terms of the generic iterator Iterate  of Section 3.2:

fun {FoldR Xs F U}
{Iterate
{Reverse Xs}#U
fun {$ S} Xr#A=S in Xr==nil end
fun {$ S} Xr#A=S in Xr.2#{F Xr.1 A} end}.2
end

Since lterate  is a while-loop with accumulator, it is the most versatile loop
abstraction of them all. All other loop abstractions can be programmed in terms
of lterate . For example, to program FoldR we only have to encode the state
in the right way with the right termination function. Here we encode the state
as a pair Xr#A, where Xr is the not-yet-used part of the input list and A is the
accumulated result of the FoldR . Watch out for the details: the initial Reverse
call and the .2 at the end to get the final accumulated result.

Tree-based techniques

As we saw in Section 3.4.6 and elsewhere, a common operation on a tree is to
visit all its nodes in some particular order and do certain operations while visiting
the nodes. For example, the code generator mentioned in Section 3.4.8 has to
traverse the nodes of the abstract syntax tree to generate machine code. The tree
drawing program of Section 3.4.7, after it calculates the node’s positions, has to
traverse the nodes in order to draw them. Higher-order techniques can be used
to help in these traversals.

Let us consider n-ary trees, which are more general than the binary trees we
looked at so far. An n-ary tree can be defined as follows:

(Tree T) == tree(node: T sons: (List (Tree T)))

In this tree, each node can have any number of sons. Depth-first traversal of this
tree is just as simple as for binary trees:
proc {DFS Tree}

tree(sons:Sons ...)=Tree
in
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for T in Sons do {DFS T} end
end

We can “decorate” this routine to do something at each node it visits. For exam-
ple, let us call {P T} at each node T. This gives the following generic procedure:

proc {VisitNodes Tree P}

tree(sons:Sons ...)=Tree
in

{P Tree}

for T in Sons do {VisitNodes T P} end
end

An slightly more involved traversal is to call {P Tree T} for each father-son link
between a father node Tree and one of its sons T:

proc {VisitLinks Tree P}

tree(sons:Sons ...)=Tree
in

for T in Sons do {P Tree T} {VisitLinks T P} end
end

These two generic procedures were used to draw the trees of Section 3.4.7 after
the node positions were calculated. VisitLinks drew the lines between nodes
and VisitNodes  drew the nodes themselves.

Following the development of Section 3.4.6, we extend these traversals with
an accumulator. There are as many ways to accumulate as there are possible
traversals. Accumulation techniques can be top-down (the result is calculated by
propagating from a father to its sons), bottom-up (from the sons to the father),
or use some other order (e.g., across the breadth of the tree, for a breadth-first
traversal). Comparing with lists, top-down is like FoldL and bottom-up is like
FoldR . Let us do a bottom-up accumulation. We first calculate a folded value for
each node. Then the folded value for a father is a function of the father’s node
and the values for the sons. There are two functions: LF to fold together all sons
of a given father, and TF to fold their result together with the father. This gives
the following generic function with accumulator:

local

fun {FoldTreeR Sons TF LF U}
case Sons
of nil then U
[ S|Sons2 then

{LF {FoldTree S TF LF U} {FoldTreeR Sons2 TF LF U}}

end

end

fun {FoldTree Tree TF LF U}
tree(node:N sons:Sons ...)=Tree

in
{TF N {FoldTreeR Sons TF LF U}}
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end
end

Here is an example call:

fun {Add A B} A+B end
T=tree(node:1

[tree(node:2 sons:nil)

tree(node:3 sons:[tree(node:4 sons:nil)])])
{Browse {FoldTree T Add Add 0}

This displays 10, the sum of the values at all nodes.

3.6.5 Explicit lazy evaluation

Modern functional languages have a built-in execution strategy called lazy eval-
uation or lazy execution. Here we show how to program lazy execution explicitly
with higher-order programming. Section 4.5 shows how to make lazy execution
implicit, i.e., where the mechanics of triggering the execution are handled by the
system. As we shall see in Chapter 4, implicit lazy execution is closely connected
to concurrency.

In lazy execution, a data structure (such as a list) is constructed incrementally.
The consumer of the list structure asks for new list elements when they are needed.
This is an example of demand-driven execution. It is very different from the usual,
supply-driven evaluation, where the list is completely calculated independent of
whether the elements are needed or not.

To implement lazy execution, the consumer should have a mechanism to ask
for new elements. We call such a mechanism a trigger. There are two natural ways
to express triggers in the declarative model: as a dataflow variable or with higher-
order programming. Section 4.3.3 explains how with a dataflow variable. Here
we explain how with higher-order programming. The consumer has a function
that it calls when it needs a new list element. The function call returns a pair:
the list element and a new function. The new function is the new trigger: calling
it returns the next data item and another new function. And so forth.

3.6.6 Currying

Currying is a technique that can simplify programs that heavily use higher-order
programming. The idea is to write functions of n arguments as n nested functions
of one argument. For example, the maximum function:

fun {Max X Y}

if X>=Y then X else Y end
end

is rewritten as follows:

fun {Max X}
fun {$ Y}
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if X>=Y then X else Y end
end
end

This keeps the same function body. It is called as {{Max 10} 20} , giving 20.
The advantage of using currying is that the intermediate functions can be useful
in themselves. For example, the function {Max 10} returns a result that is never
less than 10. It is called a partially-applied function. We can give it the name
LowerBound10 :

LowerBound10={Max 10}

In many functional programming languages, in particular, Standard ML and
Haskell, all functions are implicitly curried. To use currying to maximum ad-
vantage, these languages give it a simple syntax and an efficient implementation.
They define the syntax so that curried functions can be defined without nesting
any keywords and called without parentheses. If the function call max 10 20
is possible, then max 10 is also possible. The implementation makes currying
as cheap as possible. It costs nothing when not used and the construction of
partially-applied functions is avoided whenever possible.

The declarative computation model of this chapter does not have any special
support for currying. Neither does the Mozart system have any syntactic or im-
plementation support for it. Most uses of currying in Mozart are simple ones.
However, intensive use of higher-order programming as is done in functional lan-
guages may justify currying support for them. In Mozart, the partially-applied
functions have to be defined explicitly. For example, the max 10 function can be

defined as:

fun {LowerBound10 Y}
{Max 10 Y}
end

The original function definition does not change, which is efficient in the declara-
tive model. Only the partially-applied functions themselves become more expen-
sive.

