
Concepts, Techniques, and Models
of Computer Programming

PETER VAN ROY1

Université catholique de Louvain (at Louvain-la-Neuve)
Swedish Institute of Computer Science

SEIF HARIDI2

Royal Institute of Technology (KTH)
Swedish Institute of Computer Science

June 5, 2003

1Email: pvr@info.ucl.ac.be, Web: http://www.info.ucl.ac.be/~pvr
2Email: seif@it.kth.se, Web: http://www.it.kth.se/~seif

ii

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Contents

List of Figures xvi

List of Tables xxiv

Preface xxvii

Running the example programs xliii

I Introduction 1

1 Introduction to Programming Concepts 3
1.1 A calculator . 3
1.2 Variables . 4
1.3 Functions . 4
1.4 Lists . 6
1.5 Functions over lists . 9
1.6 Correctness . 11
1.7 Complexity . 12
1.8 Lazy evaluation . 13
1.9 Higher-order programming . 15
1.10 Concurrency . 16
1.11 Dataflow . 17
1.12 State . 18
1.13 Objects . 19
1.14 Classes . 20
1.15 Nondeterminism and time . 21
1.16 Atomicity . 23
1.17 Where do we go from here . 24
1.18 Exercises . 24

II General Computation Models 29

2 Declarative Computation Model 31

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

iv CONTENTS

2.1 Defining practical programming languages 33

2.1.1 Language syntax . 33

2.1.2 Language semantics . 38

2.2 The single-assignment store . 44

2.2.1 Declarative variables . 44

2.2.2 Value store . 44

2.2.3 Value creation . 45

2.2.4 Variable identifiers . 46

2.2.5 Value creation with identifiers 47

2.2.6 Partial values . 47

2.2.7 Variable-variable binding 48

2.2.8 Dataflow variables . 49

2.3 Kernel language . 50

2.3.1 Syntax . 50

2.3.2 Values and types . 51

2.3.3 Basic types . 53

2.3.4 Records and procedures 54

2.3.5 Basic operations . 56

2.4 Kernel language semantics . 57

2.4.1 Basic concepts . 57

2.4.2 The abstract machine . 61

2.4.3 Non-suspendable statements 64

2.4.4 Suspendable statements 67

2.4.5 Basic concepts revisited 69

2.4.6 Last call optimization . 74

2.4.7 Active memory and memory management 75

2.5 From kernel language to practical language 80

2.5.1 Syntactic conveniences . 80

2.5.2 Functions (the fun statement) 85

2.5.3 Interactive interface (the declare statement) 88

2.6 Exceptions . 91

2.6.1 Motivation and basic concepts 91

2.6.2 The declarative model with exceptions 93

2.6.3 Full syntax . 95

2.6.4 System exceptions . 97

2.7 Advanced topics . 98

2.7.1 Functional programming languages 98

2.7.2 Unification and entailment 100

2.7.3 Dynamic and static typing 106

2.8 Exercises . 108

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS v

3 Declarative Programming Techniques 113
3.1 What is declarativeness? . 117

3.1.1 A classification of declarative programming 117
3.1.2 Specification languages . 119
3.1.3 Implementing components in the declarative model 119

3.2 Iterative computation . 120
3.2.1 A general schema . 120
3.2.2 Iteration with numbers . 122
3.2.3 Using local procedures . 122
3.2.4 From general schema to control abstraction 125

3.3 Recursive computation . 126
3.3.1 Growing stack size . 127
3.3.2 Substitution-based abstract machine 128
3.3.3 Converting a recursive to an iterative computation 129

3.4 Programming with recursion . 130
3.4.1 Type notation . 131
3.4.2 Programming with lists . 132
3.4.3 Accumulators . 142
3.4.4 Difference lists . 144
3.4.5 Queues . 149
3.4.6 Trees . 153
3.4.7 Drawing trees . 161
3.4.8 Parsing . 163

3.5 Time and space efficiency . 169
3.5.1 Execution time . 169
3.5.2 Memory usage . 175
3.5.3 Amortized complexity . 177
3.5.4 Reflections on performance 178

3.6 Higher-order programming . 180
3.6.1 Basic operations . 180
3.6.2 Loop abstractions . 186
3.6.3 Linguistic support for loops 190
3.6.4 Data-driven techniques . 193
3.6.5 Explicit lazy evaluation . 196
3.6.6 Currying . 196

3.7 Abstract data types . 197
3.7.1 A declarative stack . 198
3.7.2 A declarative dictionary 199
3.7.3 A word frequency application 201
3.7.4 Secure abstract data types 204
3.7.5 The declarative model with secure types 205
3.7.6 A secure declarative dictionary 210
3.7.7 Capabilities and security 210

3.8 Nondeclarative needs . 213

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

vi CONTENTS

3.8.1 Text input/output with a file 213
3.8.2 Text input/output with a graphical user interface 216
3.8.3 Stateless data I/O with files 219

3.9 Program design in the small . 221
3.9.1 Design methodology . 221
3.9.2 Example of program design 222
3.9.3 Software components . 223
3.9.4 Example of a standalone program 228

3.10 Exercises . 233

4 Declarative Concurrency 237
4.1 The data-driven concurrent model 239

4.1.1 Basic concepts . 241
4.1.2 Semantics of threads . 243
4.1.3 Example execution . 246
4.1.4 What is declarative concurrency? 247

4.2 Basic thread programming techniques 251
4.2.1 Creating threads . 251
4.2.2 Threads and the browser 251
4.2.3 Dataflow computation with threads 252
4.2.4 Thread scheduling . 256
4.2.5 Cooperative and competitive concurrency 259
4.2.6 Thread operations . 260

4.3 Streams . 261
4.3.1 Basic producer/consumer 261
4.3.2 Transducers and pipelines 263
4.3.3 Managing resources and improving throughput 265
4.3.4 Stream objects . 270
4.3.5 Digital logic simulation . 271

4.4 Using the declarative concurrent model directly 277
4.4.1 Order-determining concurrency 277
4.4.2 Coroutines . 279
4.4.3 Concurrent composition 281

4.5 Lazy execution . 283
4.5.1 The demand-driven concurrent model 286
4.5.2 Declarative computation models 290
4.5.3 Lazy streams . 293
4.5.4 Bounded buffer . 295
4.5.5 Reading a file lazily . 297
4.5.6 The Hamming problem . 298
4.5.7 Lazy list operations . 299
4.5.8 Persistent queues and algorithm design 303
4.5.9 List comprehensions . 307

4.6 Soft real-time programming . 309

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS vii

4.6.1 Basic operations . 309
4.6.2 Ticking . 311

4.7 Limitations and extensions of declarative programming 314
4.7.1 Efficiency . 314
4.7.2 Modularity . 315
4.7.3 Nondeterminism . 319
4.7.4 The real world . 322
4.7.5 Picking the right model 323
4.7.6 Extended models . 323
4.7.7 Using different models together 325

4.8 The Haskell language . 327
4.8.1 Computation model . 328
4.8.2 Lazy evaluation . 328
4.8.3 Currying . 329
4.8.4 Polymorphic types . 330
4.8.5 Type classes . 331

4.9 Advanced topics . 332
4.9.1 The declarative concurrent model with exceptions 332
4.9.2 More on lazy execution . 334
4.9.3 Dataflow variables as communication channels 337
4.9.4 More on synchronization 339
4.9.5 Usefulness of dataflow variables 340

4.10 Historical notes . 343
4.11 Exercises . 344

5 Message-Passing Concurrency 353
5.1 The message-passing concurrent model 354

5.1.1 Ports . 354
5.1.2 Semantics of ports . 355

5.2 Port objects . 357
5.2.1 The NewPortObject abstraction 358
5.2.2 An example . 359
5.2.3 Reasoning with port objects 360

5.3 Simple message protocols . 361
5.3.1 RMI (Remote Method Invocation) 361
5.3.2 Asynchronous RMI . 364
5.3.3 RMI with callback (using thread) 364
5.3.4 RMI with callback (using record continuation) 366
5.3.5 RMI with callback (using procedure continuation) 367
5.3.6 Error reporting . 367
5.3.7 Asynchronous RMI with callback 368
5.3.8 Double callbacks . 369

5.4 Program design for concurrency 370
5.4.1 Programming with concurrent components 370

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

viii CONTENTS

5.4.2 Design methodology . 372
5.4.3 List operations as concurrency patterns 373
5.4.4 Lift control system . 374
5.4.5 Improvements to the lift control system 383

5.5 Using the message-passing concurrent model directly 385
5.5.1 Port objects that share one thread 385
5.5.2 A concurrent queue with ports 387
5.5.3 A thread abstraction with termination detection 390
5.5.4 Eliminating sequential dependencies 393

5.6 The Erlang language . 394
5.6.1 Computation model . 394
5.6.2 Introduction to Erlang programming 395
5.6.3 The receive operation . 398

5.7 Advanced topics . 402
5.7.1 The nondeterministic concurrent model 402

5.8 Exercises . 407

6 Explicit State 413
6.1 What is state? . 416

6.1.1 Implicit (declarative) state 416
6.1.2 Explicit state . 417

6.2 State and system building . 418
6.2.1 System properties . 419
6.2.2 Component-based programming 420
6.2.3 Object-oriented programming 421

6.3 The declarative model with explicit state 421
6.3.1 Cells . 422
6.3.2 Semantics of cells . 424
6.3.3 Relation to declarative programming 425
6.3.4 Sharing and equality . 426

6.4 Abstract data types . 427
6.4.1 Eight ways to organize ADTs 427
6.4.2 Variations on a stack . 429
6.4.3 Revocable capabilities . 433
6.4.4 Parameter passing . 434

6.5 Stateful collections . 438
6.5.1 Indexed collections . 439
6.5.2 Choosing an indexed collection 441
6.5.3 Other collections . 442

6.6 Reasoning with state . 444
6.6.1 Invariant assertions . 444
6.6.2 An example . 445
6.6.3 Assertions . 448
6.6.4 Proof rules . 449

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS ix

6.6.5 Normal termination . 452
6.7 Program design in the large . 453

6.7.1 Design methodology . 454
6.7.2 Hierarchical system structure 456
6.7.3 Maintainability . 461
6.7.4 Future developments . 464
6.7.5 Further reading . 466

6.8 Case studies . 467
6.8.1 Transitive closure . 467
6.8.2 Word frequencies (with stateful dictionary) 475
6.8.3 Generating random numbers 476
6.8.4 “Word of Mouth” simulation 481

6.9 Advanced topics . 484
6.9.1 Limitations of stateful programming 484
6.9.2 Memory management and external references 485

6.10 Exercises . 487

7 Object-Oriented Programming 493
7.1 Motivations . 495

7.1.1 Inheritance . 495
7.1.2 Encapsulated state and inheritance 497
7.1.3 Objects and classes . 497

7.2 Classes as complete ADTs . 498
7.2.1 An example . 499
7.2.2 Semantics of the example 500
7.2.3 Defining classes . 501
7.2.4 Initializing attributes . 503
7.2.5 First-class messages . 504
7.2.6 First-class attributes . 507
7.2.7 Programming techniques 507

7.3 Classes as incremental ADTs . 507
7.3.1 Inheritance . 508
7.3.2 Static and dynamic binding 511
7.3.3 Controlling encapsulation 512
7.3.4 Forwarding and delegation 517
7.3.5 Reflection . 522

7.4 Programming with inheritance . 524
7.4.1 The correct use of inheritance 524
7.4.2 Constructing a hierarchy by following the type 528
7.4.3 Generic classes . 531
7.4.4 Multiple inheritance . 533
7.4.5 Rules of thumb for multiple inheritance 539
7.4.6 The purpose of class diagrams 539
7.4.7 Design patterns . 540

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

x CONTENTS

7.5 Relation to other computation models 543
7.5.1 Object-based and component-based programming 543
7.5.2 Higher-order programming 544
7.5.3 Functional decomposition versus type decomposition . . . 547
7.5.4 Should everything be an object? 548

7.6 Implementing the object system 552
7.6.1 Abstraction diagram . 552
7.6.2 Implementing classes . 554
7.6.3 Implementing objects . 555
7.6.4 Implementing inheritance 556

7.7 The Java language (sequential part) 556
7.7.1 Computation model . 557
7.7.2 Introduction to Java programming 558

7.8 Active objects . 563
7.8.1 An example . 564
7.8.2 The NewActive abstraction 564
7.8.3 The Flavius Josephus problem 565
7.8.4 Other active object abstractions 568
7.8.5 Event manager with active objects 569

7.9 Exercises . 574

8 Shared-State Concurrency 577
8.1 The shared-state concurrent model 581
8.2 Programming with concurrency 581

8.2.1 Overview of the different approaches 581
8.2.2 Using the shared-state model directly 585
8.2.3 Programming with atomic actions 588
8.2.4 Further reading . 589

8.3 Locks . 590
8.3.1 Building stateful concurrent ADTs 592
8.3.2 Tuple spaces (“Linda”) . 594
8.3.3 Implementing locks . 599

8.4 Monitors . 600
8.4.1 Bounded buffer . 602
8.4.2 Programming with monitors 605
8.4.3 Implementing monitors . 605
8.4.4 Another semantics for monitors 607

8.5 Transactions . 608
8.5.1 Concurrency control . 610
8.5.2 A simple transaction manager 613
8.5.3 Transactions on cells . 616
8.5.4 Implementing transactions on cells 619
8.5.5 More on transactions . 623

8.6 The Java language (concurrent part) 625

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS xi

8.6.1 Locks . 626

8.6.2 Monitors . 626

8.7 Exercises . 626

9 Relational Programming 633

9.1 The relational computation model 635

9.1.1 The choice and fail statements 635

9.1.2 Search tree . 636

9.1.3 Encapsulated search . 637

9.1.4 The Solve function . 638

9.2 Further examples . 639

9.2.1 Numeric examples . 639

9.2.2 Puzzles and the n-queens problem 641

9.3 Relation to logic programming . 644

9.3.1 Logic and logic programming 644

9.3.2 Operational and logical semantics 647

9.3.3 Nondeterministic logic programming 650

9.3.4 Relation to pure Prolog 652

9.3.5 Logic programming in other models 653

9.4 Natural language parsing . 654

9.4.1 A simple grammar . 655

9.4.2 Parsing with the grammar 656

9.4.3 Generating a parse tree . 656

9.4.4 Generating quantifiers . 657

9.4.5 Running the parser . 660

9.4.6 Running the parser “backwards” 660

9.4.7 Unification grammars . 661

9.5 A grammar interpreter . 662

9.5.1 A simple grammar . 663

9.5.2 Encoding the grammar . 663

9.5.3 Running the grammar interpreter 664

9.5.4 Implementing the grammar interpreter 665

9.6 Databases . 667

9.6.1 Defining a relation . 668

9.6.2 Calculating with relations 669

9.6.3 Implementing relations . 671

9.7 The Prolog language . 673

9.7.1 Computation model . 674

9.7.2 Introduction to Prolog programming 676

9.7.3 Translating Prolog into a relational program 681

9.8 Exercises . 684

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xii CONTENTS

III Specialized Computation Models 687

10 Graphical User Interface Programming 689
10.1 Basic concepts . 691
10.2 Using the declarative/procedural approach 692

10.2.1 Basic user interface elements 693
10.2.2 Building the graphical user interface 694
10.2.3 Declarative geometry . 696
10.2.4 Declarative resize behavior 697
10.2.5 Dynamic behavior of widgets 698

10.3 Case studies . 699
10.3.1 A simple progress monitor 699
10.3.2 A simple calendar widget 700
10.3.3 Automatic generation of a user interface 703
10.3.4 A context-sensitive clock 707

10.4 Implementing the GUI tool . 712
10.5 Exercises . 712

11 Distributed Programming 713
11.1 Taxonomy of distributed systems 716
11.2 The distribution model . 718
11.3 Distribution of declarative data 720

11.3.1 Open distribution and global naming 720
11.3.2 Sharing declarative data 722
11.3.3 Ticket distribution . 723
11.3.4 Stream communication . 725

11.4 Distribution of state . 726
11.4.1 Simple state sharing . 726
11.4.2 Distributed lexical scoping 728

11.5 Network awareness . 729
11.6 Common distributed programming patterns 730

11.6.1 Stationary and mobile objects 730
11.6.2 Asynchronous objects and dataflow 732
11.6.3 Servers . 734
11.6.4 Closed distribution . 737

11.7 Distribution protocols . 738
11.7.1 Language entities . 738
11.7.2 Mobile state protocol . 740
11.7.3 Distributed binding protocol 742
11.7.4 Memory management . 743

11.8 Partial failure . 744
11.8.1 Fault model . 745
11.8.2 Simple cases of failure handling 747
11.8.3 A resilient server . 748

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS xiii

11.8.4 Active fault tolerance . 749
11.9 Security . 749
11.10Building applications . 751

11.10.1Centralized first, distributed later 751
11.10.2Handling partial failure . 751
11.10.3Distributed components 752

11.11Exercises . 752

12 Constraint Programming 755
12.1 Propagate and search . 756

12.1.1 Basic ideas . 756
12.1.2 Calculating with partial information 757
12.1.3 An example . 758
12.1.4 Executing the example . 760
12.1.5 Summary . 761

12.2 Programming techniques . 761
12.2.1 A cryptarithmetic problem 761
12.2.2 Palindrome products revisited 763

12.3 The constraint-based computation model 764
12.3.1 Basic constraints and propagators 766

12.4 Computation spaces . 766
12.4.1 Programming search with computation spaces 767
12.4.2 Definition . 767

12.5 Implementing the relational computation model 777
12.5.1 The choice statement . 778
12.5.2 Implementing the Solve function 778

12.6 Exercises . 778

IV Semantics 781

13 Language Semantics 783
13.1 The shared-state concurrent model 784

13.1.1 The store . 785
13.1.2 The single-assignment (constraint) store 785
13.1.3 Abstract syntax . 786
13.1.4 Structural rules . 787
13.1.5 Sequential and concurrent execution 789
13.1.6 Comparison with the abstract machine semantics 789
13.1.7 Variable introduction . 790
13.1.8 Imposing equality (tell) . 791
13.1.9 Conditional statements (ask) 793
13.1.10Names . 795
13.1.11Procedural abstraction . 795

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xiv CONTENTS

13.1.12Explicit state . 797
13.1.13By-need triggers . 798
13.1.14Read-only variables . 800
13.1.15Exception handling . 801
13.1.16Failed values . 804
13.1.17Variable substitution . 805

13.2 Declarative concurrency . 806
13.3 Eight computation models . 808
13.4 Semantics of common abstractions 809
13.5 Historical notes . 810
13.6 Exercises . 811

V Appendices 815

A Mozart System Development Environment 817
A.1 Interactive interface . 817

A.1.1 Interface commands . 817
A.1.2 Using functors interactively 818

A.2 Batch interface . 819

B Basic Data Types 821
B.1 Numbers (integers, floats, and characters) 821

B.1.1 Operations on numbers . 823
B.1.2 Operations on characters 824

B.2 Literals (atoms and names) . 825
B.2.1 Operations on atoms . 826

B.3 Records and tuples . 826
B.3.1 Tuples . 827
B.3.2 Operations on records . 828
B.3.3 Operations on tuples . 829

B.4 Chunks (limited records) . 829
B.5 Lists . 830

B.5.1 Operations on lists . 831
B.6 Strings . 832
B.7 Virtual strings . 833

C Language Syntax 835
C.1 Interactive statements . 836
C.2 Statements and expressions . 836
C.3 Nonterminals for statements and expressions 838
C.4 Operators . 838

C.4.1 Ternary operator . 841
C.5 Keywords . 841
C.6 Lexical syntax . 843

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS xv

C.6.1 Tokens . 843
C.6.2 Blank space and comments 843

D General Computation Model 845
D.1 Creative extension principle . 846
D.2 Kernel language . 847
D.3 Concepts . 848

D.3.1 Declarative models . 848
D.3.2 Security . 849
D.3.3 Exceptions . 849
D.3.4 Explicit state . 850

D.4 Different forms of state . 850
D.5 Other concepts . 851

D.5.1 What’s next? . 851
D.5.2 Domain-specific concepts 851

D.6 Layered language design . 852

Bibliography 853

Index 869

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xvi

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

List of Figures

1.1 Taking apart the list [5 6 7 8] 7
1.2 Calculating the fifth row of Pascal’s triangle 8
1.3 A simple example of dataflow execution 17
1.4 All possible executions of the first nondeterministic example . . . 21
1.5 One possible execution of the second nondeterministic example . . 23

2.1 From characters to statements . 33
2.2 The context-free approach to language syntax 35
2.3 Ambiguity in a context-free grammar 36
2.4 The kernel language approach to semantics 39
2.5 Translation approaches to language semantics 42
2.6 A single-assignment store with three unbound variables 44
2.7 Two of the variables are bound to values 44
2.8 A value store: all variables are bound to values 45
2.9 A variable identifier referring to an unbound variable 46
2.10 A variable identifier referring to a bound variable 46
2.11 A variable identifier referring to a value 47
2.12 A partial value . 47
2.13 A partial value with no unbound variables, i.e., a complete value . 48
2.14 Two variables bound together . 48
2.15 The store after binding one of the variables 49
2.16 The type hierarchy of the declarative model 53
2.17 The declarative computation model 62
2.18 Lifecycle of a memory block . 76
2.19 Declaring global variables . 88
2.20 The Browser . 90
2.21 Exception handling . 92
2.22 Unification of cyclic structures . 102

3.1 A declarative operation inside a general computation 114
3.2 Structure of the chapter . 115
3.3 A classification of declarative programming 116
3.4 Finding roots using Newton’s method (first version) 121
3.5 Finding roots using Newton’s method (second version) 123

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xviii LIST OF FIGURES

3.6 Finding roots using Newton’s method (third version) 124
3.7 Finding roots using Newton’s method (fourth version) 124
3.8 Finding roots using Newton’s method (fifth version) 125
3.9 Sorting with mergesort . 140
3.10 Control flow with threaded state 141
3.11 Deleting node Y when one subtree is a leaf (easy case) 156
3.12 Deleting node Y when neither subtree is a leaf (hard case) 157
3.13 Breadth-first traversal . 159
3.14 Breadth-first traversal with accumulator 160
3.15 Depth-first traversal with explicit stack 160
3.16 The tree drawing constraints . 162
3.17 An example tree . 162
3.18 Tree drawing algorithm . 164
3.19 The example tree displayed with the tree drawing algorithm . . . 165
3.20 Delayed execution of a procedure value 181
3.21 Defining an integer loop . 186
3.22 Defining a list loop . 186
3.23 Simple loops over integers and lists 187
3.24 Defining accumulator loops . 188
3.25 Accumulator loops over integers and lists 189
3.26 Folding a list . 190
3.27 Declarative dictionary (with linear list) 199
3.28 Declarative dictionary (with ordered binary tree) 201
3.29 Word frequencies (with declarative dictionary) 202
3.30 Internal structure of binary tree dictionary in WordFreq (in part) 203
3.31 Doing S1={Pop S X} with a secure stack 208
3.32 A simple graphical I/O interface for text 217
3.33 Screen shot of the word frequency application 228
3.34 Standalone dictionary library (file Dict.oz) 229
3.35 Standalone word frequency application (file WordApp.oz) 230
3.36 Component dependencies for the word frequency application . . . 231

4.1 The declarative concurrent model 240
4.2 Causal orders of sequential and concurrent executions 242
4.3 Relationship between causal order and interleaving executions . . 242
4.4 Execution of the thread statement 245
4.5 Thread creations for the call {Fib 6} 254
4.6 The Oz Panel showing thread creation in {Fib 26 X} 255
4.7 Dataflow and rubber bands . 256
4.8 Cooperative and competitive concurrency 259
4.9 Operations on threads . 260
4.10 Producer-consumer stream communication 261
4.11 Filtering a stream . 264
4.12 A prime-number sieve with streams 264