3.7 Abstract data types

A data type, or simply type, is a set of values together with a set of operations
on these values. The declarative model comes with a predefined set of types,
called the basic types (see Section 2.3). In addition to these, the user is free to
define new types. We say a type is abstract if it is completely defined by its set
of operations, regardless of the implementation. This is abbreviated as ADT.
This means that it is possible to change the implementation of the type without
changing its use. Let us investigate how the user can define new abstract types.
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3.7.1 A declarative stack

To start this section, let us give a simple example of an abstract data type, a stack
(Stack T) whose elements are of type T. Assume the stack has four operations,
with the following types:

(fun {NewStack}:  (Stack T))

(fun {Push (Stack T) T}: (Stack T))
(fun {Pop (Stack T) T} (Stack T))
(fun {IsEmpty (Stack T)}: (Bool))

This set of operations and their types defines the interface of the abstract data
type. These operations satisfy certain laws:

e {IsEmpty {NewStack}} =true . A new stack is always empty.

e For any E and SO, S1={Push SO E} and SO0={Pop S1 E} hold. Pushing
an element and then popping gives the same element back.

e {Pop {EmptyStack}} raises an error. No elements can be popped off an
empty stack.

These laws are independent of any particular implementation, or said differently,
all implementations have to satisfy these laws. Here is an implementation of the
stack that satisfies the laws:

fun {NewsStack} nil end

fun {Push S E} E|S end

fun {Pop S E} case S of X|S1 then E=X S1 end end
fun {IsEmpty S} S==nil end

Here is another implementation that satisfies the laws:

fun {NewStack} stackEmpty end

fun {Push S E} stack(E S) end

fun {Pop S E} case S of stack(X S1) then E=X S1 end end
fun {IsEmpty S} S==stackEmpty end

A program that uses the stack will work with either implementation. This is
what we mean by saying that stack is an abstract data type.

A functional programming look

Attentive readers will notice an unusual aspect of these two definitions: Pop is
written using a functional syntax, but one of its arguments is an output! We
could have written Pop as follows:

fun {Pop S} case S of X|S1 then X#S1 end end

which returns the two outputs as a pair, but we chose not to. Writing {Pop S E}
is an example of programming with a functional look, which uses functional syntax
for operations that are not necessarily mathematical functions. We consider that
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fun {NewnDictionary} nil end
fun {Put Ds Key Value}
case Ds
of nil then [Key#Value]
0 (K#V)|Dr andthen Key==K then
(Key#Value) | Dr
0 (K#V)|Dr andthen K>Key then
(Key#Value)|(K#V)|Dr
0 (K#V)|Dr andthen K<Key then
(K#V)|{Put Dr Key Value}
end
end
fun {CondGet Ds Key Default}
case Ds
of nil then Default
0 (K#V)|Dr andthen Key==K then
Y,
0 (K#V)|Dr andthen K>Key then
Default
0 (K#V)|Dr andthen K<Key then
{CondGet Dr Key Default}
end
end
fun {Domain Ds}
{Map Ds fun {$ K# } K end}
end

Figure 3.27: Declarative dictionary (with linear list)

this is justified for programs that have a clear directionality in the flow of data.
It can be interesting to highlight this directionality even if the program is not
functional. In some cases this can make the program more concise and more
readable. The functional look should be used sparingly, though, and only in
cases where it is clear that the operation is not a mathematical function. We
will use the functional look occasionally throughout the book, when we judge it
appropriate.

For the stack, the functional look lets us highlight the symmetry between
Push and Pop. It makes it clear syntactically that both operations take a stack
and return a stack. Then, for example, the output of Pop can be immediately
passed as input to a Push, without needing an intermediate case statement.

3.7.2 A declarative dictionary

Let us give another example, an extremely useful abstract data type called a
dictionary. A dictionary is a finite mapping from a set of simple constants to
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a set of language entities. FEach constant maps to one language entity. The
constants are called keys because they unlock the path to the entity, in some
intuitive sense. We will use atoms or integers as constants. We would like to
be able to create the mapping dynamically, i.e., by adding new keys during the
execution. This gives the following set of basic functions on the new type (Dict):

e (fun {NewDictionary}: (Dict)) returns a new empty dictionary.

e (fun {Put (Dict) (Feature) (Value)}: (Dict)) takes a dictionary and returns
a new dictionary that adds the mapping (Feature)—(Value). If (Feature) al-
ready exists, then the new dictionary replaces it with (Value).

e (fun {Get (Dict) (Feature)}: (Value)) returns the value corresponding to
(Feature). If there is none, an exception is raised.

e (fun {Domain (Dict)}: (List (Feature))) returns a list of the keys in (Dict).

For this example we define the (Feature) type as (Atom) | (Int).

List-based implementation

Figure 3.27 shows an implementation in which the dictionary is represented as a
list of pairs Key#Value that are sorted on the key. Instead of Get, we define a
slightly more general access operation, CondGet:

e (fun {CondGet (Dict) (Feature) (Value);}: (Value),) returns the value cor-
responding to (Feature). If (Feature) is not present, then it returns (Value);.

CondGet is almost as easy to implement as Get and is very useful, as we will see
in the next example.

This implementation is extremely slow for large dictionaries. Given a uniform
distribution of keys, Put needs on average to look at half the list. CondGet needs
on average to look at half the list, whether the element is present or not. We see
that the number of operations is O(n) for dictionaries with n keys. We say that
the implementation does a linear search.

Tree-based implementation

A more efficient implementation of dictionaries is possible by using an ordered
binary tree, as defined in Section 3.4.6. Put is simply Insert and CondGet
is very similar to Lookup . This gives the definitions of Figure 3.28. In this
implementation, the Put and CondGet operations take O(logn) time and space
for a tree with n nodes, given that the tree is “reasonably balanced”. That is, for
each node, the sizes of the left and right subtrees should not be “too different”.
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fun {NewnDictionary} leaf end
fun {Put Ds Key Value}
% ... similar to Insert
end
fun {CondGet Ds Key Default}
% ... similar to Lookup
end
fun {Domain Ds}
proc {DomainD Ds ?S1 Sn}
case Ds
of leaf then
S1=Sn
[] tree(K _ L R) then S2 S3 in
{DomainD L S1 S2}

S2=K|S3
{DomainD R S3 Sn}
end
end D
in
{DomainD Ds D nil} D
end

Figure 3.28: Declarative dictionary (with ordered binary tree)

State-based implementation

We can do even better than the tree-based implementation by leaving the declara-
tive model behind and using explicit state (see Section 6.5.1). This gives a stateful
dictionary, which is a slightly different type than the declarative dictionary. But
it gives the same functionality. Using state is an advantage because it reduces
the execution time of Put and CondGet operations to amortized constant time.

3.7.3 A word frequency application

To compare our four dictionary implementations, let us use them in a simple
application. Let us write a program to count word frequencies in a string. Later
on, we will see how to use this to count words in a file. Figure 3.29 defines the
function WordFreq , which is given a list of characters Cs and returns a list of
pairs W#N where Wis a word (a maximal sequence of letters and digits) and N is
the number of times the word occurs in Cs. The function WordFreq is defined in
terms of the following functions:

e {WordChar C} returns true iff Cis a letter or digit.

e {WordToAtom PW} converts a reversed list of word characters into an atom
containing those characters. The function StringToAtom is used to create
the atom.
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fun {WordChar C}
(&a=<C andthen C=<&z) orelse

(&A=<C andthen C=<&Z) orelse (&0=<C andthen

end

fun {WordToAtom PW}
{StringToAtom {Reverse PWs}}
end

fun {IncWord D W}
{Put D W {CondGet D W 0}+1}
end

fun {CharsToWords PW Cs}

case Cs

of nil andthen PW==nil then
nil

0 nil then

[{WordToAtom PW}]
[ C|Cr andthen {WordChar C} then

{CharsToWords {Char.toLower C}|PW Cr}

[ C|ICr andthen PW==nil then
{CharsToWords nil Cr}
[ C|Cr then

{WordToAtom PW}|{CharsToWords nil Cr}

end
end

fun {CountWords D Ws}
case Ws

of W|Wr then {CountWords {IncWord D W} Wr}

[] nil then D
end
end

fun {WordFreq Cs}

{CountWords {NewDictionary} {CharsToWords nil Cs}}

end

C=<&9)

Figure 3.29: Word frequencies (with declarative dictionary)
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Figure 3.30: Internal structure of binary tree dictionary in WordFreq (in part)

e {IncWord D W} takes a dictionary D and an atom W Returns a new dic-
tionary in which the Wfield is incremented by 1. Remark how easy this is
to write with CondGet, which takes care of the case when Wis not yet in
the dictionary.

e {CharsToWords nil Cs} takes a list of characters Cs and returns a list
of atoms, where the characters in each atom’s print name form a word in
Cs. The function Char.toLower is used to convert uppercase letters to
lowercase, so that “The” and “the” are considered the same word.

e {CountWords D WSs} takes an empty dictionary and the output of CharsToWords .
It returns a dictionary in which each key maps to the number of times the
word occurs.

Here is a sample execution. The following input:

declare

T="Oh my darling, oh my darling, oh my darling Clementine.
She is lost and gone forever, oh my darling Clementine."

{Browse {WordFreq T}}

displays this word frequency count:

[she#l is#1 clementine#2 lost#1 my#4 darling#4 gone#l and#l
oh#4 forever#l]

We have run WordFreq on a more substantial text, namely an early draft of
this book. The text contains 712626 characters, giving a total of 110457 words
of which 5561 are different. We have run WordFreq with three implementa-
tions of dictionaries: using lists (see previous example), using binary trees (see
Section 3.7.2), and using state (the built-in implementation of dictionaries; see
Section 6.8.2). Figure 3.30 shows part of the internal structure of the binary tree
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dictionary, drawn with the algorithm of Section 3.4.7. The code we measured is
in Section 3.8.1. Running it gives the following times (accurate to 10%):'6

Dictionary implementation Execution time Time complexity

Using lists 620 seconds O(n)
Using ordered binary trees 8 seconds O(logn)
Using state 2 seconds O(1)

The time is the wall-clock time to do everything, i.e., read the text file, run
WordFreq , and write a file containing the word counts. The difference between
the three times is due completely to the different dictionary implementations.
Comparing the times gives a good example of the practical effect of using different
implementations of an important data type. The complexity shows how the time
to insert or look up one item depends on the size of the dictionary.

3.7.4 Secure abstract data types

In both the stack and dictionary data types, the internal representation of values
is visible to users of the type. If the users are disciplined programmers then this
might not be a problem. But this is not always the case. A user can be tempted
to look at a representation or even to construct new values of the representation.

For example, a user of the stack type can use Length to see how many ele-
ments are on the stack, if the stack is implemented as a list. The temptation to
do this can be very strong if there is no other way to find out what the size of the
stack is. Another temptation is to fiddle with the stack contents. Since any list
is also a legal stack value, the user can build new stack values, e.g., by removing
or adding elements.

In short, any user can add new stack operations anywhere in the program.
This means that the stack’s implementation is potentially spread out over the
whole program instead of being limited to a small part. This is a disastrous state
of affairs, for two reasons:

e The program is much harder to maintain. For example, say we want to
improve the efficiency of a dictionary by replacing the list-based implemen-
tation by a tree-based implementation. We would have to scour the whole
program to find out which parts depend on the list-based implementation.
There is also a problem of error confinement: if the program has bugs in
one part then this can spill over into the abstract data types, making them
buggy as well, which then contaminates other parts of the program.

e The program is susceptible to malicious interference. This is a more subtle
problem that has to do with security. It does not occur with programs writ-
ten by people who trust each other. It occurs rather with open programs.

16Using Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell Latitude CPx notebook
computer with Pentium III processor at 500 MHz.
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An open program is one that can interact with other programs that are only
known at run-time. What if the other program is malicious and wants to
disrupt the execution of the open program? Because of the evolution of the
Internet, the proportion of open programs is increasing.

How do we solve these problems? The basic idea is to protect the internal repre-
sentation of the abstract datatype’s values, e.g., the stack values, from unautho-
rized interference. The value to be protected is put inside a protection boundary.
There are two ways to use this boundary:

e Stationary value. The value never leaves the boundary. A well-defined set
of operations can enter the boundary to calculate with the value. The result
of the calculation stays inside the boundary.

e Mobile value. The value can leave and reenter the boundary. When it is
outside, operations can be done on it. Operations with proper authorization
can take the value out of the boundary and calculate with it. The result is
put back inside the boundary.

With either of these solutions, reasoning about the type’s implementation is much
simplified. Instead of looking at the whole program, we need only look at how
the type’s operations are implemented.

The first solution is like computerized banking. Each client has an account
with some amount of money. A client can do a transaction that transfers money
from his or her account to another account. But since clients never actually go
to the bank, the money never actually leaves the bank. The second solution is
like a safe. It stores money and can be opened by clients who have the key. Each
client can take money out of the safe or put money in. Once out, the client can
give the money to another client. But when the money is in the safe, it is safe.

In the next section we build a secure ADT using the second solution. This
way is the easiest to understand for the declarative model. The authorization we
need to enter the protection boundary is a kind of “key”. We add it as a new
concept to the declarative model, called name. Section 3.7.7 then explains that a
key is an example of a very general security idea, called a capability. In Chapter 6,
Section 6.4 completes the story on secure ADTs by showing how to implement
the first solution and by explaining the effect of explicit state on security.