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES xix

4.13 Pipeline of filters generated by {Sieve Xs 316} 266
4.14 Bounded buffer . 267
4.15 Bounded buffer (data-driven concurrent version) 267
4.16 Digital logic gates . 272
4.17 A full adder . 273
4.18 A latch . 275
4.19 A linguistic abstraction for logic gates 276
4.20 Tree drawing algorithm with order-determining concurrency . . . 278
4.21 Procedures, coroutines, and threads 280
4.22 Implementing coroutines using the Thread module 281
4.23 Concurrent composition . 282
4.24 The by-need protocol . 287
4.25 Stages in a variable’s lifetime . 289
4.26 Practical declarative computation models 291
4.27 Bounded buffer (naive lazy version) 296
4.28 Bounded buffer (correct lazy version) 296
4.29 Lazy solution to the Hamming problem 298
4.30 A simple ‘Ping Pong’ program . 310
4.31 A standalone ‘Ping Pong’ program 311
4.32 A standalone ‘Ping Pong’ program that exits cleanly 312
4.33 Changes needed for instrumenting procedure P1 317
4.34 How can two clients send to the same server? They cannot! 319
4.35 Impedance matching: example of a serializer 326

5.1 The message-passing concurrent model 356
5.2 Three port objects playing ball 359
5.3 Message diagrams of simple protocols 362
5.4 Schematic overview of a building with lifts 374
5.5 Component diagram of the lift control system 375
5.6 Notation for state diagrams . 375
5.7 State diagram of a lift controller 377
5.8 Implementation of the timer and controller components 378
5.9 State diagram of a floor . 379
5.10 Implementation of the floor component 380
5.11 State diagram of a lift . 381
5.12 Implementation of the lift component 382
5.13 Hierarchical component diagram of the lift control system 383
5.14 Defining port objects that share one thread 386
5.15 Screenshot of the ‘Ping-Pong’ program 386
5.16 The ‘Ping-Pong’ program: using port objects that share one thread 387
5.17 Queue (naive version with ports) 388
5.18 Queue (correct version with ports) 389
5.19 A thread abstraction with termination detection 391
5.20 A concurrent filter without sequential dependencies 392

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xx LIST OF FIGURES

5.21 Translation of receive without time out 400
5.22 Translation of receive with time out 401
5.23 Translation of receive with zero time out 402
5.24 Connecting two clients using a stream merger 404
5.25 Symmetric nondeterministic choice (using exceptions) 407
5.26 Asymmetric nondeterministic choice (using IsDet) 407

6.1 The declarative model with explicit state 422
6.2 Five ways to package a stack . 429
6.3 Four versions of a secure stack . 430
6.4 Different varieties of indexed collections 439
6.5 Extensible array (stateful implementation) 443
6.6 A system structured as a hierarchical graph 456
6.7 System structure – static and dynamic 458
6.8 A directed graph and its transitive closure 466
6.9 One step in the transitive closure algorithm 467
6.10 Transitive closure (first declarative version) 469
6.11 Transitive closure (stateful version) 471
6.12 Transitive closure (second declarative version) 472
6.13 Transitive closure (concurrent/parallel version) 474
6.14 Word frequencies (with stateful dictionary) 476

7.1 An example class Counter (with class syntax) 498
7.2 Defining the Counter class (without syntactic support) 499
7.3 Creating a Counter object . 500
7.4 Illegal and legal class hierarchies 508
7.5 A class declaration is an executable statement 509
7.6 An example class Account . 510
7.7 The meaning of “private” . 513
7.8 Different ways to extend functionality 517
7.9 Implementing delegation . 519
7.10 An example of delegation . 521
7.11 A simple hierarchy with three classes 525
7.12 Constructing a hierarchy by following the type 527
7.13 Lists in object-oriented style . 528
7.14 A generic sorting class (with inheritance) 529
7.15 Making it concrete (with inheritance) 530
7.16 A class hierarchy for genericity . 530
7.17 A generic sorting class (with higher-order programming) 531
7.18 Making it concrete (with higher-order programming) 532
7.19 Class diagram of the graphics package 534
7.20 Drawing in the graphics package 536
7.21 Class diagram with an association 537
7.22 The Composite pattern . 541

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES xxi

7.23 Functional decomposition versus type decomposition 548
7.24 Abstractions in object-oriented programming 553
7.25 An example class Counter (again) 554
7.26 An example of class construction 555
7.27 An example of object construction 556
7.28 Implementing inheritance . 557
7.29 Parameter passing in Java . 562
7.30 Two active objects playing ball (definition) 563
7.31 Two active objects playing ball (illustration) 564
7.32 The Flavius Josephus problem . 565
7.33 The Flavius Josephus problem (active object version) 566
7.34 The Flavius Josephus problem (data-driven concurrent version) . 568
7.35 Event manager with active objects 570
7.36 Adding functionality with inheritance 571
7.37 Batching a list of messages and procedures 572

8.1 The shared-state concurrent model 580
8.2 Different approaches to concurrent programming 582
8.3 Concurrent stack . 586
8.4 The hierarchy of atomic actions 588
8.5 Differences between atomic actions 589
8.6 Queue (declarative version) . 591
8.7 Queue (sequential stateful version) 592
8.8 Queue (concurrent stateful version with lock) 593
8.9 Queue (concurrent object-oriented version with lock) 594
8.10 Queue (concurrent stateful version with exchange) 595
8.11 Queue (concurrent version with tuple space) 596
8.12 Tuple space (object-oriented version) 597
8.13 Lock (non-reentrant version without exception handling) 598
8.14 Lock (non-reentrant version with exception handling) 598
8.15 Lock (reentrant version with exception handling) 599
8.16 Bounded buffer (monitor version) 604
8.17 Queue (extended concurrent stateful version) 606
8.18 Lock (reentrant get-release version) 607
8.19 Monitor implementation . 608
8.20 State diagram of one incarnation of a transaction 615
8.21 Architecture of the transaction system 619
8.22 Implementation of the transaction system (part 1) 621
8.23 Implementation of the transaction system (part 2) 622
8.24 Priority queue . 624
8.25 Bounded buffer (Java version) . 627

9.1 Search tree for the clothing design example 637
9.2 Two digit counting with depth-first search 640

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxii LIST OF FIGURES

9.3 The n-queens problem (when n = 4) 642
9.4 Solving the n-queens problem with relational programming 643
9.5 Natural language parsing (simple nonterminals) 658
9.6 Natural language parsing (compound nonterminals) 659
9.7 Encoding of a grammar . 664
9.8 Implementing the grammar interpreter 666
9.9 A simple graph . 669
9.10 Paths in a graph . 671
9.11 Implementing relations (with first-argument indexing) 672

10.1 Building the graphical user interface 693
10.2 Simple text entry window . 694
10.3 Function for doing text entry . 695
10.4 Windows generated with the lr and td widgets 695
10.5 Window generated with newline and continue codes 696
10.6 Declarative resize behavior . 697
10.7 Window generated with the glue parameter 698
10.8 A simple progress monitor . 700
10.9 A simple calendar widget . 701
10.10Automatic generation of a user interface 703
10.11From the original data to the user interface 704
10.12Defining the read-only presentation 705
10.13Defining the editable presentation 705
10.14Three views of FlexClock, a context-sensitive clock 707
10.15Architecture of the context-sensitive clock 707
10.16View definitions for the context-sensitive clock 710
10.17The best view for any size clock window 711

11.1 A simple taxonomy of distributed systems 717
11.2 The distributed computation model 718
11.3 Process-oriented view of the distribution model 720
11.4 Distributed locking . 727
11.5 The advantages of asynchronous objects with dataflow 733
11.6 Graph notation for a distributed cell 741
11.7 Moving the state pointer . 741
11.8 Graph notation for a distributed dataflow variable 742
11.9 Binding a distributed dataflow variable 742
11.10A resilient server . 748

12.1 Constraint definition of Send-More-Money puzzle 762
12.2 Constraint-based computation model 765
12.3 Depth-first single solution search 768
12.4 Visibility of variables and bindings in nested spaces 770
12.5 Communication between a space and its distribution strategy . . . 775
12.6 Lazy all-solution search engine Solve 779

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES xxiii

13.1 The kernel language with shared-state concurrency 787

B.1 Graph representation of the infinite list C1=a|b|C1 832

C.1 The ternary operator “. := ” . 840

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxiv

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

List of Tables

2.1 The declarative kernel language 50

2.2 Value expressions in the declarative kernel language 51

2.3 Examples of basic operations . 56

2.4 Expressions for calculating with numbers 82

2.5 The if statement . 83

2.6 The case statement . 83

2.7 Function syntax . 85

2.8 Interactive statement syntax . 88

2.9 The declarative kernel language with exceptions 94

2.10 Exception syntax . 95

2.11 Equality (unification) and equality test (entailment check) 100

3.1 The descriptive declarative kernel language 117

3.2 The parser’s input language (which is a token sequence) 166

3.3 The parser’s output language (which is a tree) 167

3.4 Execution times of kernel instructions 170

3.5 Memory consumption of kernel instructions 176

3.6 The declarative kernel language with secure types 206

3.7 Functor syntax . 224

4.1 The data-driven concurrent kernel language 240

4.2 The demand-driven concurrent kernel language 285

4.3 The declarative concurrent kernel language with exceptions 332

4.4 Dataflow variable as communication channel 337

4.5 Classifying synchronization . 340

5.1 The kernel language with message-passing concurrency 355

5.2 The nondeterministic concurrent kernel language 403

6.1 The kernel language with explicit state 423

6.2 Cell operations . 423

7.1 Class syntax . 501

8.1 The kernel language with shared-state concurrency 580

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxvi

9.1 The relational kernel language . 635
9.2 Translating a relational program to logic 649
9.3 The extended relational kernel language 673

11.1 Distributed algorithms . 740

12.1 Primitive operations for computation spaces 768

13.1 Eight computation models . 809

B.1 Character lexical syntax . 822
B.2 Some number operations . 823
B.3 Some character operations . 824
B.4 Literal syntax (in part) . 825
B.5 Atom lexical syntax . 825
B.6 Some atom operations . 826
B.7 Record and tuple syntax (in part) 826
B.8 Some record operations . 828
B.9 Some tuple operations . 829
B.10 List syntax (in part) . 829
B.11 Some list operations . 831
B.12 String lexical syntax . 832
B.13 Some virtual string operations . 833

C.1 Interactive statements . 836
C.2 Statements and expressions . 836
C.3 Nestable constructs (no declarations) 837
C.4 Nestable declarations . 837
C.5 Terms and patterns . 838
C.6 Other nonterminals needed for statements and expressions 839
C.7 Operators with their precedence and associativity 840
C.8 Keywords . 841
C.9 Lexical syntax of variables, atoms, strings, and characters 842
C.10 Nonterminals needed for lexical syntax 842
C.11 Lexical syntax of integers and floating point numbers 842

D.1 The general kernel language . 847

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Preface

Six blind sages were shown an elephant and met to discuss their ex-
perience. “It’s wonderful,” said the first, “an elephant is like a rope:
slender and flexible.” “No, no, not at all,” said the second, “an ele-
phant is like a tree: sturdily planted on the ground.” “Marvelous,”
said the third, “an elephant is like a wall.” “Incredible,” said the
fourth, “an elephant is a tube filled with water.” “What a strange
piecemeal beast this is,” said the fifth. “Strange indeed,” said the
sixth, “but there must be some underlying harmony. Let us investi-
gate the matter further.”
– Freely adapted from a traditional Indian fable.

“A programming language is like a natural, human language in that
it favors certain metaphors, images, and ways of thinking.”
– Mindstorms: Children, Computers, and Powerful Ideas [141], Sey-
mour Papert (1980)

One approach to study computer programming is to study programming lan-
guages. But there are a tremendously large number of languages, so large that it
is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques to use them, not on
programming languages. The concepts are organized in terms of computation
models. A computation model is a formal system that defines how computations
are done. There are many ways to define computation models. Since this book is
intended to be practical, it is important that the computation model should be
directly useful to the programmer. We will therefore define it in terms of concepts
that are important to programmers: data types, operations, and a programming
language. The term computation model makes precise the imprecise notion of
“programming paradigm”. The rest of the book talks about computation models
and not programming paradigms. Sometimes we will use the phrase programming
model. This refers to what the programmer needs: the programming techniques
and design principles made possible by the computation model.

Each computation model has its own set of techniques for programming and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxviii PREFACE

reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many well-known models as well as some less-known models.
The main criterium for presenting a model is whether it is useful in practice.

Each computation model is based on a simple core language called its kernel
language. The kernel languages are introduced in a progressive way, by adding
concepts one by one. This lets us show the deep relationships between the dif-
ferent models. Often, just adding one new concept makes a world of difference
in programming. For example, adding destructive assignment (explicit state) to
functional programming allows us to do object-oriented programming.

When stepping from one model to the next, how do we decide on what con-
cepts to add? We will touch on this question many times in the book. The main
criterium is the creative extension principle. Roughly, a new concept is added
when programs become complicated for technical reasons unrelated to the prob-
lem being solved. Adding a concept to the kernel language can keep programs
simple, if the concept is chosen carefully. This is explained further in Appendix D.
This principle underlies the progression of kernel languages presented in the book.

A nice property of the kernel language approach is that it lets us use differ-
ent models together in the same program. This is usually called multiparadigm
programming. It is quite natural, since it means simply to use the right concepts
for the problem, independent of what computation model they originate from.
Multiparadigm programming is an old idea. For example, the designers of Lisp
and Scheme have long advocated a similar view. However, this book applies it in
a much broader and deeper way than was previously done.

From the vantage point of computation models, the book also sheds new
light on important problems in informatics. We present three such areas, namely
graphical user interface design, robust distributed programming, and constraint
programming. We show how the judicious combined use of several computation
models can help solve some of the problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to par-
ticular computation models. For example, Java and Smalltalk are based on an
object-oriented model. Haskell and Standard ML are based on a functional mod-
el. Prolog and Mercury are based on a logic model. Not all interesting languages
can be so classified. We mention some other languages for their own merits. For
example, Lisp and Scheme pioneered many of the concepts presented here. Er-
lang is functional, inherently concurrent, and supports fault tolerant distributed
programming.

We single out four languages as representatives of important computation
models: Erlang, Haskell, Java, and Prolog. We identify the computation model
of each language in terms of the book’s uniform framework. For more information
about them we refer readers to other books. Because of space limitations, we are

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxix

not able to mention all interesting languages. Omission of a language does not
imply any kind of value judgement.

Goals of the book

Teaching programming

The main goal of the book is to teach programming as a unified discipline with
a scientific foundation that is useful to the practicing programmer. Let us look
closer at what this means.

What is programming?

We define programming, as a general human activity, to mean the act of extend-
ing or changing a system’s functionality. Programming is a widespread activity
that is done both by nonspecialists (e.g., consumers who change the settings of
their alarm clock or cellular phone) and specialists (computer programmers, the
audience of this book).

This book focuses on the construction of software systems. In that setting,
programming is the step between the system’s specification and a running pro-
gram that implements it. The step consists in designing the program’s archi-
tecture and abstractions and coding them into a programming language. This
is a broad view, perhaps broader than the usual connotation attached to the
word programming. It covers both programming “in the small” and “in the
large”. It covers both (language-independent) architectural issues and (language-
dependent) coding issues. It is based more on concepts and their use rather than
on any one programming language. We find that this general view is natural for
teaching programming. It allows to look at many issues in a way unbiased by
limitations of any particular language or design methodology. When used in a
specific situation, the general view is adapted to the tools used, taking account
their abilities and limitations.

Both science and technology

Programming as defined above has two essential parts: a technology and its sci-
entific foundation. The technology consists of tools, practical techniques, and
standards, allowing us to do programming. The science consists of a broad and
deep theory with predictive power, allowing us to understand programming. Ide-
ally, the science should explain the technology in a way that is as direct and useful
as possible.

If either part is left out, we are no longer doing programming. Without the
technology, we are doing pure mathematics. Without the science, we are doing a
craft, i.e., we lack deep understanding. Teaching programming correctly therefore
means teaching both the technology (current tools) and the science (fundamental

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxx PREFACE

concepts). Knowing the tools prepares the student for the present. Knowing the
concepts prepares the student for future developments.

More than a craft

Despite many efforts to introduce a scientific foundation, programming is almost
always taught as a craft. It is usually taught in the context of one (or a few)
programming languages (e.g., Java, complemented with Haskell, Scheme, or Pro-
log). The historical accidents of the particular languages chosen are interwoven
together so closely with the fundamental concepts that the two cannot be sepa-
rated. There is a confusion between tools and concepts. What’s more, different
schools of thought have developed, based on different ways of viewing program-
ming, called “paradigms”: object-oriented, logic, functional, etc. Each school of
thought has its own science. The unity of programming as a single discipline has
been lost.

Teaching programming in this fashion is like having separate schools of bridge
building: one school teaches how to build wooden bridges and another school
teaches how to build iron bridges. Graduates of either school would implicitly
consider the restriction to wood or iron as fundamental and would not think of
using wood and iron together.

The result is that programs suffer from poor design. We give an example
based on Java, but the problem exists in all existing languages to some degree.
Concurrency in Java is complex to use and expensive in computational resources.
Because of these difficulties, Java-taught programmers conclude that concurrency
is a fundamentally complex and expensive concept. Program specifications are
designed around the difficulties, often in a contorted way. But these difficulties
are not fundamental at all. There are forms of concurrency that are quite useful
and yet as easy to program with as sequential programs (for example, stream
programming as exemplified by Unix pipes). Furthermore, it is possible to imple-
ment threads, the basic unit of concurrency, almost as cheaply as procedure calls.
If the programmer were taught about concurrency in the correct way, then he
or she would be able to specify for and program in systems without concurrency
restrictions (including improved versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of code.
They provide a rich set of abstractions and syntax. How can we separate the lan-
guages’ fundamental concepts, which underlie their success, from their historical
accidents? The kernel language approach shows one way. In this approach, a
practical language is translated into a kernel language that consists of a small
number of programmer-significant elements. The rich set of abstractions and
syntax is encoded into the small kernel language. This gives both programmer
and student a clear insight into what the language does. The kernel language has
a simple formal semantics that allows reasoning about program correctness and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxxi

complexity. This gives a solid foundation to the programmer’s intuition and the
programming techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by
a small set of closely-related kernel languages. It follows that the kernel language
approach is a truly language-independent way to study programming. Since any
given language translates into a kernel language that is a subset of a larger, more
complete kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of
the scientific method. It is a successful approach that is used in all the exact
sciences. It gives a deep understanding that has predictive power. For example,
structural science lets one design all bridges (whether made of wood, iron, both,
or anything else) and predict their behavior in terms of simple concepts such as
force, energy, stress, and strain, and the laws they obey [62].

Comparison with other approaches

Let us compare the kernel language approach with three other ways to give pro-
gramming a broad scientific basis:

• A foundational calculus, like the λ calculus or π calculus, reduces program-
ming to a minimal number of elements. The elements are chosen to simplify
mathematical analysis, not to aid programmer intuition. This helps theo-
reticians, but is not particularly useful to practicing programmers. Founda-
tional calculi are useful for studying the fundamental properties and limits
of programming a computer, not for writing or reasoning about general
applications.

• A virtual machine defines a language in terms of an implementation on an
idealized machine. A virtual machine gives a kind of operational semantics,
with concepts that are close to hardware. This is useful for designing com-
puters, implementing languages, or doing simulations. It is not useful for
reasoning about programs and their abstractions.

• A multiparadigm language is a language that encompasses several program-
ming paradigms. For example, Scheme is both functional and imperative
([38]) and Leda has elements that are functional, object-oriented, and logi-
cal ([27]). The usefulness of a multiparadigm language depends on how well
the different paradigms are integrated.

The kernel language approach combines features of all these approaches. A well-
designed kernel language covers a wide range of concepts, like a well-designed
multiparadigm language. If the concepts are independent, then the kernel lan-
guage can be given a simple formal semantics, like a foundational calculus. Final-
ly, the formal semantics can be a virtual machine at a high level of abstraction.
This makes it easy for programmers to reason about programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxxii PREFACE

Designing abstractions

The second goal of the book is to teach how to design programming abstractions.
The most difficult work of programmers, and also the most rewarding, is not
writing programs but rather designing abstractions. Programming a computer is
primarily designing and using abstractions to achieve new goals. We define an
abstraction loosely as a tool or device that solves a particular problem. Usually the
same abstraction can be used to solve many different problems. This versatility
is one of the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automo-
biles.1 Abstractions can be classified into a hierarchy depending on how special-
ized they are (e.g., “pencil” is more specialized than “writing instrument”, but
both are abstractions).

Abstractions are particularly numerous inside computer systems. Modern
computers are highly complex systems consisting of hardware, operating sys-
tem, middleware, and application layers, each of which is based on the work of
thousands of people over several decades. They contain an enormous number of
abstractions, working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not too much of an exaggeration to say that civilization is built
on successful abstractions [134]. New ones are being designed every day. Some
ancient ones, like the wheel and the arch, are still with us. Some modern ones,
like the cellular phone, quickly become part of our daily life.

We use the following approach to achieve the second goal. We start with pro-
gramming concepts, which are the raw materials for building abstractions. We
introduce most of the relevant concepts known today, in particular lexical scoping,
higher-order programming, compositionality, encapsulation, concurrency, excep-
tions, lazy execution, security, explicit state, inheritance, and nondeterministic
choice. For each concept, we give techniques for building abstractions with it.
We give many examples of sequential, concurrent, and distributed abstractions.
We give some general laws for building abstractions. Many of these general laws
have counterparts in other applied sciences, so that books like [69], [55], and [62]
can be an inspiration to programmers.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

1Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential equa-
tions. They do not have to be material entities!

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxxiii

• The computation-based approach presents programming as a way to define
executions on machines. It grounds the student’s intuition in the real world
by means of actual executions on real systems. This is especially effective
with an interactive system: the student can create program fragments and
immediately see what they do. Reducing the time between thinking “what
if” and seeing the result is an enormous aid to understanding. Precision
is not sacrificed, since the formal semantics of a program can be given in
terms of an abstract machine.

• The logic-based approach presents programming as a branch of mathemat-
ical logic. Logic does not speak of execution but of program properties,
which is a higher level of abstraction. Programs are mathematical con-
structions that obey logical laws. The formal semantics of a program is
given in terms of a mathematical logic. Reasoning is done with logical as-
sertions. The logic-based approach is harder for students to grasp yet it is
essential for defining precise specifications of what programs do.

Like Structure and Interpretation of Computer Programs, by Abelson, Sussman,
& Sussman [1, 2], our book mostly uses the computation-based approach. Con-
cepts are illustrated with program fragments that can be run interactively on an
accompanying software package, the Mozart Programming System [129]. Pro-
grams are constructed with a building-block approach, bringing together basic
concepts to build more complex ones. A small amount of logical reasoning is in-
troduced in later chapters, e.g., for defining specifications and for using invariants
to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of this book are all carefully-chosen subsets of Oz. Why did
we choose Oz? The main reason is that it supports the kernel language approach
well. Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation mod-
els. The models are designed not just with formal simplicity in mind (although it
is important), but on the basis of how a programmer can express himself/herself
and reason within the model. There are many different practical computation
models, with different levels of expressiveness, different programming techniques,
and different ways of reasoning about them. We find that each model has its
domain of application. This book explains many of these models, how they are
related, how to program in them, and how to combine them to greatest advantage.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxxiv PREFACE

More is not better (or worse), just different

All computation models have their place. It is not true that models with more
concepts are better or worse. This is because a new concept is like a two-edged
sword. Adding a concept to a computation model introduces new forms of expres-
sion, making some programs simpler, but it also makes reasoning about programs
harder. For example, by adding explicit state (mutable variables) to a functional
programming model we can express the full range of object-oriented programming
techniques. However, reasoning about object-oriented programs is harder than
reasoning about functional programs. Functional programming is about calcu-
lating values with mathematical functions. Neither the values nor the functions
change over time. Explicit state is one way to model things that change over
time: it provides a container whose content can be updated. The very power of
this concept makes it harder to reason about.

The importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same
program. We find that this is not at all the case. This is because models are
not just monolithic blocks with nothing in common. On the contrary, they have
much in common. For example, the differences between declarative & imperative
models and concurrent & sequential models are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind of
epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for
a well-written program to use different models. At this early point this answer
may seem cryptic. It will become clear later in the book.