3.7.5 The declarative model with secure types

The declarative model defined so far does not let us construct a protection bound-
ary. To do it, we need to extend the model. We need two extensions, one to
protect values and one to protect unbound variables. Table 3.6 shows the re-
sulting kernel language with its two new operations. We now explain these two
operations.
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(s) =
skip Empty statement
| (s)1 (s)2 Statement sequence
| local (x)in (s) end Variable creation
| (x)1=(x)2 Variable-variable binding
| (x)=(v) Value creation
| if (x) then (s); else (s), end Conditional
| case (x) of (pattern) then (s); else (s); end Pattern matching
[ {{x) {Y)1 ... {Y)n} Procedure application
| try (s); catch (x) then (s), end Exception context
| raise  (x) end Raise exception
| {NewName (x)} Name creation
| (y)=!' (x) Read-only view

Table 3.6: The declarative kernel language with secure types

Protecting values

One way to make values secure is by adding a “wrapping” operation with a
“key”. That is, the internal representation is put inside a data structure that is
inaccessible except to those that know a special value, the key. Knowing the key
allows to create new wrappings and to look inside existing wrappings made with
the same key.

We implement this with a new basic type called a name. A name is a constant
like an atom except that it has a much more restricted set of operations. In
particular, names do not have a textual representation: they cannot be printed
or typed in at the keyboard. Unlike for atoms, it is not possible to convert
between names and strings. The only way to know a name is by being passed a
reference to it within a program. The name type comes with just two operations:

Operation  Description
{NewName} Return a fresh name
N1==N2 Compare names N1 and N2

A fresh name is one that is guaranteed to be different from all other names in the
system. Alert readers will notice that NewNameis not declarative because calling
it twice returns different results. In fact, the creation of fresh names is a stateful
operation. The guarantee of uniqueness means that NewNamehas some internal
memory. However, if we use NewNamejust for making declarative ADTs secure
then this is not a problem. The resulting secure ADT is still declarative.

To make a data type secure, it suffices to put it inside a function that has an
external reference to the name. For example, take the value S:

S=[a b (]
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This value is an internal state of the stack type we defined before. We can make
it secure as follows:

Key={NewName}
SS=fun {$ K} if ==Key then S end end

This first creates a new name in Key. Then it makes a function that can return
S, but only if the correct argument is given. We say that this “wraps” the value
S inside SS. If one knows Key, then accessing S from SSis easy:

S={SS Key}

We say this “unwraps” the value S from SS. If one does not know Key, unwrapping
is impossible. There is no way to know Key except for being passed it explicitly in
the program. Calling SS with a wrong argument will simply raise an exception.

A wrapper

We can define an abstract data type to do the wrapping and unwrapping. The
type defines two operations, Wrap and Unwrap . Wrap takes any value and returns
a protected value. Unwrap takes any protected value and returns the original
value. The Wrap and Unwrap operations come in pairs. The only way to unwrap
a wrapped value is by using the corresponding unwrap operation. With names
we can define a procedure NewWrapper that returns new Wrap/Unwrap pairs:

proc {NewWrapper ?Wrap ?Unwrap}
Key={NewName}

in
fun {Wrap X}
fun {$ K} if ==Key then X end end
end
fun {Unwrap W}
{W Key}
end
end

For maximum protection, each abstract data type can use its own Wrap/Unwrap
pair. Then they are protected from each other as well as from the main program.
Given the value S as before:

S=[a b (]
we protect it as follows:
SS={Wrap S}
We can get the original value back as follows:

S={Unwrap SS}
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Figure 3.31: Doing S1={Pop S X} with a secure stack

A secure stack

Now we can make the stack secure. The idea is to unwrap incoming values
and wrap outgoing values. To perform a legal operation on a secure type value,
the routine unwraps the secure value, performs the intended operation to get a
new value, and then wraps the new value to guarantee security. This gives the
following implementation:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|[{Unwrap S}} end
fun {Pop S E}
case {Unwrap S} of X|S1 then E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end
end

Figure 3.31 illustrates the Pop operation. The box with keyhole represents a
protected value. The key represents the name, which is used internally by Wrap
and Unwrap to lock and unlock a box. Lexical scoping guarantees that wrapping
and unwrapping are only possible inside the stack implementation. Namely, the
identifiers Wrap and Unwrap are only visible inside the local statement. Outside
this scope, they are hidden. Because Unwrap is hidden, there is absolutely no
way to see inside a stack value. Because Wrap is hidden, there is absolutely no
way to “forge” stack values.
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Protecting unbound variables

Sometimes it is useful for a data type to output an unbound variable. For exam-
ple, a stream is a list with an unbound tail. We would like anyone to be able to
read the stream but only the data type implementation to be able to extend it.
Using standard unbound variables this does not work, for example:

S=a|b|c|X

The variable X is not secure since anyone who knows S can bind X.

The problem is that anyone who has a reference to an unbound variable can
bind the variable. One solution is to have a restricted version of the variable that
can only be read, not bound. We call this a read-only view of a variable. We
extend the declarative model with one function:

Operation Description
X Return a read-only view of X

Any attempt to bind a read-only view will block. Any binding of X will be
transferred to the read-only view. To protect a stream, its tail should be a read-
only view.

In the abstract machine, read-only views sit in a new store called the read-
only store. We modify the bind operation so that before binding a variable to
a determined value, it checks whether the variable is in the read-only store. If
so, the bind suspends. When the variable becomes determined, then the bind
operation can continue.

Creating fresh names

To conclude this section, let us see how to create fresh names in the implemen-
tation of the declarative model. How can we guarantee that a name is globally
unique? This is easy for programs running in one process: names can be im-
plemented as successive integers. But this approach fails miserably for open
programs. For them, globally potentially means among all running programs in
all the world’s computers. There are basically two approaches to create names
that are globally unique:

e The centralized approach. There is a name factory somewhere in the world.
To get a fresh name, you need to send a message to this factory and the reply
contains a fresh name. The name factory does not have to be physically
in one place; it can be spread out over many computers. For example,
the IP protocol supposes a unique IP address for every computer in the
world that is connected to the Internet. IP addresses can change over time,
though, e.g., if network address translation is done or dynamic allocation of
[P addresses is done using the DHCP protocol. We therefore complement
the IP address with a high-resolution timestamp giving the creation time
of NewName This gives a unique constant that can be used to implement a
local name factory on each computer.
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o The decentralized approach. A fresh name is just a vector of random bits.
The random bits are generated by an algorithm that depends on enough
external information so that different computers will not generate the same
vector. If the vector is long enough, then the that names are not unique
will be arbitrarily small. Theoretically, the probability is always nonzero,
but in practice this technique works well.

Now that we have a unique name, how do we make sure that it is unforge-
able? This requires cryptographic techniques that are beyond the scope of this
book [166].

3.7.6 A secure declarative dictionary

Now let us see how to make the declarative dictionary secure. It is quite easy.
We can use the same technique as for the stack, namely by using a wrapper and
an unwrapper. Here is the new definition:

local
Wrap Unwrap
{NewWrapper Wrap Unwrap}
% Previous definitions:
fun {NewDictionary2} ... end
fun {Put2 Ds K Value} ... end
fun {CondGet2 Ds K Default} ... end
fun {Domain2 Ds} ... end

fun {NewDictionary}
{Wrap {NewDictionary2}}
end
fun {Put Ds K Value}
{Wrap {Put2 {Unwrap Ds} K Value}}
end
fun {CondGet Ds K Default}
{CondGet2 {Unwrap Ds} K Default}
end
fun {Domain Ds}
{Domain2 {Unwrap Ds}}
end
end

Because Wrap and Unwrap are only known inside the scope of the local |, the
wrapped dictionary cannot be unwrapped by anyone outside of this scope. This
technique works for both the list and tree implementations of dictionaries.