An important principle we will see in this book is that concepts traditionally
associated with one model can be used to great effect in more general models. For
example, the concepts of lexical scoping and higher-order programming, which are
usually associated with functional programming, are useful in all models. This
is well-known in the functional programming community. Functional languages
have long been extended with explicit state (e.g., Scheme [38] and Standard
ML [126, 192]) and more recently with concurrency (e.g., Concurrent ML [158]
and Concurrent Haskell [149, 147]).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxxv

The limits of single models

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

• Object-oriented languages encourage the overuse of state and inheritance.
Objects are stateful by default. While this seems simple and intuitive, it
actually complicates programming, e.g., it makes concurrency difficult (see
Section 8.2). Design patterns, which define a common terminology for de-
scribing good programming techniques, are usually explained in terms of in-
heritance [58]. In many cases, simpler higher-order programming techniques
would suffice (see Section 7.4.7). In addition, inheritance is often misused.
For example, object-oriented graphical user interfaces often recommend us-
ing inheritance to extend generic widget classes with application-specific
functionality (e.g., in the Swing components for Java). This is counter to
separation of concerns.

• Functional languages encourage the overuse of higher-order programming.
Typical examples are monads and currying. Monads are used to encode
state by threading it throughout the program. This makes programs more
intricate but does not achieve the modularity properties of true explicit
state (see Section 4.7). Currying lets you apply a function partially by
giving only some of its arguments. This returns a new function that expects
the remaining arguments. The function body will not execute until all
arguments are there. The flipside is that it is not clear by inspection whether
the function has all its arguments or is still curried (“waiting” for the rest).

• Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of
Horn clauses, which resemble simple logical axioms in an “if-then” style.
Many algorithms are obfuscated when written in this style. Backtracking-
based search must always be used even though it is almost never needed
(see [196]).

These examples are to some extent subjective; it is difficult to be completely ob-
jective regarding good programming style and language expressiveness. Therefore
they should not be read as passing any judgement on these models. Rather, they
are hints that none of these models is a panacea when used alone. Each model
is well-adapted to some problems but less to others. This book tries to present
a balanced approach, sometimes using a single model in isolation but not shying
away from using several models together when it is appropriate.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxxvi PREFACE

Teaching from the book

We explain how the book fits in an informatics curriculum and what courses
can be taught with it. By informatics we mean the whole field of information
technology, including computer science, computer engineering, and information
systems. Informatics is sometimes called computing.

Role in informatics curriculum

Let us consider the discipline of programming independent of any other domain
in informatics. In our experience, it divides naturally into three core topics:

1. Concepts and techniques.

2. Algorithms and data structures.

3. Program design and software engineering.

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught
early on, so that students avoid bad habits. However, this is only part of the story
since students need to know about concepts to express their designs. Parnas has
used an approach that starts with topic (3) and uses an imperative computation
model [143]. Because this book uses many computation models, we recommend
using it to teach (1) and (3) concurrently, introducing new concepts and design
principles gradually. In the informatics program at UCL, we attribute eight
semester-hours to each topic. This includes lectures and lab sessions. Together
the three topics comprise one sixth of the full informatics curriculum for licentiate
and engineering degrees.

There is another point we would like to make, which concerns how to teach
concurrent programming. In a traditional informatics curriculum, concurrency
is taught by extending a stateful model, just as Chapter 8 extends Chapter 6.
This is rightly considered to be complex and difficult to program with. There are
other, simpler forms of concurrent programming. The declarative concurrency of
Chapter 4 is much simpler to program with and can often be used in place of
stateful concurrency (see the quote that starts Chapter 4). Stream concurrency,
a simple form of declarative concurrency, has been taught in first-year courses at
MIT and other institutions. Another simple form of concurrency, message passing
between threads, is explained in Chapter 5. We suggest that both declarative
concurrency and message-passing concurrency be part of the standard curriculum
and be taught before stateful concurrency.

Courses

We have used the book as a textbook for several courses ranging from second-
year undergraduate to graduate courses [200, 199, 157]. In its present form,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxxvii

this book is not intended as a first programming course, but the approach could
likely be adapted for such a course.2 Students should have a small amount of
previous programming experience (e.g., a practical introduction to programming
and knowledge of simple data structures such as sequences, sets, stacks, trees,
and graphs) and a small amount of mathematical maturity (e.g., a first course on
analysis, discrete mathematics, or algebra). The book has enough material for
at least four semester-hours worth of lectures and as many lab sessions. Some of
the possible courses are:

• An undergraduate course on programming concepts and techniques. Chap-
ter 1 gives a light introduction. The course continues with Chapters 2–8.
Depending on the desired depth of coverage, more or less emphasis can be
put on algorithms (to teach algorithms along with programming), concur-
rency (which can be left out completely, if so desired), or formal semantics
(to make intuitions precise).

• An undergraduate course on applied programming models. This includes
relational programming (Chapter 9), specific programming languages (espe-
cially Erlang, Haskell, Java, and Prolog), graphical user interface program-
ming (Chapter 10), distributed programming (Chapter 11), and constraint
programming (Chapter 12). This course is a natural sequel to the previous
one.

• An undergraduate course on concurrent and distributed programming (Chap-
ters 4, 5, 8, and 11). Students should have some programming experience.
The course can start with small parts of Chapters 2, 3, 6, and 7 to introduce
declarative and stateful programming.

• A graduate course on computation models (the whole book, including the
semantics in Chapter 13). The course can concentrate on the relationships
between the models and on their semantics.

The book’s Web site has more information on courses including transparencies
and lab assignments for some of them. The Web site has an animated interpreter
done by Christian Schulte that shows how the kernel languages execute according
to the abstract machine semantics. The book can be used as a complement to
other courses:

• Part of an undergraduate course on constraint programming (Chapters 4, 9,
and 12).

• Part of a graduate course on intelligent collaborative applications (parts of
the whole book, with emphasis on Part III). If desired, the book can be
complemented by texts on artificial intelligence (e.g., [160]) or multi-agent
systems (e.g., [205]).

2We will gladly help anyone willing to tackle this adaptation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xxxviii PREFACE

• Part of an undergraduate course on semantics. All the models are formally
defined in the chapters that introduce them, and this semantics is sharpened
in Chapter 13. This gives a real-sized case study of how to define the
semantics of a complete modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a prac-
tical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these frag-
ments, course lectures can have live interactive demonstrations of the concepts.
We find that students very much appreciate this style of lecture.

Each chapter ends with a set of exercises that usually involve some program-
ming. They can be solved on the Mozart system. To best learn the material in
the chapter, we encourage students to do as many exercises as possible. Exer-
cises marked (advanced exercise) can take from several days up to several weeks.
Exercises marked (research project) are open ended and can result in significant
research contributions.

Software

A useful feature of the book is that all program fragments can be run on a
software platform, the Mozart Programming System. Mozart is a full-featured
production-quality programming system that comes with an interactive incremen-
tal development environment and a full set of tools. It compiles to an efficient
platform-independent bytecode that runs on many varieties of Unix and Win-
dows, and on Mac OS X. Distributed programs can be spread out over all these
systems. The Mozart Web site, http://www.mozart-oz.org, has complete infor-
mation including downloadable binaries, documentation, scientific publications,
source code, and mailing lists.

The Mozart system efficiently implements all the computation models covered
in the book. This makes it ideal for using models together in the same program
and for comparing models by writing programs to solve a problem in different
models. Because each model is implemented efficiently, whole programs can be
written in just one model. Other models can be brought in later, if needed, in a
pedagogically justified way. For example, programs can be completely written in
an object-oriented style, complemented by small declarative components where
they are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system is
released with full source code under an Open Source license agreement. The first
public release was in 1995. The first public release with distribution support was
in 1999. The book is based on an ideal implementation that is close to Mozart
version 1.3.0, released in 2003. The differences between the ideal implementation
and Mozart are listed on the book’s Web site.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xxxix

History and acknowledgements

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. Many people contributed ideas,
implementations, tools, and applications. We are lucky to have had a coherent
vision among our colleagues for such a long period. Thanks to this, we have been
able to make progress.

Our main research vehicle and “testbed” of new ideas is the Mozart system,
which implements the Oz language. The system’s main designers and developers
are and were (in alphabetic order): Per Brand, Thorsten Brunklaus, Denys Duchi-
er, Donatien Grolaux, Seif Haridi, Dragan Havelka, Martin Henz, Erik Klintskog,
Leif Kornstaedt, Michael Mehl, Martin Müller, Tobias Müller, Anna Neiderud,
Konstantin Popov, Ralf Scheidhauer, Christian Schulte, Gert Smolka, Peter Van
Roy, and Jörg Würtz. Other important contributors are and were (in alphabet-
ic order): Iliès Alouini, Thorsten Brunklaus, Raphaël Collet, Frej Drejhammer,
Sameh El-Ansary, Nils Franzén, Kevin Glynn, Martin Homik, Simon Lindblom,
Benjamin Lorenz, Valentin Mesaros, and Andreas Simon.

We would also like to thank the following researchers and indirect contributors:
Hassan Äıt-Kaci, Joe Armstrong, Joachim Durchholz, Andreas Franke, Claire
Gardent, Fredrik Holmgren, Sverker Janson, Torbjörn Lager, Elie Milgrom, Johan
Montelius, Al-Metwally Mostafa, Joachim Niehren, Luc Onana, Marc-Antoine
Parent, Dave Parnas, Mathias Picker, Andreas Podelski, Christophe Ponsard,
Mahmoud Rafea, Juris Reinfelds, Thomas Sjöland, Fred Spiessens, Joe Turner,
and Jean Vanderdonckt.

We give a special thanks to the following people for their help with materi-
al related to the book. We thank Raphaël Collet for co-authoring Chapters 12
and 13 and for his work on the practical part of LINF1251, a course taught
at UCL. We thank Donatien Grolaux for three GUI case studies (used in Sec-
tions 10.3.2–10.3.4). We thank Kevin Glynn for writing the Haskell introduction
(Section 4.8). We thank Frej Drejhammar, Sameh El-Ansary, and Dragan Havel-
ka for their work on the practical part of DatalogiII, a course taught at KTH. We
thank Christian Schulte who was responsible for completely rethinking and rede-
veloping a subsequent edition of DatalogiII and for his comments on a draft of
the book. We thank Ali Ghodsi, Johan Montelius, and the other three assistants
for their work on the practical part of this edition. We thank Luis Quesada and
Kevin Glynn for their work on the practical part of INGI2131, a course taught
at UCL. We thank Bruno Carton, Raphaël Collet, Kevin Glynn, Donatien Gro-
laux, Stefano Gualandi, Valentin Mesaros, Al-Metwally Mostafa, Luis Quesada,
and Fred Spiessens for their efforts in proofreading and testing the example pro-
grams. Finally, we thank the members of the Department of Computing Science
and Engineering at UCL, the Swedish Institute of Computer Science, and the De-
partment of Microelectronics and Information Technology at KTH. We apologize
to anyone we may have inadvertently omitted.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xl PREFACE

How did we manage to keep the result so simple with such a large crowd of
developers working together? No miracle, but the consequence of a strong vi-
sion and a carefully crafted design methodology that took more than a decade to
create and polish (see [196] for a summary; we can summarize it as “a design is
either simple or wrong”). Around 1990, some of us came together with already
strong systems building and theoretical backgrounds. These people initiated the
ACCLAIM project, funded by the European Union (1991–1994). For some rea-
son, this project became a focal point. Three important milestones among many
were the papers by Sverker Janson & Seif Haridi in 1991 [93] (multiple paradigms
in AKL), by Gert Smolka in 1995 [180] (building abstractions in Oz), and by Seif
Haridi et al in 1998 [72] (dependable open distribution in Oz). The first paper
on Oz was published in 1993 and already had many important ideas [80]. Af-
ter ACCLAIM, two laboratories continued working together on the Oz ideas: the
Programming Systems Lab (DFKI, Universität des Saarlandes, and Collaborative
Research Center SFB 378) in Saarbrücken, Germany, and the Intelligent Systems
Laboratory (Swedish Institute of Computer Science), in Stockholm, Sweden.

The Oz language was originally designed by Gert Smolka and his students
in the Programming Systems Lab [79, 173, 179, 81, 180, 74, 172]. The well-
factorized design of the language and the high quality of its implementation are
due in large part to Smolka’s inspired leadership and his lab’s system-building
expertise. Among the developers, we mention Christian Schulte for his role in
coordinating general development, Denys Duchier for his active support of users,
and Per Brand for his role in coordinating development of the distributed im-
plementation. In 1996, the German and Swedish labs were joined by the De-
partment of Computing Science and Engineering (Université catholique de Lou-
vain), in Louvain-la-Neuve, Belgium, when the first author moved there. Together
the three laboratories formed the Mozart Consortium with its neutral Web site
http://www.mozart-oz.org so that the work would not be tied down to a single
institution.

This book was written using LaTeX 2ε, flex, xfig, xv, vi/vim, emacs, and
Mozart, first on a Dell Latitude with Red Hat Linux and KDE, and then on
an Apple Macintosh PowerBook G4 with Mac OS X and X11. The first au-
thor thanks the Walloon Region of Belgium for their generous support of the
Oz/Mozart work at UCL in the PIRATES project.

What’s missing

There are two main topics missing from the book:

• Static typing. The formalism used in this book is dynamically typed. De-
spite the advantages of static typing for program verification, security, and
implementation efficiency, we barely mention it. The main reason is that
the book focuses on expressing computations with programming concepts,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE xli

with as few restrictions as possible. There is already plenty to say even
within this limited scope, as witness the size of the book.

• Specialized programming techniques. The set of programming techniques
is too vast to explain in one book. In addition to the general techniques
explained in this book, each problem domain has its own particular tech-
niques. This book does not cover all of them; attempting to do so would
double or triple its size. To make up for this lack, we point the reader to
some good books that treat particular problem domains: artificial intel-
ligence techniques [160, 136], algorithms [41], object-oriented design pat-
terns [58], multi-agent programming [205], databases [42], and numerical
techniques [153].

Final comments

We have tried to make this book useful both as a textbook and as a reference.
It is up to you to judge how well it succeeds in this. Because of its size, it is
likely that some errors remain. If you find any, we would appreciate hearing from
you. Please send them and all other constructive comments you may have to the
following address:

Concepts, Techniques, and Models of Computer Programming
Department of Computing Science and Engineering
Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium

As a final word, we would like to thank our families and friends for their support
and encouragement during the more than three years it took us to write this book.
Seif Haridi would like to give a special thanks to his parents Ali and Amina and
to his family Eeva, Rebecca, and Alexander. Peter Van Roy would like to give a
special thanks to his parents Frans and Hendrika and to his family Marie-Thérèse,
Johan, and Lucile.

Louvain-la-Neuve, Belgium Peter Van Roy
Kista, Sweden Seif Haridi
June 2003

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

xlii PREFACE

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Running the example programs

This book gives many example programs and program fragments, All of these can
be run on the Mozart Programming System. To make this as easy as possible,
please keep the following points in mind:

• The Mozart system can be downloaded without charge from the Mozart
Consortium Web site http://www.mozart-oz.org. Releases exist for var-
ious flavors of Windows and Unix and for Mac OS X.

• All examples, except those intended for standalone applications, can be run
in Mozart’s interactive development environment. Appendix A gives an
introduction to this environment.

• New variables in the interactive examples must be declared with the declare

statement. The examples of Chapter 1 show how to do it. Forgetting to
do this can result in strange errors if older versions of the variables exist.
Starting with Chapter 2 and for all succeeding chapters, the declare state-
ment is omitted in the text when it is obvious what the new variables are.
It should be added to run the examples.

• Some chapters use operations that are not part of the standard Mozart re-
lease. The source code for these additional operations (along with much
other useful material) is given on the book’s Web site. We recommend
putting these definitions into your .ozrc file, so they will be loaded auto-
matically when the system starts up.

• There are a few differences between the ideal implementation of this book
and the Mozart system. They are explained on the book’s Web site.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part I

Introduction

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 1

Introduction to Programming
Concepts

“There is no royal road to geometry.”
– Euclid’s reply to Ptolemy, Euclid (c. 300 BC)

“Just follow the yellow brick road.”
– The Wonderful Wizard of Oz, L. Frank Baum (1856–1919)

Programming is telling a computer how it should do its job. This chapter gives
a gentle, hands-on introduction to many of the most important concepts in pro-
gramming. We assume you have had some previous exposure to computers. We
use the interactive interface of Mozart to introduce programming concepts in a
progressive way. We encourage you to try the examples in this chapter on a
running Mozart system.

This introduction only scratches the surface of the programming concepts we
will see in this book. Later chapters give a deep understanding of these concepts
and add many other concepts and techniques.

1.1 A calculator

Let us start by using the system to do calculations. Start the Mozart system by
typing:

oz

or by double-clicking a Mozart icon. This opens an editor window with two
frames. In the top frame, type the following line:

{Browse 9999*9999}

Use the mouse to select this line. Now go to the Oz menu and select Feed Region.
This feeds the selected text to the system. The system then does the calculation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4 Introduction to Programming Concepts

9999*9999 and displays the result, 99980001 , in a special window called the
browser. The curly braces { ... } are used for a procedure or function call.
Browse is a procedure with one argument, which is called as {Browse X} . This
opens the browser window, if it is not already open, and displays X in it.

1.2 Variables

While working with the calculator, we would like to remember an old result,
so that we can use it later without retyping it. We can do this by declaring a
variable:

declare
V=9999*9999

This declares V and binds it to 99980001 . We can use this variable later on:

{Browse V*V}

This displays the answer 9996000599960001 .
Variables are just short-cuts for values. That is, they cannot be assigned

more than once. But you can declare another variable with the same name as a
previous one. This means that the old one is no longer accessible. But previous
calculations, which used the old variable, are not changed. This is because there
are in fact two concepts hiding behind the word “variable”:

• The identifier. This is what you type in. Variables start with a capital
letter and can be followed by any letters or digits. For example, the capital
letter “V” can be a variable identifier.

• The store variable. This is what the system uses to calculate with. It is
part of the system’s memory, which we call its store.

The declare statement creates a new store variable and makes the variable
identifier refer to it. Old calculations using the same identifier V are not changed
because the identifier refers to another store variable.

1.3 Functions

Let us do a more involved calculation. Assume we want to calculate the factorial
function n!, which is defined as 1× 2× · · · × (n− 1)× n. This gives the number
of permutations of n items, that is, the number of different ways these items can
be put in a row. Factorial of 10 is:

{Browse 1*2*3*4*5*6*7*8*9*10}

This displays 3628800 . What if we want to calculate the factorial of 100? We
would like the system to do the tedious work of typing in all the integers from 1
to 100. We will do more: we will tell the system how to calculate the factorial of
any n. We do this by defining a function:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.3 Functions 5

declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end

The keyword declare says we want to define something new. The keyword fun

starts a new function. The function is called Fact and has one argument N. The
argument is a local variable, i.e., it is known only inside the function body. Each
time we call the function a new variable is declared.

Recursion

The function body is an instruction called an if expression. When the function
is called then the if expression does the following steps:

• It first checks whether N is equal to 0 by doing the test N==0.

• If the test succeeds, then the expression after the then is calculated. This
just returns the number 1. This is because the factorial of 0 is 1.

• If the test fails, then the expression after the else is calculated. That is,
if N is not 0, then the expression N*{Fact N-1} is done. This expression
uses Fact , the very function we are defining! This is called recursion. It
is perfectly normal and no cause for alarm. Fact is recursive because the
factorial of N is simply N times the factorial of N-1 . Fact uses the following
mathematical definition of factorial:

0! = 1

n! = n× (n− 1)! if n > 0

which is recursive.

Now we can try out the function:

{Browse {Fact 10}}

This should display 3628800 as before. This gives us confidence that Fact is
doing the right calculation. Let us try a bigger input:

{Browse {Fact 100}}

This will display a huge number:

933 26215 44394 41526 81699 23885 62667 00490
71596 82643 81621 46859 29638 95217 59999 32299
15608 94146 39761 56518 28625 36979 20827 22375
82511 85210 91686 40000 00000 00000 00000 00000

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6 Introduction to Programming Concepts

This is an example of arbitrary precision arithmetic, sometimes called “infinite
precision” although it is not infinite. The precision is limited by how much
memory your system has. A typical low-cost personal computer with 64 MB of
memory can handle hundreds of thousands of digits. The skeptical reader will
ask: is this huge number really the factorial of 100? How can we tell? Doing the
calculation by hand would take a long time and probably be incorrect. We will
see later on how to gain confidence that the system is doing the right thing.

Combinations

Let us write a function to calculate the number of combinations of r items taken
from n. This is equal to the number of subsets of size r that can be made from

a set of size n. This is written

(
n
r

)
in mathematical notation and pronounced

“n choose r”. It can be defined as follows using the factorial:(
n
r

)
=

n!
r! (n− r)!

which leads naturally to the following function:

declare
fun {Comb N R}

{Fact N} div ({Fact R}*{Fact N-R})
end

For example, {Comb 10 3} is 120, which is the number of ways that 3 items can
be taken from 10. This is not the most efficient way to write Comb, but it is
probably the simplest.

Functional abstraction

The function Combcalls Fact three times. It is always possible to use existing
functions to help define new functions. This principle is called functional abstrac-
tion because it uses functions to build abstractions. In this way, large programs
are like onions, with layers upon layers of functions calling functions.

1.4 Lists

Now we can calculate functions of integers. But an integer is really not very much
to look at. Say we want to calculate with lots of integers. For example, we would
like to calculate Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.4 Lists 7

1 2

1 2

1 2

1 2

1 2

1 2

1 2

5

|

L = [5 6 7 8]

L =

L.2 =

L.1 = 5

L.2 = [6 7 8]

|

6 |

7 |

8

|

6 |

7 |

8 nilnil

Figure 1.1: Taking apart the list [5 6 7 8]

1 4 6 4 1

.

This triangle is named after scientist and mystic Blaise Pascal. It starts with 1
in the first row. Each element is the sum of two other elements: the ones above
it and just to the left and right. (If there is no element, like on the edges, then
zero is taken.) We would like to define one function that calculates the whole nth
row in one swoop. The nth row has n integers in it. We can do it by using lists
of integers.

A list is just a sequence of elements, bracketed at the left and right, like [5

6 7 8] . For historical reasons, the empty list is written nil (and not []). Lists
can be displayed just like numbers:

{Browse [5 6 7 8]}

The notation [5 6 7 8] is a short-cut. A list is actually a chain of links, where
each link contains two things: one list element and a reference to the rest of the
chain. Lists are always created one element a time, starting with nil and adding
links one by one. A new link is written H|T , where H is the new element and T

is the old part of the chain. Let us build a list. We start with Z=nil . We add a
first link Y=7|Z and then a second link X=6|Y . Now X references a list with two
links, a list that can also be written as [6 7] .

The link H|T is often called a cons, a term that comes from Lisp.1 We also
call it a list pair. Creating a new link is called consing. If T is a list, then consing
H and T together makes a new list H|T :

1Much list terminology was introduced with the Lisp language in the late 1950’s and has
stuck ever since [120]. Our use of the vertical bar comes from Prolog, a logic programming
language that was invented in the early 1970’s [40, 182]. Lisp itself writes the cons as (H . T),
which it calls a dotted pair.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8 Introduction to Programming Concepts

1 2 1 Third row

11 Second row

1 First row

(0) 1 3 3 1 (0)

1 4 6 4 1

+ + + + +

Fourth row

Fifth row

Figure 1.2: Calculating the fifth row of Pascal’s triangle

declare
H=5
T=[6 7 8]
{Browse H|T}

The list H|T can be written [5 6 7 8] . It has head 5 and tail [6 7 8] . The
cons H|T can be taken apart, to get back the head and tail:

declare
L=[5 6 7 8]
{Browse L.1}
{Browse L.2}

This uses the dot operator “. ”, which is used to select the first or second argument
of a list pair. Doing L.1 gives the head of L, the integer 5. Doing L.2 gives the
tail of L, the list [6 7 8] . Figure 1.1 gives a picture: L is a chain in which each
link has one list element and the nil marks the end. Doing L.1 gets the first
element and doing L.2 gets the rest of the chain.