3.7.7 Capabilities and security

We say a computation is secure if it has well-defined and controllable proper-
ties, independent of the existence of other (possibly malicious) entities (either
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computations or humans) in the system [4]. We call these entities “adversaries”.
Security allows to protect both from malicious computations and innocent (but
buggy) computations. The property of being secure is global; “cracks” in a system
can occur at any level, from the hardware to software to the human organiza-
tion housing the system. Making a computer system secure involves not only
computer science but also many aspects of human society [5].

A short, precise, and concrete description of how the system will ensure its
security is called its security policy. Designing, implementing, and verifying se-
curity policies is crucial for building secure systems, but is outside the scope of
this book.

In this section, we consider only a small part of the vast discipline of security,
namely the programming language viewpoint. To implement a security policy, a
system uses security mechanisms. Throughout this book, we will discuss security
mechanisms that are part of a programming language, such as lexical scoping
and names. We will ask ourselves what properties a language must possess in
order to build secure programs, that is, programs that can resist attacks by
adversaries that stay within the language.!” We call such a language a secure
language. Having a secure language is an important requirement for building
secure computer programs. Designing and implementing a secure language is an
important topic in programming language research. It involves both semantic
properties and properties of the implementation.

Capabilities

The protection techniques we have introduced to make secure abstract data types
are special cases of a security concept called a capability. Capabilities are at the
heart of modern research on secure languages. For example the secure language
E hardens references to language entities so that they behave as capabilities [123,
183]. The Wrap/Unwrap pairs we introduced previously are called sealer/unsealer
pairs in E. Instead of using external references to protect values, sealer/unsealer
pairs encrypt and decrypt the values. In this view, the name is used as an
encryption and decryption key.

The capability concept was invented in the 1960’s, in the context of operating
system design. Operating systems have always had to protect users from each
other while still allowing them do their work. Since this early work, it has become
clear that the concept belongs in the programming language and is generally use-
ful for building secure programs [124]. Capabilities can be defined in many ways,
but the following definition is reasonable for a programming language. A capa-
bility is an unforgeable language entity that gives its owner the right to perform
a given set of actions. The set of actions is defined inside the capability and
may change over time. By unforgeable we mean that it is not possible for any
implementation, even one that is intimately connected to the hardware architec-

17Staying withing the language can be guaranteed by always running programs within a
virtual machine that accepts only binaries of legal programs.
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ture such as one in assembly language, to create a capability. In the E literature
this property is summarized by the phrase “connectivity begets connectivity”:
the only way to get a new capability is by being passed it explicitly through an
existing capability [125].

All values of data types are capabilities in this sense, since they give their
owners the ability to do all operations of that type, but no more. An owner
of a language entity is any program fragment that references that entity. For
example, a record R gives its owner the ability to do many operations including
field selection R.F and arity {Arity R} . A procedure P gives its owner the
ability to call P. A name gives its owner the ability to compare its value with
other values. An unbound variable gives its owner the ability to bind it and to
read its value. A read-only variable gives its owner the ability to read its value,
but not to bind it.

New capabilities can be defined during a program’s execution as instances of
ADTs. For the models of this book, the simplest way is to use procedure values.
A reference to a procedure value gives its owner the right to call the procedure,
i.e., to do whatever action the procedure was designed to do. Furthermore, a
procedure reference cannot be forged. In a program, the only way to know the
reference is if it is passed explicitly. The procedure can hide all its sensitive infor-
mation in its external references. For this to work, the language must guarantee
that knowing a procedure does not automatically give one the right to examine
the procedure’s external references!

Principle of least privilege

An important design principle for secure systems is the principle of least privilege:
each entity should be given the least authority (or “privilege”) that is necessary
for it to get its job done. This is also called the principle of least authority (POLA)
or the “need to know” principle. Determining exactly what the least authority is
in all cases is an undecidable problem: there cannot exist an algorithm to solve
it in all cases. This is because the authority depends on what the entity does
during its execution. If we would have an algorithm, it would be powerful enough
to solve the Halting Problem, which has been proved not to have a solution.

In practice, we do not need to know the exact least authority. Sufficient
security can be achieved with approximations to it. The programming language
should make it easy to do these approximations. Capabilities, as we defined
them above, have this ability. With them, it is easy to make the approximation
as precise as is needed. For example, an entity can be given the authority to
create a file with a given name and maximum size in a given directory. For files,
coarser granularities are usually enough, such as the authority to create a file in
a given directory. Capabilities can handle both the fine and coarse-grained cases
easily.

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



3.8 Nondeclarative needs

213

Capabilities and explicit state

Declarative capabilities, i.e., capabilities written in a declarative computation
model, lack one crucial property to make them useful in practice. The set of
actions they authorize cannot be changed over time. In particular, none of their
actions can be revoked. To make a capability revocable, the computation model
needs an additional concept, namely explicit state. This is explained in Sec-
tion 6.4.3.

3.8 Nondeclarative needs

Declarative programming, because of its “pure functional” view of programming,
is somewhat detached from the real world, in which entities have memories (state)
and can evolve independently and proactively (concurrency). To connect a declar-
ative program to the real world, some nondeclarative operations are needed. This
section talks about two classes of such operations: file I/O (input/output) and
graphical user interfaces. A third class of operations, standalone compilation, is
given in Section 3.9.

Later on we will see that the nondeclarative operations of this section fit into
more general computation models than the declarative one, in particular stateful
and concurrent models. In a general sense, this section ties in with the discussion
on the limits of declarative programming in Section 4.7. Some of the operations
manipulate state that is external to the program; this is just a special case of the
system decomposition principle explained in Section 6.7.2.

The new operations introduced by this section are collected in modules. A
module is simply a record that groups together related operations. For exam-
ple, the module List groups many list operations, such as List.append and
List.member  (which can also be referenced as Append and Member). This sec-
tion introduces the three modules File (for file I/O of text), QTk (for graphical
user interfaces), and Pickle (for file I/O of any values). Some of these modules
(like Pickle ) are immediately known by Mozart when it starts up. The other
modules can be loaded by calling Module.link . In what follows, we show how
to do this for File and QTk More information about modules and how to use
them is given later, in Section 3.9.