Pattern matching

A more compact way to take apart a list is by using the case instruction, which
gets both head and tail in one step:

declare
L=[5 6 7 8]
case L of H|T then {Browse H} {Browse T} end

This displays 5 and [6 7 8] , just like before. The case instruction declares two
local variables, H and T, and binds them to the head and tail of the list L. We say
the case instruction does pattern matching, because it decomposes L according
to the “pattern” H|T . Local variables declared with a case are just like variables
declared with declare , except that the variable exists only in the body of the
case statement, that is, between the then and the end .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.5 Functions over lists 9

1.5 Functions over lists

Now that we can calculate with lists, let us define a function, {Pascal N} , to
calculate the nth row of Pascal’s triangle. Let us first understand how to do the
calculation by hand. Figure 1.2 shows how to calculate the fifth row from the
fourth. Let us see how this works if each row is a list of integers. To calculate a
row, we start from the previous row. We shift it left by one position and shift it
right by one position. We then add the two shifted rows together. For example,
take the fourth row:

[1 3 3 1]

We shift this row left and right and then add them together:

[1 3 3 1 0]

+ [0 1 3 3 1]

Note that shifting left adds a zero to the right and shifting right adds a zero to
the left. Doing the addition gives:

[1 4 6 4 1]

which is the fifth row.

The main function

Now that we understand how to solve the problem, we can write a function to do
the same operations. Here it is:

declare Pascal AddList ShiftLeft ShiftRight
fun {Pascal N}

if N==1 then [1]
else

{AddList {ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}

end
end

In addition to defining Pascal , we declare the variables for the three auxiliary
functions that remain to be defined.

The auxiliary functions

This does not completely solve the problem. We have to define three more func-
tions: ShiftLeft , which shifts left by one position, ShiftRight , which shifts
right by one position, and AddList , which adds two lists. Here are ShiftLeft

and ShiftRight :

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10 Introduction to Programming Concepts

fun {ShiftLeft L}
case L of H|T then

H|{ShiftLeft T}
else [0] end

end

fun {ShiftRight L} 0|L end

ShiftRight just adds a zero to the left. ShiftLeft traverses L one element at
a time and builds the output one element at a time. We have added an else to
the case instruction. This is similar to an else in an if : it is executed if the
pattern of the case does not match. That is, when L is empty then the output
is [0] , i.e., a list with just zero inside.

Here is AddList :

fun {AddList L1 L2}
case L1 of H1|T1 then

case L2 of H2|T2 then
H1+H2|{AddList T1 T2}

end
else nil end

end

This is the most complicated function we have seen so far. It uses two case

instructions, one inside another, because we have to take apart two lists, L1 and
L2 . Now that we have the complete definition of Pascal , we can calculate any
row of Pascal’s triangle. For example, calling {Pascal 20} returns the 20th row:

[1 19 171 969 3876 11628 27132 50388 75582 92378
92378 75582 50388 27132 11628 3876 969 171 19 1]

Is this answer correct? How can you tell? It looks right: it is symmetric (reversing
the list gives the same list) and the first and second arguments are 1 and 19, which
are right. Looking at Figure 1.2, it is easy to see that the second element of the
nth row is always n−1 (it is always one more than the previous row and it starts
out zero for the first row). In the next section, we will see how to reason about
correctness.

Top-down software development

Let us summarize the technique we used to write Pascal :

• The first step is to understand how to do the calculation by hand.

• The second step writes a main function to solve the problem, assuming that
some auxiliary functions (here, ShiftLeft , ShiftRight , and AddList)
are known.

• The third step completes the solution by writing the auxiliary functions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.6 Correctness 11

The technique of first writing the main function and filling in the blanks af-
terwards is known as top-down software development. It is one of the most
well-known approaches, but it gives only part of the story.

1.6 Correctness

A program is correct if it does what we would like it to do. How can we tell
whether a program is correct? Usually it is impossible to duplicate the program’s
calculation by hand. We need other ways. One simple way, which we used before,
is to verify that the program is correct for outputs that we know. This increases
confidence in the program. But it does not go very far. To prove correctness in
general, we have to reason about the program. This means three things:

• We need a mathematical model of the operations of the programming lan-
guage, defining what they should do. This model is called the semantics of
the language.

• We need to define what we would like the program to do. Usually, this
is a mathematical definition of the inputs that the program needs and the
output that it calculates. This is called the program’s specification.

• We use mathematical techniques to reason about the program, using the
semantics. We would like to demonstrate that the program satisfies the
specification.

A program that is proved correct can still give incorrect results, if the system
on which it runs is incorrectly implemented. How can we be confident that the
system satisfies the semantics? Verifying this is a major task: it means verifying
the compiler, the run-time system, the operating system, and the hardware! This
is an important topic, but it is beyond the scope of the present book. For this
book, we place our trust in the Mozart developers, software companies, and
hardware manufacturers.2

Mathematical induction

One very useful technique is mathematical induction. This proceeds in two steps.
We first show that the program is correct for the simplest cases. Then we show
that, if the program is correct for a given case, then it is correct for the next case.
From these two steps, mathematical induction lets us conclude that the program
is always correct. This technique can be applied for integers and lists:

• For integers, the base case is 0 or 1, and for a given integer n the next case
is n + 1.

2Some would say that this is foolish. Paraphrasing Thomas Jefferson, they would say that
the price of correctness is eternal vigilance.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12 Introduction to Programming Concepts

• For lists, the base case is nil (the empty list) or a list with one or a few
elements, and for a given list T the next case is H|T (with no conditions on
H).

Let us see how induction works for the factorial function:

• {Fact 0} returns the correct answer, namely 1.

• Assume that {Fact N-1} is correct. Then look at the call {Fact N} . We
see that the if instruction takes the else case, and calculates N*{Fact

N-1} . By hypothesis, {Fact N-1} returns the right answer. Therefore,
assuming that the multiplication is correct, {Fact N} also returns the right
answer.

This reasoning uses the mathematical definition of factorial, namely n! = n ×
(n − 1)! if n > 0, and 0! = 1. Later in the book we will see more sophisticated
reasoning techniques. But the basic approach is always the same: start with the
language semantics and problem specification, and use mathematical reasoning
to show that the program correctly implements the specification.

1.7 Complexity

The Pascal function we defined above gets very slow if we try to calculate higher-
numbered rows. Row 20 takes a second or two. Row 30 takes many minutes. If
you try it, wait patiently for the result. How come it takes this much time? Let
us look again at the function Pascal :

fun {Pascal N}
if N==1 then [1]
else

{AddList {ShiftLeft {Pascal N-1}}
{ShiftRight {Pascal N-1}}}

end
end

Calling {Pascal N} will call {Pascal N-1} two times. Therefore, calling {Pascal

30} will call {Pascal 29} twice, giving four calls to {Pascal 28} , eight to
{Pascal 27} , and so forth, doubling with each lower row. This gives 229 calls
to {Pascal 1} , which is about half a billion. No wonder that {Pascal 30} is
slow. Can we speed it up? Yes, there is an easy way: just call {Pascal N-1}

once instead of twice. The second call gives the same result as the first, so if we
could just remember it then one call would be enough. We can remember it by
using a local variable. Here is a new function, FastPascal , that uses a local
variable:

fun {FastPascal N}
if N==1 then [1]
else L in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.8 Lazy evaluation 13

L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}

end
end

We declare the local variable L by adding “L in ” to the else part. This is just
like using declare , except that the variable exists only between the else and the
end . We bind L to the result of {FastPascal N-1} . Now we can use L wherever
we need it. How fast is FastPascal ? Try calculating row 30. This takes minutes
with Pascal , but is done practically instantaneously with FastPascal . A lesson
we can learn from this example is that using a good algorithm is more important
than having the best possible compiler or fastest machine.

Run-time guarantees of execution time

As this example shows, it is important to know something about a program’s
execution time. Knowing the exact time is less important than knowing that
the time will not blow up with input size. The execution time of a program as
a function of input size, up to a constant factor, is called the program’s time
complexity. What this function is depends on how the input size is measured.
We assume that it is measured in a way that makes sense for how the program
is used. For example, we take the input size of {Pascal N} to be simply the
integer N (and not, e.g., the amount of memory needed to store N).

The time complexity of {Pascal N} is proportional to 2n. This is an ex-
ponential function in n, which grows very quickly as n increases. What is the
time complexity of {FastPascal N} ? There are n recursive calls, and each call
processes a list of average size n/2. Therefore its time complexity is proportional
to n2. This is a polynomial function in n, which grows at a much slower rate
than an exponential function. Programs whose time complexity is exponential
are impractical except for very small inputs. Programs whose time complexity is
a low-order polynomial are practical.

1.8 Lazy evaluation

The functions we have written so far will do their calculation as soon as they
are called. This is called eager evaluation. Another way to evaluate functions is
called lazy evaluation.3 In lazy evaluation, a calculation is done only when the
result is needed. Here is a simple lazy function that calculates a list of integers:

fun lazy {Ints N}
N|{Ints N+1}

end

Calling {Ints 0} calculates the infinite list 0|1|2|3|4|5|... . This looks like
it is an infinite loop, but it is not. The lazy annotation ensures that the function

3These are sometimes called data-driven and demand-driven evaluation, respectively.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

14 Introduction to Programming Concepts

will only be evaluated when it is needed. This is one of the advantages of lazy
evaluation: we can calculate with potentially infinite data structures without any
loop boundary conditions. For example:

L={Ints 0}
{Browse L}

This displays the following, i.e., nothing at all:

L<Future>

(The browser displays values but does not affect their calculation.) The “Future ”
annotation means that L has a lazy function attached to it. If the value of L is
needed, then this function will be automatically called. Therefore to get more
results, we have to do something that needs the list. For example:

{Browse L.1}

This displays the first element, namely 0. We can calculate with the list as if it
were completely there:

case L of A|B|C|_ then {Browse A+B+C} end

This causes the first three elements of L to be calculated, and no more. What
does it display?

Lazy calculation of Pascal’s triangle

Let us do something useful with lazy evaluation. We would like to write a function
that calculates as many rows of Pascal’s triangle as are needed, but we do not
know beforehand how many. That is, we have to look at the rows to decide when
there are enough. Here is a lazy function that generates an infinite list of rows:

fun lazy {PascalList Row}
Row|{PascalList

{AddList {ShiftLeft Row}
{ShiftRight Row}}}

end

Calling this function and browsing it will display nothing:

declare
L={PascalList [1]}
{Browse L}

(The argument [1] is the first row of the triangle.) To display more results, they
have to be needed:

{Browse L.1}
{Browse L.2.1}

This displays the first and second rows.
Instead of writing a lazy function, we could write a function that takes N,

the number of rows we need, and directly calculates those rows starting from an
initial row:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.9 Higher-order programming 15

fun {PascalList2 N Row}
if N==1 then [Row]
else

Row|{PascalList2 N-1
{AddList {ShiftLeft Row}

{ShiftRight Row}}}
end

end

We can display 10 rows by calling {Browse {PascalList2 10 [1]}} . But
what if later on we decide that we need 11 rows? We would have to call PascalList2

again, with argument 11. This would redo all the work of defining the first 10
rows. The lazy version avoids redoing all this work. It is always ready to continue
where it left off.

1.9 Higher-order programming

We have written an efficient function, FastPascal , that calculates rows of Pas-
cal’s triangle. Now we would like to experiment with variations on Pascal’s tri-
angle. For example, instead of adding numbers to get each row, we would like
to subtract them, exclusive-or them (to calculate just whether they are odd or
even), or many other possibilities. One way to do this is to write a new ver-
sion of FastPascal for each variation. But this quickly becomes tiresome. Can
we somehow just have one generic version? This is indeed possible. Let us call
it GenericPascal . Whenever we call it, we pass it the customizing function
(adding, exclusive-oring, etc.) as an argument. The ability to pass functions as
arguments is known as higher-order programming.

Here is the definition of GenericPascal . It has one extra argument Op to
hold the function that calculates each number:

fun {GenericPascal Op N}
if N==1 then [1]
else L in

L={GenericPascal Op N-1}
{OpList Op {ShiftLeft L} {ShiftRight L}}

end
end

AddList is replaced by OpList . The extra argument Op is passed to OpList .
ShiftLeft and ShiftRight do not need to know Op, so we can use the old
versions. Here is the definition of OpList :

fun {OpList Op L1 L2}
case L1 of H1|T1 then

case L2 of H2|T2 then
{Op H1 H2}|{OpList Op T1 T2}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

16 Introduction to Programming Concepts

else nil end
end

Instead of doing an addition H1+H2, this version does {Op H1 H2} .

Variations on Pascal’s triangle

Let us define some functions to try out GenericPascal . To get the original
Pascal’s triangle, we can define the addition function:

fun {Add X Y} X+Y end

Now we can run {GenericPascal Add 5} .4 This gives the fifth row exactly as
before. We can define FastPascal using GenericPascal :

fun {FastPascal N} {GenericPascal Add N} end

Let us define another function:

fun {Xor X Y} if X==Y then 0 else 1 end end

This does an exclusive-or operation, which is defined as follows:

X Y {Xor X Y}

0 0 0
0 1 1
1 0 1
1 1 0

Exclusive-or lets us calculate the parity of each number in Pascal’s triangle, i.e.,
whether the number is odd or even. The numbers themselves are not calculated.
Calling {GenericPascal Xor N} gives the result:

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

1 0 1 0 1 0 1

.

Some other functions are given in the exercises.

1.10 Concurrency

We would like our program to have several independent activities, each of which
executes at its own pace. This is called concurrency. There should be no inter-
ference between the activities, unless the programmer decides that they need to

4We can also call {GenericPascal Number. ´ +´ 5} , since the addition operation
´ +´ is part of the module Number. But modules are not introduced in this chapter.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.11 Dataflow 17

X Y Z U

* *

+

Figure 1.3: A simple example of dataflow execution

communicate. This is how the real world works outside of the system. We would
like to be able to do this inside the system as well.

We introduce concurrency by creating threads. A thread is simply an executing
program like the functions we saw before. The difference is that a program can
have more than one thread. Threads are created with the thread instruction. Do
you remember how slow the original Pascal function was? We can call Pascal

inside its own thread. This means that it will not keep other calculations from
continuing. They may slow down, if Pascal really has a lot of work to do. This
is because the threads share the same underlying computer. But none of the
threads will stop. Here is an example:

thread P in
P={Pascal 30}
{Browse P}

end
{Browse 99*99}

This creates a new thread. Inside this new thread, we call {Pascal 30} and
then call Browse to display the result. The new thread has a lot of work to do.
But this does not keep the system from displaying 99*99 immediately.

1.11 Dataflow

What happens if an operation tries to use a variable that is not yet bound? From
a purely aesthetic point of view, it would be nice if the operation would simply
wait. Perhaps some other thread will bind the variable, and then the operation
can continue. This civilized behavior is known as dataflow. Figure 1.3 gives a
simple example: the two multiplications wait until their arguments are bound
and the addition waits until the multiplications complete. As we will see later in
the book, there are many good reasons to have dataflow behavior. For now, let
us see how dataflow and concurrency work together. Take for example:

declare X in
thread {Delay 10000} X=99 end
{Browse start} {Browse X*X}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

18 Introduction to Programming Concepts

The multiplication X*X waits until X is bound. The first Browse immediately
displays start . The second Browse waits for the multiplication, so it displays
nothing yet. The {Delay 10000} call pauses for 10000 milliseconds (i.e., 10
seconds). X is bound only after the delay continues. When X is bound, then the
multiplication continues and the second browse displays 9801. The two operations
X=99 and X*X can be done in any order with any kind of delay; dataflow execution
will always give the same result. The only effect a delay can have is to slow things
down. For example:

declare X in
thread {Browse start} {Browse X*X} end
{Delay 10000} X=99

This behaves exactly as before: the browser displays 9801 after 10 seconds. This
illustrates two nice properties of dataflow. First, calculations work correctly
independent of how they are partitioned between threads. Second, calculations
are patient: they do not signal errors, but simply wait.

Adding threads and delays to a program can radically change a program’s
appearance. But as long as the same operations are invoked with the same argu-
ments, it does not change the program’s results at all. This is the key property
of dataflow concurrency. This is why dataflow concurrency gives most of the
advantages of concurrency without the complexities that are usually associated
with it.

1.12 State

How can we let a function learn from its past? That is, we would like the function
to have some kind of internal memory, which helps it do its job. Memory is needed
for functions that can change their behavior and learn from their past. This kind
of memory is called explicit state. Just like for concurrency, explicit state models
an essential aspect of how the real world works. We would like to be able to do
this in the system as well. Later in the book we will see deeper reasons for having
explicit state. For now, let us just see how it works.

For example, we would like to see how often the FastPascal function is used.
Is there some way FastPascal can remember how many times it was called? We
can do this by adding explicit state.

A memory cell

There are lots of ways to define explicit state. The simplest way is to define a
single memory cell. This is a kind of box in which you can put any content.
Many programming languages call this a “variable”. We call it a “cell” to avoid
confusion with the variables we used before, which are more like mathemati-
cal variables, i.e., just short-cuts for values. There are three functions on cells:
NewCell creates a new cell, := (assignment) puts a new value in a cell, and @

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.13 Objects 19

(access) gets the current value stored in the cell. Access and assignment are also
called read and write. For example:

declare
C={NewCell 0}
C:=@C+1
{Browse @C}

This creates a cell C with initial content 0, adds one to the content, and then
displays it.

Adding memory to FastPascal

With a memory cell, we can let FastPascal count how many times it is called.
First we create a cell outside of FastPascal . Then, inside of FastPascal , we
add one to the cell’s content. This gives the following:

declare
C={NewCell 0}
fun {FastPascal N}

C:=@C+1
{GenericPascal Add N}

end

(To keep it short, this definition uses GenericPascal .)

1.13 Objects

Functions with internal memory are usually called objects. The extended version
of FastPascal we defined in the previous section is an object. It turns out that
objects are very useful beasts. Let us give another example. We will define a
counter object. The counter has a cell that keeps track of the current count. The
counter has two operations, Bumpand Read. Bumpadds one and then returns the
resulting count. Read just returns the count. Here is the definition:

declare
local C in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end

end

There is something special going on here: the cell is referenced by a local variable,
so it is completely invisible from the outside. This property is called encapsu-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

20 Introduction to Programming Concepts

lation. It means that nobody can mess with the counter’s internals. We can
guarantee that the counter will always work correctly no matter how it is used.
This was not true for the extended FastPascal because anyone could look at
and modify the cell.

We can bump the counter up:

{Browse {Bump}}
{Browse {Bump}}

What does this display? Bumpcan be used anywhere in a program to count how
many times something happens. For example, FastPascal could use Bump:

declare
fun {FastPascal N}

{Browse {Bump}}
{GenericPascal Add N}

end

1.14 Classes

The last section defined one counter object. What do we do if we need more
than one counter? It would be nice to have a “factory” that can make as many
counters as we need. Such a factory is called a class. Here is one way to define
it:

declare
fun {NewCounter}
C Bump Read in

C={NewCell 0}
fun {Bump}

C:=@C+1
@C

end
fun {Read}

@C
end
counter(bump:Bump read:Read)

end

NewCounter is a function that creates a new cell and returns new Bumpand Read

functions for it. Returning functions as results of functions is another form of
higher-order programming.

We group the Bump and Read functions together into one compound data
structure called a record. The record counter(bump:Bump read:Read) is char-
acterized by its label counter and by its two fields, called bump and read . Let
us create two counters:

declare
Ctr1={NewCounter}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.15 Nondeterminism and time 21

C={NewCell 0} C:=2 C:=1

C={NewCell 0} C:=1 C:=2

time

final content of C is 1

final content of C is 2
First execution:

Second execution:

Figure 1.4: All possible executions of the first nondeterministic example

Ctr2={NewCounter}

Each counter has its own internal memory and its own Bumpand Read functions.
We can access these functions by using the “. ” (dot) operator. Ctr1.bump

accesses the Bumpfunction of the first counter. Let us bump the first counter and
display its result:

{Browse {Ctr1.bump}}

Towards object-oriented programming

We have given an example of a simple class, NewCounter , that defines two op-
erations, Bump and Read. Operations defined inside classes are usually called
methods. The class can be used to make as many counter objects as we need.
All these objects share the same methods, but each has its own separate internal
memory. Programming with classes and objects is called object-based program-
ming.

Adding one new idea, inheritance, to object-based programming gives object-
oriented programming. Inheritance means that a new class can be defined in
terms of existing classes by specifying just how the new class is different. We say
the new class inherits from the existing classes. Inheritance is a powerful concept
for structuring programs. It lets a class be defined incrementally, in different
parts of the program. Inheritance is quite a tricky concept to use correctly. To
make inheritance easy to use, object-oriented languages add special syntax for it.
Chapter 7 covers object-oriented programming and shows how to program with
inheritance.

1.15 Nondeterminism and time

We have seen how to add concurrency and state to a program separately. What
happens when a program has both? It turns out that having both at the same
time is a tricky business, because the same program can give different results
from one execution to the next. This is because the order in which threads access
the state can change from one execution to the next. This variability is called

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

22 Introduction to Programming Concepts

nondeterminism. Nondeterminism exists because we lack knowledge of the exact
time when each basic operation executes. If we would know the exact time,
then there would be no nondeterminism. But we cannot know this time, simply
because threads are independent. Since they know nothing of each other, they
also do not know which instructions each has executed.

Nondeterminism by itself is not a problem; we already have it with concur-
rency. The difficulties occur if the nondeterminism shows up in the program,
i.e., if it is observable. (An observable nondeterminism is sometimes called a race
condition.) Here is an example:

declare
C={NewCell 0}
thread

C:=1
end
thread

C:=2
end

What is the content of C after this program executes? Figure 1.4 shows the two
possible executions of this program. Depending on which one is done, the final
cell content can be either 1 or 2. The problem is that we cannot say which. This
is a simple case of observable nondeterminism. Things can get much trickier. For
example, let us use a cell to hold a counter that can be incremented by several
threads:

declare
C={NewCell 0}
thread I in

I=@C
C:=I+1

end
thread J in

J=@C
C:=J+1

end

What is the content of C after this program executes? It looks like each thread
just adds 1 to the content, making it 2. But there is a surprise lurking: the
final content can also be 1! How is this possible? Try to figure out why before
continuing.

Interleaving

The content can be 1 because thread execution is interleaved. That is, threads
take turns each executing a little. We have to assume that any possible interleav-
ing can occur. For example, consider the execution of Figure 1.5. Both I and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.16 Atomicity 23

time

C={NewCell 0} I=@C J=@C C:=I+1

(C contains 1) (C contains 1)(I equals 0) (J equals 0)(C contains 0)

C:=J+1

Figure 1.5: One possible execution of the second nondeterministic example

J are bound to 0. Then, since I+1 and J+1 are both 1, the cell gets assigned 1
twice. The final result is that the cell content is 1.

This is a simple example. More complicated programs have many more pos-
sible interleavings. Programming with concurrency and state together is largely
a question of mastering the interleavings. In the history of computer technol-
ogy, many famous and dangerous bugs were due to designers not realizing how
difficult this really is. The Therac-25 radiation therapy machine is an infamous
example. It sometimes gave its patients radiation doses that were thousands of
times greater than normal, resulting in death or serious injury [112].

This leads us to a first lesson for programming with state and concurrency: if
at all possible, do not use them together! It turns out that we often do not need
both together. When a program does need to have both, it can almost always be
designed so that their interaction is limited to a very small part of the program.

1.16 Atomicity

Let us think some more about how to program with concurrency and state. One
way to make it easier is to use atomic operations. An operation is atomic if no
intermediate states can be observed. It seems to jump directly from the initial
state to the result state.

With atomic operations we can solve the interleaving problem of the cell
counter. The idea is to make sure that each thread body is atomic. To do this,
we need a way to build atomic operations. We introduce a new language entity,
called lock, for this. A lock has an inside and an outside. The programmer defines
the instructions that are inside. A lock has the property that only one thread at
a time can be executing inside. If a second thread tries to get in, then it will wait
until the first gets out. Therefore what happens inside the lock is atomic.

We need two operations on locks. First, we create a new lock by calling the
function NewLock . Second, we define the lock’s inside with the instruction lock

L then ... end , where L is a lock. Now we can fix the cell counter:

declare
C={NewCell 0}
L={NewLock}
thread

lock L then I in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

24 Introduction to Programming Concepts

I=@C
C:=I+1

end
end
thread

lock L then J in
J=@C
C:=J+1

end
end

In this version, the final result is always 2. Both thread bodies have to be guarded
by the same lock, otherwise the undesirable interleaving can still occur. Do you
see why?

1.17 Where do we go from here

This chapter has given a quick overview of many of the most important concepts
in programming. The intuitions given here will serve you well in the chapters to
come, when we define in a precise way the concepts and the computation models
they are part of.

1.18 Exercises

1. Section 1.1 uses the system as a calculator. Let us explore the possibilities:

(a) Calculate the exact value of 2100 without using any new functions. Try
to think of short-cuts to do it without having to type 2*2*2*...*2

with one hundred 2’s. Hint: use variables to store intermediate results.

(b) Calculate the exact value of 100! without using any new functions. Are
there any possible short-cuts in this case?

2. Section 1.3 defines the function Combto calculate combinations. This func-
tion is not very efficient because it might require calculating very large
factorials. The purpose of this exercise is to write a more efficient version
of Comb.

(a) As a first step, use the following alternative definition to write a more
efficient function:(

n
r

)
=

n× (n− 1)× · · · × (n− r + 1)
r × (r − 1)× · · · × 1

Calculate the numerator and denominator separately and then divide
them. Make sure that the result is 1 when r = 0.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.18 Exercises 25

(b) As a second step, use the following identity:

(
n
r

)
=

(
n

n− r

)

to increase efficiency even more. That is, if r > n/2 then do the
calculation with n− r instead of with r.

3. Section 1.6 explains the basic ideas of program correctness and applies them
to show that the factorial function defined in Section 1.3 is correct. In this
exercise, apply the same ideas to the function Pascal of Section 1.5 to show
that it is correct.

4. What does Section 1.7 say about programs whose time complexity is a
high-order polynomial? Are they practical or not? What do you think?

5. Section 1.8 defines the lazy function Ints that lazily calculates an infinite
list of integers. Let us define a function that calculates the sum of a list of
integers:

fun {SumList L}
case L of X|L1 then X+{SumList L1}
else 0 end

end

What happens if we call {SumList {Ints 0}} ? Is this a good idea?

6. Section 1.9 explains how to use higher-order programming to calculate vari-
ations on Pascal’s triangle. The purpose of this exercise is to explore these
variations.

(a) Calculate individual rows using subtraction, multiplication, and other
operations. Why does using multiplication give a triangle with all
zeroes? Try the following kind of multiplication instead:

fun {Mul1 X Y} (X+1)*(Y+1) end

What does the 10th row look like when calculated with Mul1 ?

(b) The following loop instruction will calculate and display 10 rows at a
time:

for I in 1..10 do {Browse {GenericPascal Op I}} end

Use this loop instruction to make it easier to explore the variations.

7. This exercise compares variables and cells. We give two code fragments.
The first uses variables:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

26 Introduction to Programming Concepts

local X in
X=23
local X in

X=44
end
{Browse X}

end

The second uses a cell:

local X in
X={NewCell 23}
X:=44
{Browse @X}

end

In the first, the identifier X refers to two different variables. In the second,
X refers to a cell. What does Browse display in each fragment? Explain.

8. This exercise investigates how to use cells together with functions. Let us
define a function {Accumulate N} that accumulates all its inputs, i.e., it
adds together all the arguments of all calls. Here is an example:

{Browse {Accumulate 5}}
{Browse {Accumulate 100}}
{Browse {Accumulate 45}}

This should display 5, 105, and 150, assuming that the accumulator contains
zero at the start. Here is a wrong way to write Accumulate :

declare
fun {Accumulate N}
Acc in

Acc={NewCell 0}
Acc:=@Acc+N
@Acc

end

What is wrong with this definition? How would you correct it?

9. This exercise investigates another way of introducing state: a memory store.
The memory store can be used to make an improved version of FastPascal

that remembers previously-calculated rows.

(a) A memory store is similar to the memory of a computer. It has a
series of memory cells, numbered from 1 up to the maximum used so
far. There are four functions on memory stores: NewStore creates a
new store, Put puts a new value in a memory cell, Get gets the current

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

1.18 Exercises 27

value stored in a memory cell, and Size gives the highest-numbered
cell used so far. For example:

declare
S={NewStore}
{Put S 2 [22 33]}
{Browse {Get S 2}}
{Browse {Size S}}

This stores [22 33] in memory cell 2, displays [22 33] , and then
displays 2. Load into the Mozart system the memory store as defined
in the supplements file on the book’s Web site. Then use the interactive
interface to understand how the store works.

(b) Now use the memory store to write an improved version of FastPascal ,
called FasterPascal , that remembers previously-calculated rows. If
a call asks for one of these rows, then the function can return it directly
without having to recalculate it. This technique is sometimes called
memoization since the function makes a “memo” of its previous work.
This improves its performance. Here’s how it works:

• First make a store S available to FasterPascal .

• For the call {FasterPascal N} , let M be the number of rows
stored in S, i.e., rows 1 up to M are in S.

• If N>M then compute rows M+1 up to N and store them in S.

• Return the Nth row by looking it up in S.

Viewed from the outside, FasterPascal behaves identically to FastPascal

except that it is faster.

(c) We have given the memory store as a library. It turns out that the
memory store can be defined by using a memory cell. We outline how
it can be done and you can write the definitions. The cell holds the
store contents as a list of the form [N1|X1 ... Nn|Xn] , where the
cons Ni|Xi means that cell number Ni has content Xi . This means
that memory stores, while they are convenient, do not introduce any
additional expressive power over memory cells.

(d) Section 1.13 defines a counter with just one operation, Bump. This
means that it is not possible to read the counter without adding one
to it. This makes it awkward to use the counter. A practical counter
would have at least two operations, say Bump and Read, where Read

returns the current count without changing it. The practical counter
looks like this:

declare
local C in

C={NewCell 0}
fun {Bump}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

28 Introduction to Programming Concepts

C:=@C+1
@C

end
fun {Read}

@C
end

end

Change your implementation of the memory store so that it uses this
counter to keep track of the store’s size.

10. Section 1.15 gives an example using a cell to store a counter that is incre-
mented by two threads.

(a) Try executing this example several times. What results do you get?
Do you ever get the result 1? Why could this be?

(b) Modify the example by adding calls to Delay in each thread. This
changes the thread interleaving without changing what calculations
the thread does. Can you devise a scheme that always results in 1?

(c) Section 1.16 gives a version of the counter that never gives the result 1.
What happens if you use the delay technique to try to get a 1 anyway?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part II

General Computation Models

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 2

Declarative Computation Model

“Non sunt multiplicanda entia praeter necessitatem.”
“Do not multiply entities beyond necessity.”
– Ockham’s Razor, William of Ockham (1285–1349?)

Programming encompasses three things:

• First, a computation model, which is a formal system that defines a lan-
guage and how sentences of the language (e.g., expressions and statements)
are executed by an abstract machine. For this book, we are interested in
computation models that are useful and intuitive for programmers. This
will become clearer when we define the first one later in this chapter.

• Second, a set of programming techniques and design principles used to write
programs in the language of the computation model. We will sometimes
call this a programming model. A programming model is always built on
top of a computation model.

• Third, a set of reasoning techniques to let you reason about programs,
to increase confidence that they behave correctly and to calculate their
efficiency.

The above definition of computation model is very general. Not all computation
models defined in this way will be useful for programmers. What is a reasonable
computation model? Intuitively, we will say that a reasonable model is one that
can be used to solve many problems, that has straightforward and practical rea-
soning techniques, and that can be implemented efficiently. We will have more
to say about this question later on. The first and simplest computation model
we will study is declarative programming. For now, we define this as evaluating
functions over partial data structures. This is sometimes called stateless program-
ming, as opposed to stateful programming (also called imperative programming)
which is explained in Chapter 6.

The declarative model of this chapter is one of the most fundamental com-
putation models. It encompasses the core ideas of the two main declarative

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

32 Declarative Computation Model

paradigms, namely functional and logic programming. It encompasses program-
ming with functions over complete values, as in Scheme and Standard ML. It
also encompasses deterministic logic programming, as in Prolog when search is
not used. And finally, it can be made concurrent without losing its good proper-
ties (see Chapter 4).

Declarative programming is a rich area – most of the ideas of the more ex-
pressive computation models are already there, at least in embryonic form. We
therefore present it in two chapters. This chapter defines the computation model
and a practical language based on it. The next chapter, Chapter 3, gives the
programming techniques of this language. Later chapters enrich the basic mod-
el with many concepts. Some of the most important are exception handling,
concurrency, components (for programming in the large), capabilities (for encap-
sulation and security), and state (leading to objects and classes). In the context of
concurrency, we will talk about dataflow, lazy execution, message passing, active
objects, monitors, and transactions. We will also talk about user interface design,
distribution (including fault tolerance), and constraints (including search).

Structure of the chapter

The chapter consists of seven sections:

• Section 2.1 explains how to define the syntax and semantics of practical pro-
gramming languages. Syntax is defined by a context-free grammar extended
with language constraints. Semantics is defined in two steps: by translat-
ing a practical language into a simple kernel language and then giving the
semantics of the kernel language. These techniques will be used throughout
the book. This chapter uses them to define the declarative computation
model.

• The next three sections define the syntax and semantics of the declarative
model:

– Section 2.2 gives the data structures: the single-assignment store and
its contents, partial values and dataflow variables.

– Section 2.3 defines the kernel language syntax.

– Section 2.4 defines the kernel language semantics in terms of a simple
abstract machine. The semantics is designed to be intuitive and to
permit straightforward reasoning about correctness and complexity.

• Section 2.5 defines a practical programming language on top of the kernel
language.

• Section 2.6 extends the declarative model with exception handling, which
allows programs to handle unpredictable and exceptional situations.

• Section 2.7 gives a few advanced topics to let interested readers deepen their
understanding of the model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 33

 ’N’ ’=’ ’=’ 0 ’ ’ t h e n ’ ’ 1 ’\n’ ’ ’ e l s e

fun

ifNFact

1 *==

N 0 FactN

−

1N

a statement
representing
parse tree

sequence of
tokens

Parser

Tokenizer

[’fun’ ’{’ ’Fact’ ’N’ ’}’ ’if’ ’N’ ’==’ ’0’ ’then’

 ’end’]

[f u n ’{’ ’F’ a c t ’ ’ ’N’ ’}’ ’\n’ ’ ’ i f ’ ’

 d ’\n’ e n d]

sequence of
characters

 ’else’ ’N’ ’*’ ’{’ ’Fact’ ’N’ ’−’ ’1’ ’}’ ’end’

 ’ ’ N ’*’ ’{’ ’F’ a c t ’ ’ ’N’ ’−’ 1 ’}’ ’ ’ e n

Figure 2.1: From characters to statements

2.1 Defining practical programming languages

Programming languages are much simpler than natural languages, but they can
still have a surprisingly rich syntax, set of abstractions, and libraries. This is
especially true for languages that are used to solve real-world problems, which we
call practical languages. A practical language is like the toolbox of an experienced
mechanic: there are many different tools for many different purposes and all tools
are there for a reason.

This section sets the stage for the rest of the book by explaining how we
will present the syntax (“grammar”) and semantics (“meaning”) of practical pro-
gramming languages. With this foundation we will be ready to present the first
computation model of the book, namely the declarative computation model. We
will continue to use these techniques throughout the book to define computation
models.

2.1.1 Language syntax

The syntax of a language defines what are the legal programs, i.e., programs that
can be successfully executed. At this stage we do not care what the programs are
actually doing. That is semantics and will be handled in the next section.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

34 Declarative Computation Model

Grammars

A grammar is a set of rules that defines how to make ‘sentences’ out of ‘words’.
Grammars can be used for natural languages, like English or Swedish, as well as
for artificial languages, like programming languages. For programming languages,
‘sentences’ are usually called ‘statements’ and ‘words’ are usually called ‘tokens’.
Just as words are made of letters, tokens are made of characters. This gives us
two levels of structure:

statement (‘sentence’) = sequence of tokens (‘words’)
token (‘word’) = sequence of characters (‘letters’)

Grammars are useful both for defining statements and tokens. Figure 2.1 gives
an example to show how character input is transformed into a statement. The
example in the figure is the definition of Fact :

fun {Fact N}
if N==0 then 1
else N*{Fact N-1} end

end

The input is a sequence of characters, where ´ ´ represents the space and ´ \n ´

represents the newline. This is first transformed into a sequence of tokens and
subsequently into a parse tree. The syntax of both sequences in the figure is com-
patible with the list syntax we use throughout the book. Whereas the sequences
are “flat”, the parse tree shows the structure of the statement. A program that
accepts a sequence of characters and returns a sequence of tokens is called a to-
kenizer or lexical analyzer. A program that accepts a sequence of tokens and
returns a parse tree is called a parser.

Extended Backus-Naur Form

One of the most common notations for defining grammars is called Extended
Backus-Naur Form (EBNF for short), after its inventors John Backus and Pe-
ter Naur. The EBNF notation distinguishes terminal symbols and nonterminal
symbols. A terminal symbol is simply a token. A nonterminal symbol represents
a sequence of tokens. The nonterminal is defined by means of a grammar rule,
which shows how to expand it into tokens. For example, the following rule defines
the nonterminal 〈digit〉:

〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

It says that 〈digit〉 represents one of the ten tokens 0, 1, ..., 9. The symbol
“|” is read as “or”; it means to pick one of the alternatives. Grammar rules can
themselves refer to other nonterminals. For example, we can define a nonterminal
〈int〉 that defines how to write positive integers:

〈int〉 ::= 〈digit〉 { 〈digit〉 }

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 35

Context-free grammar

Expresses restrictions imposed by the language-
(e.g., variables must be declared before use)

Makes the grammar context-sensitive-

(e.g., with EBNF)

Set of extra conditions

Is easy to read and understand-

Defines a superset of the language-

+

Figure 2.2: The context-free approach to language syntax

This rule says that an integer is a digit followed by zero or more digits. The
braces “{ ... }” mean to repeat whatever is inside any number of times, including
zero.

How to read grammars

To read a grammar, start with any nonterminal symbol, say 〈int〉. Reading the
corresponding grammar rule from left to right gives a sequence of tokens according
to the following scheme:

• Each terminal symbol encountered is added to the sequence.

• For each nonterminal symbol encountered, read its grammar rule and re-
place the nonterminal by the sequence of tokens that it expands into.

• Each time there is a choice (with |), pick any of the alternatives.

The grammar can be used both to verify that a statement is legal and to generate
statements.

Context-free and context-sensitive grammars

Any well-defined set of statements is called a formal language, or language for
short. For example, the set of all possible statements generated by a grammar
and one nonterminal symbol is a language. Techniques to define grammars can
be classified according to how expressive they are, i.e., what kinds of languages
they can generate. For example, the EBNF notation given above defines a class of
grammars called context-free grammars. They are so-called because the expansion
of a nonterminal, e.g., 〈digit〉, is always the same no matter where it is used.

For most practical programming languages, there is usually no context-free
grammar that generates all legal programs and no others. For example, in many
languages a variable has to be declared before it is used. This condition cannot
be expressed in a context-free grammar because the nonterminal that uses the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

36 Declarative Computation Model

*

+

3 4

+

*

2 3

2 4

Figure 2.3: Ambiguity in a context-free grammar

variable must only allow using already-declared variables. This is a context de-
pendency. A grammar that contains a nonterminal whose use depends on the
context where it is used is called a context-sensitive grammar.

The syntax of most practical programming languages is therefore defined in
two parts (see Figure 2.2): as a context-free grammar supplemented with a set of
extra conditions imposed by the language. The context-free grammar is kept in-
stead of some more expressive notation because it is easy to read and understand.
It has an important locality property: a nonterminal symbol can be understood
by examining only the rules needed to define it; the (possibly much more numer-
ous) rules that use it can be ignored. The context-free grammar is corrected by
imposing a set of extra conditions, like the declare-before-use restriction on vari-
ables. Taking these conditions into account gives a context-sensitive grammar.

Ambiguity

Context-free grammars can be ambiguous, i.e., there can be several parse trees
that correspond to a given token sequence. For example, here is a simple grammar
for arithmetic expressions with addition and multiplication:

〈exp〉 ::= 〈int〉 | 〈exp〉 〈op〉 〈exp〉
〈op〉 ::= + | *

The expression 2*3+4 has two parse trees, depending on how the two occurrences
of 〈exp〉 are read. Figure 2.3 shows the two trees. In one tree, the first 〈exp〉 is 2
and the second 〈exp〉 is 3+4. In the other tree, they are 2*3 and 4, respectively.

Ambiguity is usually an undesirable property of a grammar since it makes
it unclear exactly what program is being written. In the expression 2*3+4, the
two parse trees give different results when evaluating the expression: one gives
14 (the result of computing 2*(3+4)) and the other gives 10 (the result of com-
puting (2*3)+4). Sometimes the grammar rules can be rewritten to remove the
ambiguity, but this can make the rules more complicated. A more convenient
approach is to add extra conditions. These conditions restrict the parser so that
only one parse tree is possible. We say that they disambiguate the grammar.

For expressions with binary operators such as the arithmetic expressions given
above, the usual approach is to add two conditions, precedence and associativity:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 37

• Precedence is a condition on an expression with different operators, like
2*3+4. Each operator is given a precedence level. Operators with high
precedences are put as deep in the parse tree as possible, i.e., as far away
from the root as possible. If * has higher precedence than +, then the parse
tree (2*3)+4 is chosen over the alternative 2*(3+4). If * is deeper in the
tree than +, then we say that * binds tighter than +.

• Associativity is a condition on an expression with the same operator, like
2-3-4. In this case, precedence is not enough to disambiguate because all
operators have the same precedence. We have to choose between the trees
(2-3)-4 and 2-(3-4). Associativity determines whether the leftmost or
the rightmost operator binds tighter. If the associativity of - is left, then
the tree (2-3)-4 is chosen. If the associativity of - is right, then the other
tree 2-(3-4) is chosen.

Precedence and associativity are enough to disambiguate all expressions defined
with operators. Appendix C gives the precedence and associativity of all the
operators used in this book.

Syntax notation used in this book

In this chapter and the rest of the book, each new data type and language con-
struct is introduced together with a small syntax diagram that shows how it fits
in the whole language. The syntax diagram gives grammar rules for a simple
context-free grammar of tokens. The notation is carefully designed to satisfy two
basic principles:

• All grammar rules can stand on their own. No later information will ever
invalidate a grammar rule. That is, we never give an incorrect grammar
rule just to “simplify” the presentation.

• It is always clear by inspection when a grammar rule completely defines a
nonterminal symbol or when it gives only a partial definition. A partial
definition always ends in three dots “...”.

All syntax diagrams used in the book are summarized in Appendix C. This
appendix also gives the lexical syntax of tokens, i.e., the syntax of tokens in
terms of characters. Here is an example of a syntax diagram with two grammar
rules that illustrates our notation:

〈statement〉 ::= skip | 〈expression〉 ´ =´ 〈expression〉 | ...
〈expression〉 ::= 〈variable〉 | 〈int〉 | ...

These rules give partial definitions of two nonterminals, 〈statement〉 and 〈expression〉.
The first rule says that a statement can be the keyword skip , or two expressions
separated by the equals symbol =, or something else. The second rule says that
an expression can be a variable, an integer, or something else. To avoid confusion

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

38 Declarative Computation Model

with the grammar rule’s own syntax, a symbol that occurs literally in the text
is always quoted with single quotes. For example, the equals symbol is shown as
´ =´ . Keywords are not quoted, since for them no confusion is possible. A choice
between different possibilities in the grammar rule is given by a vertical bar |.

Here is a second example to give the remaining notation:

〈statement〉 ::= if 〈expression〉 then 〈statement〉
{ elseif 〈expression〉 then 〈statement〉 }
[else 〈statement〉] end | ...

〈expression〉 ::= ´ [´ { 〈expression〉 }+ ´] ´ | ...
〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉

The first rule defines the if statement. There is an optional sequence of elseif

clauses, i.e., there can be any number of occurrences including zero. This is
denoted by the braces { ... }. This is followed by an optional else clause, i.e., it
can occur zero or one times. This is denoted by the brackets [...]. The second
rule defines the syntax of explicit lists. They must have at least one element, e.g.,
[5 6 7] is valid but [] is not (note the space that separates the [and the]).
This is denoted by { ... }+. The third rule defines the syntax of record labels.
This is a complete definition. There are five possibilities and no more will ever
be given.

2.1.2 Language semantics

The semantics of a language defines what a program does when it executes.
Ideally, the semantics should be defined in a simple mathematical structure that
lets us reason about the program (including its correctness, execution time, and
memory use) without introducing any irrelevant details. Can we achieve this for a
practical language without making the semantics too complicated? The technique
we use, which we call the kernel language approach, gives an affirmative answer
to this question.

Modern programming languages have evolved through more than five decades
of experience in constructing programmed solutions to complex, real-world prob-
lems.1 Modern programs can be quite complex, reaching sizes measured in mil-
lions of lines of code, written by large teams of human programmers over many
years. In our view, languages that scale to this level of complexity are successful
in part because they model some essential aspects of how to construct complex
programs. In this sense, these languages are not just arbitrary constructions of
the human mind. We would therefore like to understand them in a scientific way,
i.e., by explaining their behavior in terms of a simple underlying model. This is
the deep motivation behind the kernel language approach.

1The figure of five decades is somewhat arbitrary. We measure it from the first working
stored-program computer, the Manchester Mark I. According to lab documents, it ran its first
program on June 21, 1948 [178].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 39

Practical language

Kernel language

Translation

proc {Sqr X Y}

fun {Sqr X} X*X end
B={Sqr {Sqr A}}

 {’*’ X X Y}
end

end
 {Sqr T B}
 {Sqr A T}
local T in - Has a formal semantics (e.g.,

an operational, axiomatic, or
denotational semantics)

-
intuitive concepts
Contains a minimal set of

Is easy for the programmer
to understand and reason in

-

for the programmer
Provides useful abstractions-

Can be extended with
linguistic abstractions

-

Figure 2.4: The kernel language approach to semantics

The kernel language approach

This book uses the kernel language approach to define the semantics of program-
ming languages. In this approach, all language constructs are defined in terms
of translations into a core language known as the kernel language. The kernel
language approach consists of two parts (see Figure 2.4):

• First, define a very simple language, called the kernel language. This lan-
guage should be easy to reason in and be faithful to the space and time
efficiency of the implementation. The kernel language and the data struc-
tures it manipulates together form the kernel computation model.

• Second, define a translation scheme from the full programming language
to the kernel language. Each grammatical construct in the full language is
translated into the kernel language. The translation should be as simple as
possible. There are two kinds of translation, namely linguistic abstraction
and syntactic sugar. Both are explained below.

The kernel language approach is used throughout the book. Each computation
model has its kernel language, which builds on its predecessor by adding one new
concept. The first kernel language, which is presented in this chapter, is called
the declarative kernel language. Many other kernel languages are presented later
on in the book.

Formal semantics

The kernel language approach lets us define the semantics of the kernel language in
any way we want. There are four widely-used approaches to language semantics:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

40 Declarative Computation Model

• An operational semantics shows how a statement executes in terms of an
abstract machine. This approach always works well, since at the end of the
day all languages execute on a computer.

• An axiomatic semantics defines a statement’s semantics as the relation be-
tween the input state (the situation before executing the statement) and
the output state (the situation after executing the statement). This relation
is given as a logical assertion. This is a good way to reason about state-
ment sequences, since the output assertion of each statement is the input
assertion of the next. It therefore works well with stateful models, since a
state is a sequence of values. Section 6.6 gives an axiomatic semantics of
Chapter 6’s stateful model.

• A denotational semantics defines a statement as a function over an ab-
stract domain. This works well for declarative models, but can be applied
to other models as well. It gets complicated when applied to concurrent
languages. Sections 2.7.1 and 4.9.2 explain functional programming, which
is particularly close to denotational semantics.