3.8.1 Text input/output with a file

A simple way to interface declarative programming with the real world is by
using files. A file is a sequence of values that is stored external to the program
on a permanent storage medium such as a hard disk. A text file is a sequence
of characters. In this section, we show how to read and write text files. This is
enough for using declarative programs in a practical way. The basic pattern of
access is simple:
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Input file reed compute function write output file

We use the module File , which can be found on the book’s Web site. Later on
we will do more sophisticated file operations, but this is enough for now.

Loading the module File

The first step is to load the module File into the system, as explained in Ap-
pendix A.1.2. We assume that you have a compiled version of the module File |
in the file File.ozf. Then execute the following:

declare [File]={Module.link [ " File.ozf "]}

This calls Module.link  with a list of paths to compiled modules. Here there is
just one. The module is loaded, linked it into the system, initialized, and bound
to File . Now we are ready to do file operations.

Reading a file

The operation File.readList reads the whole content of the file into a string:
L={File.readList "foo.txt"}

This example reads the file foo.txt into L. We can also write this as:
L={File.readList “foo.txt "}

Remember that "foo.txt" is a string (a list of character codes) and “ foo.txt

is an atom (a constant with a print representation). The file name can be rep-
resented in both ways. There is a third way to represent file names: as virtual
strings. A wirtual string is a tuple with label “#" that represents a string. We
could therefore just as well have entered the following:

L={File.readList foo# T #xt}

The tuple foo# ~ .~ #txt , which we can also write as " #” (foo ~.  txt) , repre-
sents the string "foo.txt" . Using virtual strings avoids the need to do explicit
string concatenations. All Mozart built-in operations that expect strings will
work also with virtual strings. All three ways of loading foo.txt have the same
effect. They bind L to a list of the character codes in the file foo.txt.

Files can also be referred to by URL. A URL gives a convenient global address
for files since it is widely supported through the World-Wide Web infrastructure.
It is just as easy to read a file through its URL as through its file name:

L={File.readList " http://www.mozart-oz.org/features.html "1

That’s all there is to it. URLs can only be used to read files, but not to write
files. This is because URLs are handled by Web servers, which are usually set up
to allow only reading.

18To be precise, the module is loaded lazily: it will only actually be loaded the first time that
we use it.
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Mozart has other operations that allow to read a file either incrementally or
lazily, instead of all at once. This is important for very large files that do not fit
into the memory space of the Mozart process. To keep things simple for now, we
recommend that you read files all at once. Later on we will see how to read a file
incrementally.

Writing a file

Writing a file is usually done incrementally, by appending one string at a time

to the file. The module File provides three operations: File.writeOpen to
open the file, which must be done first, File.write to append a string to the
file, and File.writeClose to close the file, which must be done last. Here is an
example:

{File.writeOpen “foo.txt "}

{File.write " This comes in the file\n "}

{File.write " The result of 43*43 is T #43*43# " \n "}

{File.write "Strings are ok too.\n"}
{File.writeClose}

After these operations, the file foo.txt’ has three lines of text, as follows:

This comes in the file.
The result of 43%43 is 1849.
Strings are ok too.

Example execution

In Section 3.7.3 we defined the function WordFreq that calculates the word fre-
quencies in a string. We can use this function to calculate word frequencies and
store them in a file:

% 1. Read input file
L={File.readList " book.raw "}
% 2. Compute function
D={WordFreq L}

% 3. Write output file

{File.writeOpen “word.freq "}
for X in {Domain D} do

{File.write {Get D X}# ~ occurrences of word THX#E \n "}
end

{File.writeClose}

Section 3.7.3 gives some timing figures of this code using different dictionary
implementations.

Copyright (© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



216

Declarative Programming Techniques

3.8.2 Text input/output with a graphical user interface

The most direct way to interface programs with a human user is through a graph-
ical user interface. This section shows a simple yet powerful way to define graphi-
cal user interfaces, namely by means of concise, mostly declarative specifications.
This is an excellent example of a descriptive declarative language, as explained
in Section 3.1. The descriptive language is recognized by the QTk module of the
Mozart system. The user interface is specified as a nested record, supplemented
with objects and procedures. (Objects are introduced in Chapter 7. For now,
you can consider them as procedures with internal state, like the examples of
Chapter 1.)

This section shows how to build user interfaces to input and output textual
data to a window. This is enough for many declarative programs. We give a brief
overview of the QTk module, just enough to build these user interfaces. Later
on we will build more sophisticated graphical user interfaces. Chapter 10 gives a
fuller discussion of declarative user interface programming in general and of its
realization in QTk.

Declarative specification of widgets

A window on the screen consists of a set of widgets. A widget is a rectangular
area in the window that has a particular interactive behavior. For example, some
widgets can display text or graphic information, and other widgets can accept
user interaction such as keyboard input and mouse clicks. We specify each widget
declaratively with a record whose label and features define the widget type and
initial state. We specify the window declaratively as a nested record (i.e., a tree)
that defines the logical structure of the widgets in the window. Here are the five
widgets we will use for now:

e The label widget can display a text. The widget is specified by the record:
label(text:VS)
where VSis a virtual string.

e The text widget is used to display and enter large quantities of text. It can
use scrollbars to display more text than can fit on screen. With a vertical
(i.e., top-down) scrollbar, the widget is specified by the record:

text(handle:H tdscrollbar: true )

When the window is created, the variable Hwill be bound to an object used
to control the widget. We call such an object a handler. You can consider
the object as a one-argument procedure: {H set(VS)} displays a text and
{H get(VS)} reads the text.

e The button widget specifies a button and an action to execute when the
button is pressed. The widget is specified by the record:
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St Simple text 170 interface < 0
Clicking on "Do It" after typing this
11l show it in the "Output:" field.

Input:

Clicking on "Do It" after typing this
will show it in the "Output:" field.

Output:
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Figure 3.32: A simple graphical 1/O interface for text

button(text:VS action:P)

where VS is a virtual string and P is a zero-argument procedure. {P} is
called whenever the button is pressed.!® For each window, all its actions
are executed sequentially.

e The td (top-down) and Ir (left-right) widgets specify an arrangement of
other widgets in top-down or left-right order:

Ir(W1 W2 ... Wn)
td(W1l W2 ... Wn)

where W1 W2 ..., Wnare other widget specifications.

Declarative specification of resize behavior

When a window is resized, the widgets inside should behave properly, i.e., either
changing size or staying the same size, depending on what the interface should do.
We specify each widget’s resize behavior declaratively, by means of an optional
glue feature in the widget’s record. The glue feature indicates whether the
widget’s borders should or should not be “glued” to its enclosing widget. The
glue feature’s argument is an atom consisting of any combination of the four
characters n (north), s (south), w (west), e (east), indicating for each direction
whether the border should be glued or not. Here are some examples:

e No glue. The widget keeps its natural size and is centered in the space
allotted to it, both horizontally and vertically.

e glue:nswe glues to all four borders, stretching to fit both horizontally and
vertically.

e glue:we glues horizontally left and right, stretching to fit. Vertically, the
widget is not stretched but centered in the space allotted to it.

19To be precise, whenever the left mouse button is both clicked and released while the mouse
is over the button. This allows the user to correct any mistaken click on the button.
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e glue:w glues to the left edge and does not stretch.

e glue:wns glues vertically top and bottom, stretching to fit vertically, and
glues to the left edge, not stretching horizontally.

Loading the module QTk

The first step is to load the QTk module into the system. Since QTkis part of the
Mozart Standard Library, it suffices to give the right path name:

declare [QTk]={Module.link [ " x-0z://system/wp/QTk.ozf 1

Now that QTk is loaded, we can use it to build interfaces according to the speci-
fications of the previous section.

Building the interface

The QTk module has a function QTk.build  that takes an interface specification,
which is just a nested record of widgets, and builds a window containing these
widgets. Let us build a simple interface with one button that displays ouch in
the browser whenever the button is clicked:

D=td(button(text:"Press me"

action: proc {$} {Browse ouch} end))
W={QTk.build D}
{W show}

The record D always has to start with td or Ir | even if the window has just one
widget. QTk.build returns an object Wthat represents the window. The window
starts out being hidden. It can be displayed or hidden again by calling {W show}
or {W hide} . Here is a bigger example that implements a complete text 1/O
interface:

declare
In Out
Al=proc {$} X in {In get(X)} {Out set(X)} end
A2=proc {$} {W close} end
D=td(title:"Simple text I/O interface"
Ir(label(text:"Input:")

text(handle:In tdscrollbar: true glue:nswe)
glue:nswe)

Ir(label(text:"Output:™)
text(handle:Out tdscrollbar: true glue:nswe)
glue:nswe)

Ir(button(text:"Do It* action:Al glue:nswe)
button(text:"Quit" action:A2 glue:nswe)
glue:we))

W={QTk.build D}
{W show}
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At first glance, this may seem complicated, but look again: there are six widgets
(two label |, two text , two button ) arranged with td and Ir widgets. The
QTk.build  function takes the description D. It builds the window of Figure 3.32
and creates the handler objects In and Out. Compare the record D with Fig-
ure 3.32 to see how they correspond.

There are two action procedures, Al and A2, one for each button. The action
Al is attached to the “Do It” button. Clicking on the button calls Al, which
transfers text from the first text widget to the second text widget. This works as
follows. The call {In get(X)} gets the text of the first text widget and binds
it to X. Then {Out set(X)} sets the text in the second text widget to X. The
action A2 is attached to the “Quit” button. It calls {W close} , which closes the
window permanently.

Putting nswe glue almost everywhere allows the window to behavior properly
when resized. The Ir  widget with the two buttons has we glue only, so that the
buttons do not expand vertically. The label widgets have no glue, so they have
fixed sizes. The td widget at the top level needs no glue since we assume it is
always glued to its window.

3.8.3 Stateless data I/O with files

Input/output of a string is simple, since a string consists of characters that can
be stored directly in a file. What about other values? It would be a great help to
the programmer if it would be possible to save any value to a file and to load it
back later. The System module Pickle provides exactly this ability. It can save
and load any complete value:

{Pickle.save X FN} % Save X in file FN
{Pickle.load FNURL ?X} % Load X from file (or URL) FNURL

All data structures used in declarative programming can be saved and loaded ex-
cept for those containing unbound variables. For example, consider this program
fragment:

declare
fun {Fact N}
if N==0 then 1 else N*Fact N-1} end
end
F100={Fact 100}
F100Genl=fun {$} F100 end
F100Gen2=fun {$} {Fact 100} end
FNGenl=fun {$ N} F={Fact N} in fun {$} F end end
FNGen2=fun {$ N} fun {$} {Fact N} end end

F100 is a (rather big) integer; the four other entities are functions. The following
operation saves the four functions to a file:

{Pickle.save [F100Genl F100Gen2 FNGenl FNGen2] " factfile "}
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To be precise, this saves a value consisting of list of four elements in the file
factfile. In this example, all elements are functions. The functions have been
chosen to illustrate various degrees of delayed calculation. The first two return
the result of calculating 100!. The first, F100Gen1, knows the integer and returns
it directly, and the second, F100Gen2, calculates the value each time it is called.
The third and fourth, when called with an integer argument n, return a function
that when itself called, returns n!. The third, FNGenl, calculates n! when called,
so the returned function just returns a known integer. The fourth, FNGen2 does
no calculation but lets the returned function calculate n! when called.
To use the contents of factfile, it must first be loaded:

declare
[F1 F2 F3 F4]={Pickle.load " factfile "}
in
{Browse {F1}}
{Browse {F2}}
{Browse {{F3 100}}}
{Browse {{F4 100}}}

This displays 100! four times. Of course, the following is also possible:

declare F1 F2 F3 F4 in

{Browse {F1}}

{Browse {F2}}

{Browse {{F3 100}}}

{Browse {{F4 100}}}

[F1 F2 F3 F4]={Pickle.load " factfile "1

After the file is loaded, this displays exactly the same as before. This illustrates
yet again how dataflow makes it possible to use a variable before binding it.

We emphasize that the loaded value is ezactly the same as the one that was
saved. There is no difference at all between them. This is true for all possible
values: numbers, records, procedures, names, atoms, lists, and so on, including
other values that we will see later on in the book. Executing this on one process:

% First statement (defines X)
{Pickle.save X “myfile "}

and then this on a second process:

X={Pickle.load “myfile "}
% Second statement (uses X)

is rigorously identical to executing the following on a third process:

% First statement (defines X)
{Pickle.save X “myfile "}
_={Pickle.load " myfile "}

% Second statement (uses X)

If the calls to Pickle are removed, like this:
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% First statement (defines X)
% Second statement (uses X)

then there are two minor differences:

e The first case creates and reads the file “myfile “~. The second case does
not.

e The first case raises an exception if there was a problem in creating or
reading the file.

3.9 Program design in the small

Now that we have seen many programming techniques, the next logical step is
to use them to solve problems. This step is called program design. 1t starts
from a problem we want to solve (usually explained in words, sometimes not very
precisely) gives the high-level structure of the program, i.e., what programming
techniques we need to use and how they are connected together, and ends up
with a complete program that solves the problem.

For program design, there is an important distinction between “programming
in the small” and “programming in the large”. We will call the resulting pro-
grams “small programs” and “large programs”. The distinction has nothing to
do with the program’s size, but rather with how many people were involved in its
development. Small programs are written by one person over a short period of
time. Large programs are written by more than one person or over a long period
of time. The same person now and one year from now should be considered as
two people, since the person will forget many details over a year. This section
gives an introduction to programming in the small; we leave programming in the
large to Section 6.7.