• A logical semantics defines a statement as a model of a logical theory. This
works well for declarative and relational computation models, but is hard
to apply to other models. Section 9.3 gives a logical semantics of the declar-
ative and relational computation models.

Much of the theory underlying these different semantics is of interest primarily to
mathematicians, not to programmers. It is outside the scope of the book to give
this theory. The principal formal semantics we give in this book is an operational
semantics. We define it for each computation model. It is detailed enough to
be useful for reasoning about correctness and complexity yet abstract enough to
avoid irrelevant clutter. Chapter 13 collects all these operational semantics into
a single formalism with a compact and readable notation.

Throughout the book, we give an informal semantics for every new language
construct and we often reason informally about programs. These informal pre-
sentations are always based on the operational semantics.

Linguistic abstraction

Both programming languages and natural languages can evolve to meet their
needs. When using a programming language, at some point we may feel the need
to extend the language, i.e., to add a new linguistic construct. For example, the
declarative model of this chapter has no looping constructs. Section 3.6.3 defines
a for construct to express certain kinds of loops that are useful for writing
declarative programs. The new construct is both an abstraction and an addition
to the language syntax. We therefore call it a linguistic abstraction. A practical
programming language consists of a set of linguistic abstractions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 41

There are two phases to defining a linguistic abstraction. First, define a new
grammatical construct. Second, define its translation into the kernel language.
The kernel language is not changed. This book gives many examples of useful
linguistic abstractions, e.g., functions (fun), loops (for), lazy functions (fun

lazy), classes (class), reentrant locks (lock), and others.2 Some of these are
part of the Mozart system. The others can be added to Mozart with the gump

parser-generator tool [104]. Using this tool is beyond the scope of this book.
A simple example of a linguistic abstraction is the function syntax, which

uses the keyword fun . This is explained in Section 2.5.2. We have already
programmed with functions in Chapter 1. But the declarative kernel language
of this chapter only has procedure syntax. Procedure syntax is chosen for the
kernel since all arguments are explicit and there can be multiple outputs. There
are other, deeper reasons for choosing procedure syntax which are explained later
in this chapter. Because function syntax is so useful, though, we add it as a
linguistic abstraction.

We define a syntax for both function definitions and function calls, and a
translation into procedure definitions and procedure calls. The translation lets
us answer all questions about function calls. For example, what does {F1 {F2

X} {F3 Y}} mean exactly (nested function calls)? Is the order of these function
calls defined? If so, what is the order? There are many possibilities. Some
languages leave the order of argument evaluation unspecified, but assume that a
function’s arguments are evaluated before the function. Other languages assume
that an argument is evaluated when and if its result is needed, not before. So even
as simple a thing as nested function calls does not necessarily have an obvious
semantics. The translation makes it clear what the semantics is.

Linguistic abstractions are useful for more than just increasing the expressive-
ness of a program. They can also improve other properties such as correctness,
security, and efficiency. By hiding the abstraction’s implementation from the pro-
grammer, the linguistic support makes it impossible to use the abstraction in the
wrong way. The compiler can use this information to give more efficient code.

Syntactic sugar

It is often convenient to provide a short-cut notation for frequently-occurring
idioms. This notation is part of the language syntax and is defined by grammar
rules. This notation is called syntactic sugar. Syntactic sugar is analogous to
linguistic abstraction in that its meaning is defined precisely by translating it
into the full language. But it should not be confused with linguistic abstraction:
it does not provide a new abstraction, but just reduces program size and improves
program readability.

We give an example of syntactic sugar that is based on the local statement.

2Logic gates (gate) for circuit descriptions, mailboxes (receive) for message-passing
concurrency, and currying and list comprehensions as in modern functional languages, cf.,
Haskell.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

42 Declarative Computation Model

Programming language

Mathematical study
of programming

Foundational calculusKernel language Abstract machine

Efficient execution
on a real machine

Aid the programmer
in reasoning and
understanding

Translations

Figure 2.5: Translation approaches to language semantics

Local variables can always be defined by using the statement local X in ...

end . When this statement is used inside another, it is convenient to have syntactic
sugar that lets us leave out the keywords local and end . Instead of:

if N==1 then [1]
else

local L in
...

end
end

we can write:

if N==1 then [1]
else L in

...
end

which is both shorter and more readable than the full notation. Other examples
of syntactic sugar are given in Section 2.5.1.

Language design

Linguistic abstractions are a basic tool for language design. Any abstraction that
we define has three phases in its lifecycle. When first we define it, it has no lin-
guistic support, i.e., there is no syntax in the language designed to make it easy
to use. If at some point, we suspect that it is especially basic and useful, we can
decide to give it linguistic support. It then becomes a linguistic abstraction. This
is an exploratory phase, i.e., there is no commitment that the linguistic abstrac-
tion will become part of the language. If the linguistic abstraction is successful,
i.e., it simplifies programs and is useful to programmers, then it becomes part of
the language.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.1 Defining practical programming languages 43

Other translation approaches

The kernel language approach is an example of a translation approach to seman-
tics, i.e., it is based on a translation from one language to another. Figure 2.5
shows the three ways that the translation approach has been used for defining
programming languages:

• The kernel language approach, used throughout the book, is intended for the
programmer. Its concepts correspond directly to programming concepts.

• The foundational approach is intended for the mathematician. Examples
are the Turing machine, the λ calculus (underlying functional program-
ming), first-order logic (underlying logic programming), and the π calculus
(to model concurrency). Because these calculi are intended for formal math-
ematical study, they have as few elements as possible.

• The machine approach is intended for the implementor. Programs are trans-
lated into an idealized machine, which is traditionally called an abstract
machine or a virtual machine.3 It is relatively easy to translate idealized
machine code into real machine code.

Because we focus on practical programming techniques, this book uses only the
kernel language approach.

The interpreter approach

An alternative to the translation approach is the interpreter approach. The lan-
guage semantics is defined by giving an interpreter for the language. New lan-
guage features are defined by extending the interpreter. An interpreter is a pro-
gram written in language L1 that accepts programs written in another language
L2 and executes them. This approach is used by Abelson & Sussman [2]. In their
case, the interpreter is metacircular, i.e., L1 and L2 are the same language L.
Adding new language features, e.g., for concurrency and lazy evaluation, gives a
new language L′ which is implemented by extending the interpreter for L.

The interpreter approach has the advantage that it shows a self-contained
implementation of the linguistic abstractions. We do not use the interpreter
approach in this book because it does not in general preserve the execution-time
complexity of programs (the number of operations needed as a function of input
size). A second difficulty is that the basic concepts interact with each other in
the interpreter, which makes them harder to understand.

3Strictly speaking, a virtual machine is a software emulation of a real machine, running on
the real machine, that is almost as efficient as the real machine. It achieves this efficiency by
executing most virtual instructions directly as real instructions. The concept was pioneered by
IBM in the early 1960’s in the VM operating system. Because of the success of Java, which
uses the term “virtual machine”, modern usage tends to blur the distinction between abstract
and virtual machines.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

44 Declarative Computation Model

unbound

unbound

unbound

x

x

x
3

2

1

Figure 2.6: A single-assignment store with three unbound variables

unbound

x

x

x
3

2

1
314

nil1 2 3

Figure 2.7: Two of the variables are bound to values

2.2 The single-assignment store

We introduce the declarative model by first explaining its data structures. The
model uses a single-assignment store, which is a set of variables that are initially
unbound and that can be bound to one value. Figure 2.6 shows a store with three
unbound variables x1, x2, and x3. We can write this store as {x1, x2, x3}. For
now, let us assume we can use integers, lists, and records as values. Figure 2.7
shows the store where x1 is bound to the integer 314 and x2 is bound to the list
[1 2 3] . We write this as {x1 = 314, x2 = [1 2 3] , x3}.

2.2.1 Declarative variables

Variables in the single-assignment store are called declarative variables. We use
this term whenever there is a possible confusion with other kinds of variables.
Later on in the book, we will also call these variables dataflow variables because
of their role in dataflow execution.

Once bound, a declarative variable stays bound throughout the computation
and is indistinguishable from its value. What this means is that it can be used
in calculations as if it were the value. Doing the operation x + y is the same as
doing 11 + 22, if the store is {x = 11, y = 22}.

2.2.2 Value store

A store where all variables are bound to values is called a value store. Another
way to say this is that a value store is a persistent mapping from variables to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.2 The single-assignment store 45

"George" 25

x

x

x
3

2

1
314

nil1 2 3

person

name age

Figure 2.8: A value store: all variables are bound to values

values. A value is a mathematical constant. For example, the integer 314 is
a value. Values can also be compound entities. For example, the list [1 2

3] and the record person(name:"George" age:25) are values. Figure 2.8
shows a value store where x1 is bound to the integer 314, x2 is bound to the
list [1 2 3] , and x3 is bound to the record person(name:"George" age:25) .
Functional languages such as Standard ML, Haskell, and Scheme get by with a
value store since they compute functions on values. (Object-oriented languages
such as Smalltalk, C++, and Java need a cell store, which consists of cells whose
content can be modified.)

At this point, a reader with some programming experience may wonder why
we are introducing a single-assignment store, when other languages get by with
a value store or a cell store. There are many reasons. The first reason is that
we want to compute with partial values. For example, a procedure can return an
output by binding an unbound variable argument. The second reason is declara-
tive concurrency, which is the subject of Chapter 4. It is possible because of the
single-assignment store. The third reason is that it is essential when we extend the
model to deal with relational (logic) programming and constraint programming.
Other reasons having to do with efficiency (e.g., tail recursion and difference lists)
will become clear in the next chapter.

2.2.3 Value creation

The basic operation on a store is binding a variable to a newly-created value. We
will write this as xi=value. Here xi refers directly to a variable in the store (and
is not the variable’s textual name in a program!) and value refers to a value, e.g.,
314 or [1 2 3] . For example, Figure 2.7 shows the store of Figure 2.6 after the
two bindings:

x1 = 314
x2 = [1 2 3]

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

46 Declarative Computation Model

x
1

unbound"X"

Inside the storeIn statement

Figure 2.9: A variable identifier referring to an unbound variable

nil1 2 3

x
1

"X"

Inside the store

Figure 2.10: A variable identifier referring to a bound variable

The single-assignment operation xi=value constructs value in the store and then
binds the variable xi to this value. If the variable is already bound, the operation
will test whether the two values are compatible. If they are not compatible, an
error is signaled (using the exception-handling mechanism, see Section 2.6).

2.2.4 Variable identifiers

So far, we have looked at a store that contains variables and values, i.e., store
entities, with which calculations can be done. It would be nice if we could refer
to a store entity from outside the store. This is the role of variable identifiers.
A variable identifier is a textual name that refers to a store entity from outside
the store. The mapping from variable identifiers to store entities is called an
environment.

The variable names in program source code are in fact variable identifiers.
For example, Figure 2.9 has an identifier “X” (the capital letter X) that refers to
the store variable x1. This corresponds to the environment {X → x1}. To talk
about any identifier, we will use the notation 〈x〉. The environment {〈x〉 → x1}
is the same as before, if 〈x〉 represents X. As we will see later, variable identifiers
and their corresponding store entities are added to the environment by the local

and declare statements.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.2 The single-assignment store 47

x
1

nil1 2 3"X"

Inside the store

Figure 2.11: A variable identifier referring to a value

x
1

x
2

person

unbound"George"

name age

"X"

"Y"

Inside the store

Figure 2.12: A partial value

2.2.5 Value creation with identifiers

Once bound, a variable is indistinguishable from its value. Figure 2.10 shows what
happens when x1 is bound to [1 2 3] in Figure 2.9. With the variable identifier
X, we can write the binding as X=[1 2 3] . This is the text a programmer would
write to express the binding. We can also use the notation 〈x〉=[1 2 3] if we
want to be able to talk about any identifier. To make this notation legal in a
program, 〈x〉 has to be replaced by an identifier.

The equality sign “=” refers to the bind operation. After the bind completes,
the identifier “X” still refers to x1, which is now bound to [1 2 3] . This is
indistinguishable from Figure 2.11, where X refers directly to [1 2 3] . Following
the links of bound variables to get the value is called dereferencing. It is invisible
to the programmer.

2.2.6 Partial values

A partial value is a data structure that may contain unbound variables. Fig-
ure 2.12 shows the record person(name:"George" age: x2) , referred to by the
identifier X. This is a partial value because it contains the unbound variable x2.
The identifier Y refers to x2. Figure 2.13 shows the situation after x2 is bound
to 25 (through the bind operation Y=25). Now x1 is a partial value with no
unbound variables, which we call a complete value. A declarative variable can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

48 Declarative Computation Model

x
1

x
2

person

25"George"

name age

"X"

"Y"

Inside the store

Figure 2.13: A partial value with no unbound variables, i.e., a complete value

x
1

"X"

"Y" x
2

Inside the store

Figure 2.14: Two variables bound together

be bound to several partial values, as long as they are compatible with each
other. We say a set of partial values is compatible if the unbound variables in
them can be bound in such a way as to make them all equal. For example,
person(age:25) and person(age: x) are compatible (because x can be bound
to 25), but person(age:25) and person(age:26) are not.

2.2.7 Variable-variable binding

Variables can be bound to variables. For example, consider two unbound variables
x1 and x2 referred to by the identifiers X and Y. After doing the bind X=Y, we get
the situation in Figure 2.14. The two variables x1 and x2 are equal to each other.
The figure shows this by letting each variable refer to the other. We say that
{x1, x2} form an equivalence set.4 We also write this as x1 = x2. Three variables
that are bound together are written as x1 = x2 = x3 or {x1, x2, x3}. Drawn in
a figure, these variables would form a circular chain. Whenever one variable in
an equivalence set is bound, then all variables see the binding. Figure 2.15 shows
the result of doing X=[1 2 3] .

4From a formal viewpoint, the two variables form an equivalence class with respect to equal-
ity.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.2 The single-assignment store 49

x
1

1 2 3 nil

Inside the store

"X"

"Y" x
2

Figure 2.15: The store after binding one of the variables

2.2.8 Dataflow variables

In the declarative model, creating a variable and binding it are done separately.
What happens if we try to use the variable before it is bound? We call this a
variable use error. Some languages create and bind variables in one step, so that
use errors cannot occur. This is the case for functional programming languages.
Other languages allow creating and binding to be separate. Then we have the
following possibilities when there is a use error:

1. Execution continues and no error message is given. The variable’s content
is undefined, i.e. it is “garbage”: whatever is found in memory. This is
what C++ does.

2. Execution continues and no error message is given. The variable is initial-
ized to a default value when it is declared, e.g., to 0 for an integer. This is
what Java does.

3. Execution stops with an error message (or an exception is raised). This is
what Prolog does for arithmetic operations.

4. Execution waits until the variable is bound and then continues.

These cases are listed in increasing order of niceness. The first case is very bad,
since different executions of the same program can give different results. What’s
more, since the existence of the error is not signaled, the programmer is not even
aware when this happens. The second is somewhat better. If the program has a
use error, then at least it will always give the same result, even if it is a wrong
one. Again the programmer is not made aware of the error’s existence.

The third and fourth cases are reasonable in certain situations. In the third,
a program with a use error will signal this fact, instead of silently continuing.
This is reasonable in a sequential system, since there really is an error. It is
unreasonable in a concurrent system, since the result becomes nondeterministic:
depending on the timing, sometimes an error is signaled and sometimes not. In
the fourth, the program will wait until the variable is bound, and then continue.
This is unreasonable in a sequential system, since the program will wait forever.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

50 Declarative Computation Model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application

Table 2.1: The declarative kernel language

It is reasonable in a concurrent system, where it could be part of normal operation
that some other thread binds the variable.5 The computation models of this book
use the fourth case.

Declarative variables that cause the program to wait until they are bound are
called dataflow variables. The declarative model uses dataflow variables because
they are tremendously useful in concurrent programming, i.e., for programs with
activities that run independently. If we do two concurrent operations, say A=23

and B=A+1, then with the fourth solution this will always run correctly and give
the answer B=24. It doesn’t matter whether A=23 is tried first or whether B=A+1

is tried first. With the other solutions, there is no guarantee of this. This property
of order-independence makes possible the declarative concurrency of Chapter 4.
It is at the heart of why dataflow variables are a good idea.

2.3 Kernel language

The declarative model defines a simple kernel language. All programs in the
model can be expressed in this language. We first define the kernel language
syntax and semantics. Then we explain how to build a full language on top of
the kernel language.

2.3.1 Syntax

The kernel syntax is given in Tables 2.1 and 2.2. It is carefully designed to be a
subset of the full language syntax, i.e., all statements in the kernel language are
valid statements in the full language.

5Still, during development, a good debugger should capture undesirable suspensions if there
are no other running threads.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.3 Kernel language 51

〈v〉 ::= 〈number〉 | 〈record〉 | 〈procedure〉
〈number〉 ::= 〈int〉 | 〈float〉
〈record〉, 〈pattern〉 ::= 〈literal〉

| 〈literal〉(〈feature〉1: 〈x〉1 ... 〈feature〉n: 〈x〉n)
〈procedure〉 ::= proc { $ 〈x〉1 ... 〈x〉n} 〈s〉 end

〈literal〉 ::= 〈atom〉 | 〈bool〉
〈feature〉 ::= 〈atom〉 | 〈bool〉 | 〈int〉
〈bool〉 ::= true | false

Table 2.2: Value expressions in the declarative kernel language

Statement syntax

Table 2.1 defines the syntax of 〈s〉, which denotes a statement. There are eight
statements in all, which we will explain later.

Value syntax

Table 2.2 defines the syntax of 〈v〉, which denotes a value. There are three kinds
of value expressions, denoting numbers, records, and procedures. For records and
patterns, the arguments 〈x〉1, ..., 〈x〉n must all be distinct identifiers. This ensures
that all variable-variable bindings are written as explicit kernel operations.

Variable identifier syntax

Table 2.1 uses the nonterminals 〈x〉 and 〈y〉 to denote a variable identifier. We
will also use 〈z〉 to denote identifiers. There are two ways to write a variable
identifier:

• An uppercase letter followed by zero or more alphanumeric characters (let-
ters or digits or underscores), for example X, X1, or ThisIsALongVariable_IsntIt .

• Any sequence of printable characters enclosed within ‘ (back-quote) char-
acters, e.g., ` this is a 25$\variable! ` .

A precise definition of identifier syntax is given in Appendix C. All newly-declared
variables are unbound before any statement is executed. All variable identifiers
must be declared explicitly.

2.3.2 Values and types

A type or data type is a set of values together with a set of operations on those
values. A value is “of a type” if it is in the type’s set. The declarative model
is typed in the sense that it has a well-defined set of types, called basic types.
For example, programs can calculate with integers or with records, which are all

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

52 Declarative Computation Model

of integer type or record type, respectively. Any attempt to use an operation
with values of the wrong type is detected by the system and will raise an error
condition (see Section 2.6). The model imposes no other restrictions on the use
of types.

Because all uses of types are checked, it is not possible for a program to behave
outside of the model, e.g., to crash because of undefined operations on its internal
data structures. It is still possible for a program to raise an error condition, for
example by dividing by zero. In the declarative model, a program that raises
an error condition will terminate immediately. There is nothing in the model to
handle errors. In Section 2.6 we extend the declarative model with a new concept,
exceptions, to handle errors. In the extended model, type errors can be handled
within the model.

In addition to basic types, programs can define their own types, which are
called abstract data types, ADT for short. Chapter 3 and later chapters show
how to define ADTs.

Basic types

The basic types of the declarative model are numbers (integers and floats), records
(including atoms, booleans, tuples, lists, and strings), and procedures. Table 2.2
gives their syntax. The nonterminal 〈v〉 denotes a partially constructed value.
Later in the book we will see other basic types, including chunks, functors, cells,
dictionaries, arrays, ports, classes, and objects. Some of these are explained in
Appendix B.

Dynamic typing

There are two basic approaches to typing, namely dynamic and static typing. In
static typing, all variable types are known at compile time. In dynamic typing,
the variable type is known only when the variable is bound. The declarative
model is dynamically typed. The compiler tries to verify that all operations use
values of the correct type. But because of dynamic typing, some type checks are
necessarily left for run time.

The type hierarchy

The basic types of the declarative model can be classified into a hierarchy. Fig-
ure 2.16 shows this hierarchy, where each node denotes a type. The hierarchy
is ordered by set inclusion, i.e., all values of a node’s type are also values of the
parent node’s type. For example, all tuples are records and all lists are tuples.
This implies that all operations of a type are also legal for a subtype, e.g., all
list operations work also for strings. Later on in the book we will extend this
hierarchy. For example, literals can be either atoms (explained below) or another
kind of constant called names (see Section 3.7.5). The parts where the hierarchy
is incomplete are given as “...”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.3 Kernel language 53

Literal

...

...Int Float

Number Record

Tuple

Value

Procedure

AtomBool

True False

Char List

String...

...

Figure 2.16: The type hierarchy of the declarative model

2.3.3 Basic types

We give some examples of the basic types and how to write them. See Appendix B
for more complete information.

• Numbers. Numbers are either integers or floating point numbers. Exam-
ples of integers are 314 , 0, and ˜10 (minus 10). Note that the minus sign
is written with a tilde “˜ ”. Examples of floating point numbers are 1.0 ,
3.4 , 2.0e2 , and ˜2.0E˜2 .

• Atoms. An atom is a kind of symbolic constant that can be used as a
single element in calculations. There are several different ways to write
atoms. An atom can be written as a sequence of characters starting with
a lowercase letter followed by any number of alphanumeric characters. An
atom can also be written as any sequence of printable characters enclosed
in single quotes. Examples of atoms are a_person , donkeyKong3 , and
´ #### hello #### ´ .

• Booleans. A boolean is either the symbol true or the symbol false .

• Records. A record is a compound data structure. It consists of a label
followed by a set of pairs of features and variable identifiers. Features can
be atoms, integers, or booleans. Examples of records are person(age:X1

name:X2) (with features age and name), person(1:X1 2:X2) , ´ | ´ (1:H

2:T) , ´ #´ (1:H 2:T) , nil , and person . An atom is a record with no
features.

• Tuples. A tuple is a record whose features are consecutive integers starting
from 1. The features do not have to be written in this case. Examples of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

54 Declarative Computation Model

tuples are person(1:X1 2:X2) and person(X1 X2) , both of which mean
the same.

• Lists. A list is either the atom nil or the tuple ´ | ´ (H T) (label is vertical
bar), where T is either unbound or bound to a list. This tuple is called a
list pair or a cons. There is syntactic sugar for lists:

– The ´ | ´ label can be written as an infix operator, so that H|T means
the same as ´ | ´ (H T) .

– The ´ | ´ operator associates to the right, so that 1|2|3|nil means
the same as 1|(2|(3|nil)) .

– Lists that end in nil can be written with brackets [...] , so that [1

2 3] means the same as 1|2|3|nil . These lists are called complete
lists.

• Strings. A string is a list of character codes. Strings can be written with
double quotes, so that "E=mcˆ2" means the same as [69 61 109 99 94

50] .

• Procedures. A procedure is a value of the procedure type. The statement:

〈x〉=proc {$ 〈y〉1 ... 〈y〉n } 〈s〉 end

binds 〈x〉 to a new procedure value. That is, it simply declares a new
procedure. The $ indicates that the procedure value is anonymous, i.e.,
created without being bound to an identifier. There is a syntactic short-cut
that is more familiar:

proc { 〈x〉 〈y〉1 ... 〈y〉n } 〈s〉 end

The $ is replaced by an identifier. This creates the procedure value and
immediately tries to bind it to 〈x〉. This short-cut is perhaps easier to read,
but it blurs the distinction between creating the value and binding it to an
identifier.

2.3.4 Records and procedures

We explain why chose records and procedures as basic concepts in the kernel
language. This section is intended for readers with some programming experience
who wonder why we designed the kernel language the way we did.

The power of records

Records are the basic way to structure data. They are the building blocks of
most data structures, including lists, trees, queues, graphs, etc., as we will see in
Chapter 3. Records play this role to some degree in most programming languages.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.3 Kernel language 55

But we shall see that their power can go much beyond this role. The extra power
appears in greater or lesser degree depending on how well or how poorly the
language supports them. For maximum power, the language should make it easy
to create them, take them apart, and manipulate them. In the declarative model,
a record is created by simply writing it down, with a compact syntax. A record
is taken apart by simply writing down a pattern, also with a compact syntax.
Finally, there are many operations to manipulate records: to add, remove, or
select fields, to convert to a list and back, etc. In general, languages that provide
this level of support for records are called symbolic languages.

When records are strongly supported, they can be used to increase the ef-
fectiveness of many other techniques. This book focuses on three in particu-
lar: object-oriented programming, graphical user interface (GUI) design, and
component-based programming. In object-oriented programming, Chapter 7
shows how records can represent messages and method heads, which are what
objects use to communicate. In GUI design, Chapter 10 shows how records can
represent “widgets”, the basic building blocks of a user interface. In component-
based programming, Section 3.9 shows how records can represent modules, which
group together related operations.

Why procedures?

A reader with some programming experience may wonder why our kernel language
has procedures as a basic construct. Fans of object-oriented programming may
wonder why we do not use objects instead. Fans of functional programming may
wonder why we do not use functions. We could have chosen either possibility,
but we did not. The reasons are quite straightforward.

Procedures are more appropriate than objects because they are simpler. Ob-
jects are actually quite complicated, as Chapter 7 explains. Procedures are more
appropriate than functions because they do not necessarily define entities that
behave like mathematical functions.6 For example, we define both components
and objects as abstractions based on procedures. In addition, procedures are flex-
ible because they do not make any assumptions about the number of inputs and
outputs. A function always has exactly one output. A procedure can have any
number of inputs and outputs, including zero. We will see that procedures are ex-
tremely powerful building blocks, when we talk about higher-order programming
in Section 3.6.

6From a theoretical point of view, procedures are “processes” as used in concurrent calculi
such as the π calculus. The arguments are channels. In this chapter we use processes that
are composed sequentially with single-shot channels. Chapters 4 and 5 show other types of
channels (with sequences of messages) and do concurrent composition of processes.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

56 Declarative Computation Model

Operation Description Argument type
A==B Equality comparison Value
A\=B Nonequality comparison Value
{IsProcedure P} Test if procedure Value
A=<B Less than or equal comparison Number or Atom
A<B Less than comparison Number or Atom
A>=B Greater than or equal comparison Number or Atom
A>B Greater than comparison Number or Atom
A+B Addition Number
A-B Subtraction Number
A*B Multiplication Number
A div B Division Int
A mod B Modulo Int
A/B Division Float
{Arity R} Arity Record
{Label R} Label Record
R.F Field selection Record

Table 2.3: Examples of basic operations

2.3.5 Basic operations

Table 2.3 gives the basic operations that we will use in this chapter and the next.
There is syntactic sugar for many of these operations so that they can be written
concisely as expressions. For example, X=A*B is syntactic sugar for {Number. ´ * ´

A B X}, where Number. ´ * ´ is a procedure associated with the type Number.7

All operations can be denoted in some long way, e.g., Value. ´ ==´ , Value. ´ <´ ,
Int. ´ div ´ , Float. ´ / ´ . The table uses the syntactic sugar when it exists.

• Arithmetic. Floating point numbers have the four basic operations, +, - ,
* , and / , with the usual meanings. Integers have the basic operations +,
- , * , div , and mod, where div is integer division (truncate the fractional
part) and mod is the integer modulo, i.e., the remainder after a division.
For example, 10 mod 3=1.

• Record operations. Three basic operations on records are Arity , Label ,
and “. ” (dot, which means field selection). For example, given:

X=person(name:"George" age:25)

then {Arity X} =[age name] , {Label X} =person , and X.age =25 . The
call to Arity returns a list that contains first the integer features in ascend-
ing order and then the atom features in ascending lexicographic order.

7To be precise, Number is a module that groups the operations of the Number type and
Number. ´ * ´ selects the multiplication operation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 57

• Comparisons. The boolean comparison functions include == and \= ,
which can compare any two values for equality, as well as the numeric
comparisons =<, <, >=, and >, which can compare two integers, two floats,
or two atoms. Atoms are compared according to the lexicographic order
of their print representations. In the following example, Z is bound to the
maximum of X and Y:

declare X Y Z T in
X=5 Y=10
T=(X>=Y)
if T then Z=X else Z=Y end

There is syntactic sugar so that an if statement accepts an expression as
its condition. The above example can be rewritten as:

declare X Y Z in
X=5 Y=10
if X>=Y then Z=X else Z=Y end

• Procedure operations. There are three basic operations on procedures:
defining them (with the proc statement), calling them (with the curly brace
notation), and testing whether a value is a procedure with the IsProcedure

function. The call {IsProcedure P} returns true if P is a procedure and
false otherwise.

Appendix B gives a more complete set of basic operations.

2.4 Kernel language semantics

The kernel language execution consists of evaluating functions over partial values.
To see this, we give the semantics of the kernel language in terms of a simple
operational model. The model is designed to let the programmer reason about
both correctness and complexity in a simple way. It is a kind of abstract machine,
but at a high level of abstraction that leaves out details such as registers and
explicit memory addresses.

2.4.1 Basic concepts

Before giving the formal semantics, let us give some examples to give intuition
on how the kernel language executes. This will motivate the semantics and make
it easier to understand.

A simple execution

During normal execution, statements are executed one by one in textual order.
Let us look at a simple execution:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

58 Declarative Computation Model

local A B C D in
A=11
B=2
C=A+B
D=C*C

end

This looks simple enough; it will bind D to 169. Let us look more closely at what
it does. The local statement creates four new variables in the store, and makes
the four identifiers A, B, C, D refer to them. (For convenience, this extends slightly
the local statement of Table 2.1.) This is followed by two bindings, A=11 and
B=2. The addition C=A+Badds the values of A and B and binds C to the result 13.
The multiplication D multiples the value of C by itself and binds D to the result
169. This is quite simple.

Variable identifiers and static scoping

We saw that the local statement does two things: it creates a new variable
and it sets up an identifier to refer to the variable. The identifier only refers to
the variable inside the local statement, i.e., between the local and the end .
We call this the scope of the identifier. Outside of the scope, the identifier does
not mean the same thing. Let us look closer at what this implies. Consider the
following fragment:

local X in
X=1
local X in

X=2
{Browse X}

end
{Browse X}

end

What does it display? It displays first 2 and then 1. There is just one identifier,
X, but at different points during the execution, it refers to different variables.

Let us summarize this idea. The meaning of an identifier like X is determined
by the innermost local statement that declares X. The area of the program
where X keeps this meaning is called the scope of X. We can find out the scope of
an identifier by simply inspecting the text of the program; we do not have to do
anything complicated like execute or analyze the program. This scoping rule is
called lexical scoping or static scoping. Later we will see another kind of scoping
rule, dynamic scoping, that is sometimes useful. But lexical scoping is by far the
most important kind of scoping rule because it is localized, i.e., the meaning of
an identifier can be determined by looking at a small part of the program.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 59

Procedures

Procedures are one of the most important basic building blocks of any language.
We give a simple example that shows how to define and call a procedure. Here
is a procedure that binds Z to the maximum of X and Y:

proc {Max X Y ?Z}
if X>=Y then Z=X else Z=Y end

end

To make the definition easier to read, we mark the output argument with a ques-
tion mark “?”. This has absolutely no effect on execution; it is just a comment.
Calling {Max 3 5 C} binds Cto 5. How does the procedure work, exactly? When
Max is called, the identifiers X, Y, and Z are bound to 3, 5, and the unbound vari-
able referenced by C. When Max binds Z, then it binds this variable. Since C

also references this variable, this also binds C. This way of passing parameters
is called call by reference. Procedures output results by being passed references
to unbound variables, which are bound inside the procedure. This book most-
ly uses call by reference, both for dataflow variables and for mutable variables.
Section 6.4.4 explains some other parameter passing mechanisms.

Procedures with external references

Let us examine the body of Max. It is just an if statement:

if X>=Y then Z=X else Z=Y end

This statement has one particularity, though: it cannot be executed! This is
because it does not define the identifiers X, Y, and Z. These undefined identifiers
are called free identifiers. Sometimes these are called free variables, although
strictly speaking they are not variables. When put inside the procedure Max,
the statement can be executed, because all the free identifiers are declared as
procedure arguments.

What happens if we define a procedure that only declares some of the free
identifiers as arguments? For example, let’s define the procedure LB with the
same procedure body as Max, but only two arguments:

proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end

What does this procedure do when executed? Apparently, it takes any number
X and binds Z to X if X>=Y, but to Y otherwise. That is, Z is always at least
Y. What is the value of Y? It is not one of the procedure arguments. It has to
be the value of Y when the procedure is defined. This is a consequence of static
scoping. If Y=9 when the procedure is defined, then calling {LB 3 Z} binds Z to
9. Consider the following program fragment:

local Y LB in
Y=10

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

60 Declarative Computation Model

proc {LB X ?Z}
if X>=Y then Z=X else Z=Y end

end
local Y=15 Z in

{LB 5 Z}
end

end

What does the call {LB 5 Z} bind Z to? It will be bound to 10. The binding Y=15

when LB is called is ignored; it is the binding Y=10 at the procedure definition
that is important.

Dynamic scoping versus static scoping

Consider the following simple example:

local P Q in
proc {Q X} {Browse stat(X)} end
proc {P X} {Q X} end
local Q in

proc {Q X} {Browse dyn(X)} end
{P hello}

end
end

What should this display, stat(hello) or dyn(hello) ? Static scoping says
that it will display stat(hello) . In other words, P uses the version of Q that
exists at P’s definition. But there is another solution: P could use the version of Q

that exists at P’s call. This is called dynamic scoping. Both have been used as the
default scoping rule in programming languages. The original Lisp language was
dynamically scoped. Common Lisp and Scheme, which are descended from Lisp,
are statically scoped by default. Common Lisp still allows to declare dynamically-
scoped variables, which it calls special variables [181]. Which default is better?
The correct default is procedure values with static scoping. This is because a
procedure that works when it is defined will continue to work, independent of
the environment where it is called. This is an important software engineering
property.

Dynamic scoping remains useful in some well-defined areas. For example,
consider the case of a procedure whose code is transferred across a network from
one computer to another. Some of this procedure’s external references, for exam-
ple calls to common library operations, can use dynamic scoping. This way, the
procedure will use local code for these operations instead of remote code. This is
much more efficient.8

8However, there is no guarantee that the operation will behave in the same way on the target
machine. So even for distributed programs the default should be static scoping.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 61

Procedural abstraction

Let us summarize what we learned from Max and LB. Three concepts play an
important role:

• Procedural abstraction. Any statement can be made into a procedure by
putting it inside a procedure declaration. This is called procedural abstrac-
tion. We also say that the statement is abstracted into a procedure.

• Free identifiers. A free identifier in a statement is an identifier that is not
defined in that statement. It might be defined in an enclosing statement.

• Static scoping. A procedure can have external references, which are free
identifiers in the procedure body that are not declared as arguments. LB

has one external reference. Max has none. The value of an external reference
is its value when the procedure is defined. This is a consequence of static
scoping.

Procedural abstraction and static scoping together form one of the most powerful
tools presented in this book. In the semantics, we will see that they can be
implemented in a simple way.

Dataflow behavior

In the single-assignment store, variables can be unbound. On the other hand,
some statements need bound variables, otherwise they cannot execute. For ex-
ample, what happens when we execute:

local X Y Z in
X=10
if X>=Y then Z=X else Z=Y end

end

The comparison X>=Y returns true or false , if it can decide which is the case.
If Y is unbound, it cannot decide, strictly speaking. What does it do? Continu-
ing with either true or false would be incorrect. Raising an error would be a
drastic measure, since the program has done nothing wrong (it has done nothing
right either). We decide that the program will simply stop its execution, with-
out signaling any kind of error. If some other activity (to be determined later)
binds Y then the stopped execution can continue as if nothing had perturbed the
normal flow of execution. This is called dataflow behavior. Dataflow behavior
underlies a second powerful tool presented in this book, namely concurrency. In
the semantics, we will see that dataflow behavior can be implemented in a simple
way.

2.4.2 The abstract machine

We will define the kernel semantics as an operational semantics, i.e., it defines the
meaning of the kernel language through its execution on an abstract machine. We

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

62 Declarative Computation Model

U=Z.age X=U+1 if X<2 then ...

Single-assignment store

with dataflow variables)

Semantic stack
(statement in execution)

(value store extended

W=atom

Y=42

XZ=person(age: Y)

U

Figure 2.17: The declarative computation model

first define the basic concepts of the abstract machine: environments, semantic
statement, statement stack, execution state, and computation. We then show how
to execute a program. Finally, we explain how to calculate with environments,
which is a common semantic operation.

Overview of concepts

A running program is defined in terms of a computation, which is a sequence of
execution states. Let us define exactly what this means. We need the following
concepts:

• A single-assignment store σ is a set of store variables. These variables are
partitioned into (1) sets of variables that are equal but unbound and (2)
variables that are bound to a number, record, or procedure. For example,
in the store {x1, x2 = x3, x4 = a| x2}, x1 is unbound, x2 and x3 are equal
and unbound, and x4 is bound to the partial value a| x2. A store variable
bound to a value is indistinguishable from that value. This is why a store
variable is sometimes called a store entity.

• An environment E is a mapping from variable identifiers to entities in σ.
This is explained in Section 2.2. We will write E as a set of pairs, e.g.,
{X→ x, Y→ y}, where X, Y are identifiers and x, y refer to store entities.

• A semantic statement is a pair (〈s〉, E) where 〈s〉 is a statement and E
is an environment. The semantic statement relates a statement to what it
references in the store. The set of possible statements is given in Section 2.3.

• An execution state is a pair (ST, σ) where ST is a stack of semantic state-
ments and σ is a single-assignment store. Figure 2.17 gives a picture of the
execution state.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 63

• A computation is a sequence of execution states starting from an initial
state: (ST0, σ0)→ (ST1, σ1)→ (ST2, σ2)→

A single transition in a computation is called a computation step. A computation
step is atomic, i.e., there are no visible intermediate states. It is as if the step
is done “all at once”. In this chapter, all computations are sequential, i.e., the
execution state contains exactly one statement stack, which is transformed by a
linear sequence of computation steps.

Program execution

Let us execute a program in this semantics. A program is simply a statement 〈s〉.
Here is how to execute the program:

• The initial execution state is:

([(〈s〉, φ)], φ)

That is, the initial store is empty (no variables, empty set φ) and the initial
execution state has just one semantic statement (〈s〉, φ) in the stack ST.
The semantic statement contains 〈s〉 and an empty environment (φ). We
use brackets [...] to denote the stack.

• At each step, the first element of ST is popped and execution proceeds
according to the form of the element.

• The final execution state (if there is one) is a state in which the semantic
stack is empty.

A semantic stack ST can be in one of three run-time states:

• Runnable: ST can do a computation step.

• Terminated: ST is empty.

• Suspended: ST is not empty, but it cannot do any computation step.

Calculating with environments

A program execution often does calculations with environments. An environment
E is a function that maps variable identifiers 〈x〉 to store entities (both unbound
variables and values). The notation E(〈x〉) retrieves the entity associated with the
identifier 〈x〉 from the store. To define the semantics of the abstract machine in-
structions, we need two common operations on environments, namely adjunction
and restriction.

Adjunction defines a new environment by adding a mapping to an existing
one. The notation:

E + {〈x〉 → x}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

64 Declarative Computation Model

denotes a new environment E ′ constructed from E by adding the mapping {〈x〉 →
x}. This mapping overrides any other mapping from the identifier 〈x〉. That is,
E ′(〈x〉) is equal to x, and E ′(〈y〉) is equal to E(〈y〉) for all identifiers 〈y〉 different
from 〈x〉. When we need to add more than one mapping at once, we write
E + {〈x〉1 → x1, ..., 〈x〉n → xn}.

Restriction defines a new environment whose domain is a subset of an existing
one. The notation:

E|{〈x〉1,...,〈x〉n}

denotes a new environment E ′ such that dom(E ′) = dom(E)∩{〈x〉1, ..., 〈x〉n} and
E′(〈x〉) = E(〈x〉) for all 〈x〉 ∈ dom(E ′). That is, the new environment does not
contain any identifiers other than those mentioned in the set.

2.4.3 Non-suspendable statements

We first give the semantics of the statements that can never suspend.

The skip statement

The semantic statement is:

(skip , E)

Execution is complete after this pair is popped from the semantic stack.

Sequential composition

The semantic statement is:

(〈s〉1 〈s〉2, E)

Execution consists of the following actions:

• Push (〈s〉2, E) on the stack.

• Push (〈s〉1, E) on the stack.

Variable declaration (the local statement)

The semantic statement is:

(local 〈x〉 in 〈s〉 end , E)

Execution consists of the following actions:

• Create a new variable x in the store.

• Let E ′ be E + {〈x〉 → x}, i.e., E ′ is the same as E except that it adds a
mapping from 〈x〉 to x.

• Push (〈s〉, E′) on the stack.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 65

Variable-variable binding

The semantic statement is:

(〈x〉1 = 〈x〉2, E)

Execution consists of the following action:

• Bind E(〈x〉1) and E(〈x〉2) in the store.

Value creation

The semantic statement is:

(〈x〉 = 〈v〉, E)

where 〈v〉 is a partially constructed value that is either a record, number, or
procedure. Execution consists of the following actions:

• Create a new variable x in the store.

• Construct the value represented by 〈v〉 in the store and let x refer to it. All
identifiers in 〈v〉 are replaced by their store contents as given by E.

• Bind E(〈x〉) and x in the store.

We have seen how to construct record and number values, but what about pro-
cedure values? In order to explain them, we have first to explain the concept of
lexical scoping.

Lexical scoping revisited

A statement 〈s〉 can contain many occurrences of variable identifiers. For each
identifier occurrence, we can ask the question: where was this identifier declared?
If the declaration is in some statement (part of 〈s〉 or not) that textually surrounds
(i.e., encloses) the occurrence, then we say that the declaration obeys lexical
scoping. Because the scope is determined by the source code text, this is also
called static scoping.

Identifier occurrences in a statement can be bound or free with respect to that
statement. An identifier occurrence X is bound with respect to a statement 〈s〉
if it is declared inside 〈s〉, i.e., in a local statement, in the pattern of a case

statement, or as argument of a procedure declaration. An identifier occurrence
that is not bound is free. Free occurrences can only exist in incomplete program
fragments, i.e., statements that cannot run. In a running program, it is always
true that every identifier occurrence is bound.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

66 Declarative Computation Model

Bound identifier occurrences and bound variables

Do not confuse a bound identifier occurrence with a
bound variable! A bound identifier occurrence does not
exist at run time; it is a textual variable name that tex-
tually occurs inside a construct that declares it (e.g., a
procedure or variable declaration). A bound variable ex-
ists at run time; it is a dataflow variable that is bound
to a partial value.

Here is an example with both free and bound occurrences:

local Arg1 Arg2 in
Arg1=111*111
Arg2=999*999
Res=Arg1+Arg2

end

In this statement, all variable identifiers are declared with lexical scoping. The
identifier occurrences Arg1 and Arg2 are bound and the occurrence Res is free.
This statement cannot be run. To make it runnable, it has to be part of a bigger
statement that declares Res. Here is an extension that can run:

local Res in
local Arg1 Arg2 in

Arg1=111*111
Arg2=999*999
Res=Arg1+Arg2

end
{Browse Res}

end

This can run since it has no free identifier occurrences.

Procedure values (closures)

Let us see how to construct a procedure value in the store. It is not as simple as
one might imagine because procedures can have external references. For example:

proc {LowerBound X ?Z}
if X>=Y then Z=X else Z=Y end

end

In this example, the if statement has three free variables, X, Y, and Z. Two
of them, X and Z, are also formal parameters. The third, Y, is not a formal
parameter. It has to be defined by the environment where the procedure is
declared. The procedure value itself must have a mapping from Y to the store.
Otherwise, we could not call the procedure since Y would be a kind of dangling
reference.

Let us see what happens in the general case. A procedure expression is written
as:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 67

proc { $ 〈y〉1 ... 〈y〉n} 〈s〉 end

The statement 〈s〉 can have free variable identifiers. Each free identifer is either a
formal parameter or not. The first kind are defined anew each time the procedure
is called. They form a subset of the formal parameters {〈y〉1, ..., 〈y〉n}. The second
kind are defined once and for all when the procedure is declared. We call them
the external references of the procedure. Let us write them as {〈z〉1, ..., 〈z〉k}.
Then the procedure value is a pair:

(proc { $ 〈y〉1 ... 〈y〉n} 〈s〉 end , CE)

Here CE (the contextual environment) is E|{〈z〉1,...,〈z〉n}, where E is the environ-
ment when the procedure is declared. This pair is put in the store just like any
other value.

Because it contains an environment as well as a procedure definition, a pro-
cedure value is often called a closure or a lexically-scoped closure. This is because
it “closes” (i.e., packages up) the environment at procedure definition time. This
is also called environment capture. When the procedure is called, the contextu-
al environment is used to construct the environment of the executing procedure
body.

2.4.4 Suspendable statements

There are three statements remaining in the kernel language:

〈s〉 ::= ...
| if 〈x〉 then 〈s〉1 else 〈s〉2 end

| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end

| { 〈x〉 〈y〉1 ... 〈y〉n}

What should happen with these statements if 〈x〉 is unbound? From the discussion
in Section 2.2.8, we know what should happen. The statements should simply
wait until 〈x〉 is bound. We say that they are suspendable statements. They have
an activation condition, which is a condition that must be true for execution
to continue. The condition is that E(〈x〉) must be determined, i.e., bound to a
number, record, or procedure.

In the declarative model of this chapter, once a statement suspends it will
never continue, because there is no other execution that could make the activation
condition true. The program simply stops executing. In Chapter 4, when we
introduce concurrent programming, we will have executions with more than one
semantic stack. A suspended stack ST can become runnable again if another stack
does an operation that makes ST’s activation condition true. In that chapter we
shall see that communication from one stack to another through the activation
condition is the basis of dataflow execution. For now, let us stick with just one
semantic stack.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

68 Declarative Computation Model

Conditional (the if statement)

The semantic statement is:

(if 〈x〉 then 〈s〉1 else 〈s〉2 end , E)

Execution consists of the following actions:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not a boolean (true or false) then raise an error condi-
tion.

– If E(〈x〉) is true , then push (〈s〉1, E) on the stack.

– If E(〈x〉) is false , then push (〈s〉2, E) on the stack.

• If the activation condition is false, then execution does not continue. The
execution state is kept as is. We say that execution suspends. The stop can
be temporary. If some other activity in the system makes the activation
condition true, then execution can resume.

Procedure application

The semantic statement is:

({ 〈x〉 〈y〉1 ... 〈y〉n} , E)

Execution consists of the following actions:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not a procedure value or is a procedure with a number of
arguments different from n, then raise an error condition.

– If E(〈x〉) has the form (proc { $ 〈z〉1 ... 〈z〉n} 〈s〉 end , CE) then push
(〈s〉, CE + {〈z〉1 → E(〈y〉1), ..., 〈z〉n → E(〈y〉n)}) on the stack.

• If the activation condition is false, then suspend execution.

Pattern matching (the case statement)

The semantic statement is:

(case 〈x〉 of 〈lit〉(〈feat〉1: 〈x〉1 ... 〈feat〉n: 〈x〉n) then 〈s〉1 else 〈s〉2 end , E)

(Here 〈lit〉 and 〈feat〉 are synonyms for 〈literal〉 and 〈feature〉.) Execution consists
of the following actions:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 69

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If the label of E(〈x〉) is 〈lit〉 and its arity is [〈feat〉1 · · · 〈feat〉n], then
push (〈s〉1, E + {〈x〉1 → E(〈x〉).〈feat〉1, ..., 〈x〉n → E(〈x〉).〈feat〉n}) on
the stack.

– Otherwise push (〈s〉2, E) on the stack.

• If the activation condition is false, then suspend execution.

2.4.5 Basic concepts revisited

Now that we have seen the kernel semantics, let us look again at the examples of
Section 2.4.1 to see exactly what they are doing. We look at three examples; we
suggest you do the others as exercises.