3.9.1 Design methodology

Assume we have a problem that can be solved by writing a small program. Let us
see how to design the program. We recommend the following design methodology,
which is a mixture of creativity and rigorous thinking:

e Informal specification. We start by writing down as precisely as we can
what the program should do: what it’s inputs and outputs are and how
the outputs relate to the inputs. This description is called an nformal
specification. Even though it is precise, we call it “informal” because it is
written in English. “Formal” specifications are written in a mathematical
notation.

e Examples. To make the specification perfectly clear, it is always a good
idea to imagine examples of what the program does in particular cases. The
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examples should “stress” the program: use it in boundary conditions and
in the most unexpected ways we can imagine.

e Exploration. To find out what programming techniques we will need, a
good way is to use the interactive interface to experiment with program
fragments. The idea is to write small operations that we think might be
needed for the program. We use the operations that the system already
provides as a basis. This step gives us a clearer view of what the program’s
structure should be.

e Structure and coding. Now we can lay out the program’s structure. We
make a rough outline of the operations needed to calculate the outputs from
the inputs and how they fit together. We then fill in the blanks by writing
the actual program code. The operations should be simple: each operation
should do just one thing. To improve the structure we can group related
operations in modules.

e Testing and reasoning. Finally, we have to verify that our program
does the right thing. We try it on a series of test cases, including the
examples we came up with before. We correct errors until the program
works well. We can also reason about the program and its complexity, using
the formal semantics for parts that are not clear. Testing and reasoning are
complementary: it is important to do both to get a high-quality program.

These steps are not meant to be obligatory, but rather to serve as inspiration.
Feel free to adapt them to your own circumstances. For example, when imagining
examples it can be clear that the specification has to be changed. However, take
care never to forget the most important step, which is testing.

3.9.2 Example of program design

To illustrate these steps, let us retrace the development of the word frequency
application of Section 3.7.3. Here is a first attempt at an informal specification:

Given a file name, the application opens a window and displays a list
of pairs, where each pair consists of a word and an integer giving the
number of times the word occurs in the file.

Is this specification precise enough? What about a file containing a word that is
not valid English or a file containing non-Ascii characters? Our specification is
not precise enough: it does not define what a “word” is. To make it more precise
we have to know the purpose of the application. Say that we just want to get a
general idea of word frequencies, independent of any particular language. Then
we can define a word simply as:

A “word” is a maximal contiguous sequence of letters and digits.

Copyright (©) 2001-3 by P. Van Roy and S. Haridi. All rights reserved.



3.9 Program design in the small

223

This means that words are separated by at least one character that is not a letter
or a digit. This accepts a word that is not valid English but does not accept words
containing non-Ascii characters. Is this good enough? What about words with a
hyphen (such as “true-blue”) or idiomatic expressions that act as units (such as
“trial and error”)? In the interest of simplicity, let us reject these for now. But
we may have to change the specification later to accept them, depending on how
we use the word frequency application.

Now we have arrived at our specification. Note the essential role played by
examples. They are important signposts on the way to a precise specification.
The examples were expressly designed to test the limits of the specification.

The next step is to design the program’s structure. The appropriate struc-
ture seems to be a pipeline: first read the file into a list of characters and then
convert the list of characters into a list of words, where a word is represented as
a character string. To count the words we need a data structure that is indexed
by words. The declarative dictionary of Section 3.7.2 would be ideal, but it is
indexed by atoms. Luckily, there is an operation to convert character strings to
atoms: StringToAtom  (see Appendix B). With this we can write our program.
Figure 3.29 gives the heart: a function WordFreq that takes a list of characters
and returns a dictionary. We can test this code on various examples, and espe-
cially on the examples we used to write the specification. To this we will add the
code to read the file and display the output in a window; for this we use the file
operations and graphical user interface operations of Section 3.8. It is important
to package the application cleanly, as a software component. This is explained in
the next two sections.

3.9.3 Software components

What is a good way to organize a program? One could write the program as
one big monolithic whole, but this can be confusing. A better way is to partition
the program into logical units, each of which implements a set of operations that
are related in some way. Each logical unit has two parts, an interface and an
implementation. Only the interface is visible from outside the logical unit. A
logical unit may use others as part of its implementation.

A program is then simply a directed graph of logical units, where an edge
between two logical units means that the first needs the second for its imple-
mentation. Popular usage calls these logical units “modules” or “components”,
without defining precisely what these words mean. This section introduces the
basic concepts, defines them precisely, and shows how they can be used to help
design small declarative programs. Section 6.7 explains how these ideas can be
used to help design large programs.
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(statement) ::= functor  (variable)
[ import  { (variable) [ at (atom) |
|}(v:]ariable) “(7 { ((atom) | (int)) [ " : " (variable) ] }+ ")~
_l’_
[ export { [ ({atom) | (int)) ": " ] (variable) }+ ]
define { (declarationPart) }+ [in (statement) | end

Table 3.7: Functor syntax

Modules and functors

We call module a part of a program that groups together related operations into
an entity that has an interface and an implementation. In this book, we will
implement modules in a simple way:

e The module’s interface is a record that groups together related language en-
tities (usually procedures, but anything is allowed including classes, objects,
etc.).

e The module’s implementation is a set of language entities that are accessible
by the interface operations but hidden from the outside. The implementa-
tion is hidden using lexical scoping.

We will consider module specifications as entities separate from modules. A
module specification is a kind of template that creates a module each time it is
instantiated. A module specification is sometimes called a software component.
Unfortunately, the term “software component” is widely used with many different
meanings [187]. To avoid any confusion in this book, we will call our module
specifications functors. A functor is a function whose arguments are the modules
it needs and whose result is a new module. (To be precise, the functor takes
module interfaces as arguments, creates a new module, and returns that module’s
interface!) Because of the functor’s role in structuring programs, we provide it
as a linguistic abstraction. A functor has three parts: an import part, which
specifies what other modules it needs, an export part, which specifies the module
interface, and a define parts, which gives the module implementation including
its initialization code. The syntax for functor declarations allows to use them as
either statements or expressions, like the syntax for procedures. Table 3.7 gives
the syntax of functor declarations as statements.

In the terminology of software engineering, a software component is a unit of
independent deployment, a unit of third-party development, and has no persistent
state (following the definition given in [187]). Functors satisfy this definition and
are therefore a kind of software component. With this terminology, a module is a
component instance; it is the result of installing a functor in a particular module
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environment. The module environment consists of a set of modules, each of which
may have an execution state.

Functors in the Mozart system are compilation units. That is, the system has
support for handling functors in files, both as source code (i.e., human-readable
text) and object code (i.e., compiled form). Source code can be compiled, or
translated, into object code. This makes it easy to use functors to exchange
software between developers. For example, the Mozart system has a library, called
MOGUL (for Mozart Global User Library), in which third-party developers can
put any kind of information. Usually, they put in functors and applications.

An application is standalone if it can be run 