Variable identifiers and static scoping

We saw before that the following statement 〈s〉 displays first 2 and then 1:

〈s〉 ≡




local X in

X=1

〈s〉1 ≡




local X in

X=2

{Browse X}

end

〈s〉2 ≡ {Browse X}

end

The same identifier X first refers to 2 and then refers to 1. We can understand
better what happens by executing 〈s〉 in our abstract machine.

1. The initial execution state is:

([(〈s〉, φ)], φ)

Both the environment and the store are empty (E = φ and σ = φ).

2. After executing the outermost local statement and the binding X=1, we
get:

([(〈s〉1〈s〉2, {X→ x})],
{x = 1})

The identifier X refers to the store variable x, which is bound to 1. The
next statement to be executed is the sequential composition 〈s〉1〈s〉2.

3. After executing the sequential composition, we get:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

70 Declarative Computation Model

([(〈s〉1, {X→ x}), (〈s〉2, {X→ x})],
{x = 1})

Each of the statements 〈s〉1 and 〈s〉2 has its own environment. At this point,
the two environments have identical values.

4. Let us start executing 〈s〉1. The first statement in 〈s〉1 is a local statement.
Executing it gives:

([(X=2 {Browse X} , {X→ x′}), (〈s〉2, {X→ x})],
{x′, x = 1})

This creates the new variable x′ and calculates the new environment {X→
x}+ {X→ x′}, which is {X→ x′}. The second mapping of X overrides the
first.

5. After the binding X=2 we get:

([({Browse X} , {X→ x′}), ({Browse X} , {X→ x})],
{x′ = 2, x = 1})

(Remember that 〈s〉2 is a Browse .) Now we see why the two Browse calls
display different values. It is because they have different environments. The
inner local statement is given its own environment, in which X refers to
another variable. This does not affect the outer local statement, which
keeps its environment no matter what happens in any other instruction.

Procedure definition and call

Our next example defines and calls the procedure Max, which calculates the max-
imum of two numbers. With the semantics we can see precisely what happens

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 71

during the definition and execution of Max. Here is the example in kernel syntax:

〈s〉 ≡




local Max in

local A in

local B in

local C in

〈s〉1 ≡




Max=proc {$ X Y Z}

〈s〉3 ≡




local T in

T=(X>=Y)

〈s〉4 ≡ if T then Z=X else Z=Y end

end

end

A=3

B=5

〈s〉2 ≡ {Max A B C}

end

end

end

end

This statement is in the kernel language syntax. We can see it as the expanded
form of:

local Max C in
proc {Max X Y ?Z}

if X>=Y then Z=X else Z=Y end
end
{Max 3 5 C}

end

This is much more readable but it means exactly the same as the verbose version.
We have added the following three short-cuts:

• Declaring more than one variable in a local declaration. This is translated
into nested local declarations.

• Using “in-line” values instead of variables, e.g., {P 3} is a short-cut for
local X in X=3 {P X} end .

• Using nested operations, e.g., putting the operation X>=Y in place of the
boolean in the if statement.

We will use these short-cuts in all examples from now on.
Let us now execute statement 〈s〉. For clarity, we omit some of the interme-

diate steps.

1. The initial execution state is:

([(〈s〉, φ)], φ)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

72 Declarative Computation Model

Both the environment and the store are empty (E = φ and σ = φ).

2. After executing the four local declarations, we get:

([(〈s〉1, {Max→ m, A→ a, B→ b, C→ c})],
{m, a, b, c})

The store contains the four variables m, a, b, and c. The environment of
〈s〉1 has mappings to these variables.

3. After executing the bindings of Max, A, and B, we get:

([({Max A B C} , {Max→ m, A→ a, B→ b, C→ c})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c})

The variables m, a, and b are now bound to values. The procedure is
ready to be called. Notice that the contextual environment of Max is empty
because it has no free identifiers.

4. After executing the procedure application, we get:

([(〈s〉3, {X→ a, Y→ b, Z→ c})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c})

The environment of 〈s〉3 now has mappings from the new identifiers X, Y,
and Z.

5. After executing the comparison X>=Y, we get:

([(〈s〉4, {X→ a, Y→ b, Z→ c, T→ t})],
{m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c, t = false })

This adds the new identifier T and its variable t bound to false .

6. Execution is complete after statement 〈s〉4 (the conditional):

([], {m = (proc {$ X Y Z} 〈s〉3 end , φ), a = 3, b = 5, c = 5, t = false })

The statement stack is empty and c is bound to 5.

Procedure with external references (part 1)

The second example defines and calls the procedure LowerBound , which ensures
that a number will never go below a given lower bound. The example is interesting
because LowerBound has an external reference. Let us see how the following code
executes:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 73

local LowerBound Y C in
Y=5
proc {LowerBound X ?Z}

if X>=Y then Z=X else Z=Y end
end
{LowerBound 3 C}

end

This is very close to the Max example. The body of LowerBound is identical
to the body of Max. The only difference is that LowerBound has an external
reference. The procedure value is:

(proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y})

where the store contains:

y = 5

When the procedure is defined, i.e., when the procedure value is created, the
environment has to contain a mapping of Y. Now let us apply this procedure. We
assume that the procedure is called as {LowerBound A C} , where A is bound to
3. Before the application we have:

([({LowerBound A C} , {Y→ y, LowerBound → lb, A→ a, C→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y = 5, a = 3, c})

After the application we get:

([(if X>=Y then Z=X else Z=Y end , {Y→ y, X→ a, Z→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y = 5, a = 3, c})

The new environment is calculated by starting with the contextual environment
({Y → y} in the procedure value) and adding mappings from the formal argu-
ments X and Z to the actual arguments a and c.

Procedure with external references (part 2)

In the above execution, the identifier Y refers to y in both the calling environment
as well as the contextual environment of LowerBound . How would the execution
change if the following statement were executed instead of {LowerBound 3 C} :

local Y in
Y=10
{LowerBound 3 C}

end

Here Y no longer refers to y in the calling environment. Before looking at the
answer, please put down the book, take a piece of paper, and work it out. Just
before the application we have almost the same situation as before:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

74 Declarative Computation Model

([({LowerBound A C} , {Y→ y′, LowerBound → lb, A→ a, C→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y′ = 10, y = 5, a = 3, c})

The calling environment has changed slightly: Y refers to a new variable y′, which
is bound to 10. When doing the application, the new environment is calculated
in exactly the same way as before, starting from the contextual environment and
adding the formal arguments. This means that the y′ is ignored! We get exactly
the same situation as before in the semantic stack:

([(if X>=Y then Z=X else Z=Y end , {Y→ y, X→ a, Z→ c})],
{ lb = (proc {$ X Z} if X>=Y then Z=X else Z=Y end end , {Y→ y}),

y′ = 10, y = 5, a = 3, c})

The store still has the binding y′ = 10. But y′ is not referenced by the semantic
stack, so this binding makes no difference to the execution.

2.4.6 Last call optimization

Consider a recursive procedure with just one recursive call which happens to
be the last call in the procedure body. We call such a procedure tail-recursive.
Our abstract machine executes a tail-recursive procedure with a constant stack
size. This is because our abstract machine does last call optimization. This is
sometimes called tail recursion optimization, but the latter terminology is less
precise since the optimization works for any last call, not just tail-recursive calls
(see Exercises). Consider the following procedure:

proc {Loop10 I}
if I==10 then skip
else

{Browse I}
{Loop10 I+1}

end
end

Calling {Loop10 0} displays successive integers from 0 up to 9. Let us see how
this procedure executes.

• The initial execution state is:

([({Loop10 0} , E0)],
σ)

where E0 is the environment at the call.

• After executing the if statement, this becomes:

([({Browse I} , {I → i0}) ({Loop10 I+1} , {I → i0})],
{i0 = 0} ∪ σ)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 75

• After executing the Browse , we get to the first recursive call:

([({Loop10 I+1} , {I → i0})],
{i0 = 0} ∪ σ)

• After executing the if statement in the recursive call, this becomes:

([({Browse I} , {I → i1}) ({Loop10 I+1} , {I → i1})],
{i0 = 0, i1 = 1} ∪ σ)

• After executing the Browse again, we get to the second recursive call:

([({Loop10 I+1} , {I → i1})],
{i0 = 0, i1 = 1} ∪ σ)

It is clear that the stack at the kth recursive call is always of the form:

[({Loop10 I+1} , {I → ik−1})]

There is just one semantic statement and its environment is of constant size. This
is the last call optimization. This shows the efficient way to program loops in the
declarative model: the loop should be invoked through a last call.

2.4.7 Active memory and memory management

In the Loop10 example, the semantic stack and the store have very different
behaviors. The semantic stack is bounded by a constant size. On the other hand,
the store grows bigger at each call. At the kth recursive call, the store has the
form:

{i0 = 0, i1 = 1, ..., ik−1 = k − 1} ∪ σ

Let us see why this growth is not a problem in practice. Look carefully at the
semantic stack. The variables {i0, i1, ..., ik−2} are not needed for executing this
call. The only variable needed is ik−1. Removing the not-needed variables gives
a smaller store:

{ik−1 = k − 1} ∪ σ

Executing with this smaller store gives exactly the same results as before!
From the semantics it follows that a running program needs only the infor-

mation in the semantic stack and in the part of the store reachable from the
semantic stack. A partial value is reachable if it is referenced by a statement on
the semantic stack or by another reachable partial value. The semantic stack and
the reachable part of the store are together called the active memory. The rest
of the store can safely be reclaimed, i.e., the memory it uses can be reused for
other purposes. Since the active memory size of the Loop10 example is bounded
by a small constant, it can loop indefinitely without exhausting system memory.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

76 Declarative Computation Model

(either manually or by
Reclaim

(program execution)
Become inactive

Deallocate

Allocate

Active

Inactive

Free

garbage collection)

Figure 2.18: Lifecycle of a memory block

Memory use cycle

Memory consists of a sequence of words. This sequence is divided up into blocks,
where a block consists of a sequence of one or more words used to store a lan-
guage entity or part of a language entity. Blocks are the basic unit of memory
allocation. Figure 2.18 shows the lifecycle of a memory block. Each block of mem-
ory continuously cycles through three states: active, inactive, and free. Memory
management is the task of making sure that memory circulates correctly along
this cycle. A running program that needs a block of memory will allocate it from
a pool of free memory blocks. During its execution, a running program may no
longer need some of the memory it allocated:

• If it can determine this directly, then it deallocates this memory. This
makes it immediately become free again. This is what happens with the
semantic stack in the Loop10 example.

• If it cannot determine this directly, then the memory becomes inactive. It is
simply no longer reachable by the running program. This is what happens
with the store in the Loop10 example.

Usually, memory used for managing control flow (the semantic stack) can be
deallocated and memory used for data structures (the store) becomes inactive.

Inactive memory must eventually be reclaimed, i.e., the system must recognize
that it is inactive and put it back in the pool of free memory. Otherwise, the
system has a memory leak and will soon run out of memory. Reclaiming inactive
memory is the hardest part of memory management, because recognizing that
memory is unreachable is a global condition. It depends on the whole execution
state of the running program. Low-level languages like C or C++ often leave
reclaiming to the programmer, which is a major source of program errors. There
are two kinds of program error that can occur:

• Dangling reference. This happens when a block is reclaimed even though it
is still reachable. The system will eventually reuse this block. This means

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 77

that data structures will be corrupted in unpredictable ways, causing the
program to crash. This error is especially pernicious since the effect (the
crash) is usually very far away from the cause (the incorrect reclaiming).
This makes dangling references hard to debug.

• Memory leak. This happens when an unreachable block is considered as still
reachable, and so is not reclaimed. The effect is that active memory size
keeps growing indefinitely until eventually the system’s memory resources
are exhausted. Memory leaks are less dangerous than dangling references
because programs can continue running for some time before the error forces
them to stop. Long-lived programs, such as operating systems and servers,
must not have any memory leaks.

Garbage collection

Many high-level languages, such as Erlang, Haskell, Java, Lisp, Prolog, Smalltalk,
and so forth, do automatic reclaiming. That is, reclaiming is done by the sys-
tem independently of the running program. This completely eliminates dangling
references and greatly reduces memory leaks. This relieves the programmer of
most of the difficulties of manual memory management. Automatic reclaiming
is called garbage collection. Garbage collection is a well-known technique that
has been used for a long time. It was used in the 1960’s for early Lisp systems.
Until the 1990’s, mainstream languages did not use it because it was incorrectly
judged as being too inefficient. It has finally become acceptable in mainstream
programming because of the popularity of the Java language.

A typical garbage collector has two phases. In the first phase, it determines
what the active memory is. It does this finding all data structures that are
reachable starting from an initial set of pointers called the root set. The root set
is the set of pointers that are always needed by the program. In the abstract
machine defined so far, the root set is simply the semantic stack. In general, the
root set includes all pointers in ready threads and all pointers in operating system
data structures. We will see this when we extend the machine to implement
the new concepts introduced in later chapters. The root set also includes some
pointers related to distributed programming (namely references from remote sites;
see Chapter 11).

In the second phase, the garbage collector compacts the memory. That is, it
collects all the active memory blocks into one contiguous block (a block without
holes) and the free memory blocks into one contiguous block.

Modern garbage collection algorithms are efficient enough that most applica-
tions can use them with only small memory and time penalties [95]. The most
widely-used garbage collectors run in a “batch” mode, i.e., they are dormant most
of the time and run only when the total amount of active and inactive memory
reaches a predefined threshold. While the garbage collector runs, the program
does not fulfill its task. This is perceived as an occasional pause in program
execution. Usually this pause is small enough not to be disruptive.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

78 Declarative Computation Model

There exist garbage collection algorithms, called real-time garbage collectors,
that can run continuously, interleaved with the program execution. They can be
used in cases, such as hard real-time programming, in which there must not be
any pauses.

Garbage collection is not magic

Having garbage collection lightens the burden of memory management for the
developer, but it does not eliminate it completely. There are two cases that remain
the developer’s responsibility: avoiding memory leaks and managing external
resources.

Avoiding memory leaks It is the programmer’s responsibility to avoid mem-
ory leaks. If the program continues to reference a data structure that it no longer
needs, then that data structure’s memory will never be recovered. The program
should be careful to lose all references to data structures no longer needed.

For example, take a recursive function that traverses a list. If the list’s head
is passed to the recursive call, then list memory will not be recovered during the
function’s execution. Here is an example:

L=[1 2 3 ... 1000000]

fun {Sum X L1 L}
case L1 of Y|L2 then {Sum X+Y L2 L}
else X end

end

{Browse {Sum 0 L L}}

Sumsums the elements of a list. But it also keeps a reference to L, the original
list, even though it does not need L. This means L will stay in memory during
the whole execution of Sum. A better definition is as follows:

fun {Sum X L1}
case L1 of Y|L2 then {Sum X+Y L2}
else X end

end

{Browse {Sum 0 L}}

Here the reference to L is lost immediately. This example is trivial. But things can
be more subtle. For example, consider an active data structure S that contains
a list of other data structures D1, D2, ..., Dn. If one of these, say Di , is no longer
needed by the program, then it should be removed from the list. Otherwise its
memory will never be recovered.

A well-written program therefore has to do some “cleanup” after itself: making
sure that it no longer references data structures that it no longer needs. The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.4 Kernel language semantics 79

cleanup can be done in the declarative model, but it is cumbersome.9

Managing external resources A Mozart program often needs data structures
that are external to its operating system process. We call such a data structure
an external resource. External resources affect memory management in two ways.
An internal Mozart data structure can refer to an external resource and vice versa.
Both possibilities need some programmer intervention. Let us consider each case
separately.

The first case is when a Mozart data structure refers to an external resource.
For example, a record can correspond to a graphic entity in a graphics display or
to an open file in a file system. If the record is no longer needed, then the graphic
entity has to be removed or the file has to be closed. Otherwise, the graphics
display or the file system will have a memory leak. This is done with a technique
called finalization, which defines actions to be taken when data structures become
unreachable. Finalization is explained in Section 6.9.2.

The second case is when an external resource needs a Mozart data structure.
This is often straightforward to handle. For example, consider a scenario where
the Mozart program implements a database server that is accessed by external
clients. This scenario has a simple solution: never do automatic reclaiming of
the database storage. Other scenarios may not be so simple. A general solution
is to set aside a part of the Mozart program to represent the external resource.
This part should be active (i.e., have its own thread) so that it is not reclaimed
haphazardly. It can be seen as a “proxy” for the resource. The proxy keeps a ref-
erence to the Mozart data structure as long as the resource needs it. The resource
informs the proxy when it no longer needs the data structure. Section 6.9.2 gives
another technique.

The Mozart garbage collector

The Mozart system does automatic memory management. It has both a local
garbage collector and a distributed garbage collector. The latter is used for
distributed programming and is explained in Chapter 11. The local garbage
collector uses a copying dual-space algorithm.

The garbage collector divides memory into two spaces, which each takes up
half of available memory space. At any instant, the running program sits com-
pletely in one half. Garbage collection is done when there is no more free memory
in that half. The garbage collector finds all data structures that are reachable
from the root set and copies them to the other half of memory. Since they are
copied to one contiguous memory block this also does compaction.

The advantage of a copying garbage collector is that its execution time is
proportional to the active memory size, not to the total memory size. Small
programs will garbage collect quickly, even if they are running in a large memory
space. The two disadvantages of a copying garbage collector are that half the

9It is more efficiently done with explicit state (see Chapter 6).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

80 Declarative Computation Model

memory is unusable at any given time and that long-lived data structures (like
system tables) have to be copied at each garbage collection. Let us see how
to remove these two disadvantages. Copying long-lived data can be avoided by
using a modified algorithm called a generational garbage collector. This partitions
active memory into generations. Long-lived data structures are put in older
generations, which are collected less often.

The memory disadvantage is only important if the active memory size ap-
proaches the maximum addressable memory size of the underlying architecture.
Mainstream computer technology is currently in a transition period from 32-bit
to 64-bit addressing. In a computer with 32-bit addresses, the limit is reached
when active memory size is 1000 MB or more. (The limit is usually not 4000
MB due to limitations in the operating system.) At the time of writing, this
limit is reached by large programs in high-end personal computers. For such
programs, we recommend to use a computer with 64-bit addresses, which has no
such problem.

2.5 From kernel language to practical language

The kernel language has all the concepts needed for declarative programming.
But trying to use it for practical declarative programming shows that it is too
minimal. Kernel programs are just too verbose. It turns out that most of this
verbosity can be eliminated by judiciously adding syntactic sugar and linguistic
abstractions. This section does just that:

• It defines a set of syntactic conveniences that give a more concise and read-
able full syntax.

• It defines an important linguistic abstraction, namely functions, that is
useful for concise and readable programming.

• It explains the interactive interface of the Mozart system and shows how
it relates to the declarative model. This brings in the declare statement,
which is a variant of the local statement designed for interactive use.

The resulting language is used in Chapter 3 to explain the programming tech-
niques of the declarative model.

2.5.1 Syntactic conveniences

The kernel language defines a simple syntax for all its constructs and types. The
full language has the following conveniences to make this syntax more usable:

• Nested partial values can be written in a concise way.

• Variables can be both declared and initialized in one step.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 81

• Expressions can be written in a concise way.

• The if and case statements can be nested in a concise way.

• The new operators andthen and orelse are defined as conveniences for
nested if statements.

• Statements can be converted into expressions by using a nesting marker.

The nonterminal symbols used in the kernel syntax and semantics correspond as
follows to those in the full syntax:

Kernel syntax Full syntax
〈x〉, 〈y〉, 〈z〉 〈variable〉
〈s〉 〈statement〉, 〈stmt〉

Nested partial values

In Table 2.2, the syntax of records and patterns implies that their arguments are
variables. In practice, many partial values are nested deeper than this. Because
nested values are so often used, we give syntactic sugar for them. For example,
we extend the syntax to let us write person(name:"George" age:25) instead
of the more cumbersome version:

local A B in A="George" B=25 X=person(name:A age:B) end

where X is bound to the nested record.

Implicit variable initialization

To make programs shorter and easier to read, there is syntactic sugar to bind a
variable immediately when it is declared. The idea is to put a bind operation
between local and in . Instead of local X in X=10 {Browse X} end , in
which X is mentioned three times, the short-cut lets one write local X=10 in

{Browse X} end , which mentions X only twice. A simple case is the following:

local X=〈expression〉 in 〈statement〉 end

This declares X and binds it to the result of 〈expression〉. The general case is:

local 〈pattern〉=〈expression〉 in 〈statement〉 end

where 〈pattern〉 is any partial value. This declares all the variables in 〈pattern〉
and then binds 〈pattern〉 to the result of 〈expression〉. In both cases, the variables
occurring on the left-hand side of the equality, i.e., X or the variables in 〈pattern〉,
are the ones declared.

Implicit variable initialization is convenient for taking apart a complex da-
ta structure. For example, if T is bound to the record tree(key:a left:L

right:R value:1) , then just one equality is enough to extract all four fields:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

82 Declarative Computation Model

〈expression〉 ::= 〈variable〉 | 〈int〉 | 〈float〉 |
| 〈expression〉 〈evalBinOp〉 〈expression〉
| ´ (´ 〈expression〉 〈evalBinOp〉 〈expression〉 ´) ´

| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| ...
〈evalBinOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod |

| ´ ==´ | ´ \= ´ | ´ <´ | ´ =<´ | ´ >´ | ´ >=´ | ...

Table 2.4: Expressions for calculating with numbers

local
tree(key:A left:B right:C value:D)=T

in
〈statement〉

end

This is a kind of pattern matching. T must have the right structure, otherwise
an exception is raised. This does part of the work of the case statement, which
generalizes this so that the programmer decides what to do if the pattern is not
matched. Without the short-cut, the following is needed:

local A B C D in
{Label T}=tree
A=T.key
B=T.left
C=T.right
D=T.value
〈statement〉

end

which is both longer and harder to read. What if T has more than four fields,
but we want to extract just four? Then we can use the following notation:

local
tree(key:A left:B right:C value:D ...)=T

in
〈statement〉

end

The “... ” means that there may be other fields in T.

Expressions

An expression is syntactic sugar for a sequence of operations that returns a value.
It is different from a statement, which is also a sequence of operations but does
not return a value. An expression can be used inside a statement whenever a
value is needed. For example, 11*11 is an expression and X=11*11 is a statement.
Semantically, an expression is defined by a straightforward translation into kernel

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 83

〈statement〉 ::= if 〈expression〉 then 〈inStatement〉
{ elseif 〈expression〉 then 〈inStatement〉 }
[else 〈inStatement〉] end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉

Table 2.5: The if statement

〈statement〉 ::= case 〈expression〉
of 〈pattern〉 [andthen 〈expression〉] then 〈inStatement〉
{ ´ [] ´ 〈pattern〉 [andthen 〈expression〉] then 〈inStatement〉 }
[else 〈inStatement〉] end

| ...
〈pattern〉 ::= 〈variable〉 | 〈atom〉 | 〈int〉 | 〈float〉

| 〈string〉 | unit | true | false

| 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈pattern〉 } [´ ... ´] ´) ´

| 〈pattern〉 〈consBinOp〉 〈pattern〉
| ´ [´ { 〈pattern〉 }+ ´] ´

〈consBinOp〉 ::= ´ #´ | ´ | ´

Table 2.6: The case statement

syntax. So X=11*11 is translated into {Mul 11 11 X} , where Mul is a three-
argument procedure that does multiplication.10

Table 2.4 shows the syntax of expressions that calculate with numbers. Later
on we will see expressions for calculating with other data types. Expressions are
built hierarchically, starting from basic expressions (e.g., variables and numbers)
and combining them together. There are two ways to combine them: using
operators (e.g., the addition 1+2+3+4) or using function calls (e.g., the square
root {Sqrt 5.0}).

Nested if and case statements

We add syntactic sugar to make it easy to write if and case statements with
multiple alternatives and complicated conditions. Table 2.5 gives the syntax of
the full if statement. Table 2.6 gives the syntax of the full case statement and its
patterns. (Some of the nonterminals in these tables are defined in Appendix C.)
These statements are translated into the primitive if and case statements of
the kernel language. Here is an example of a full case statement:

case Xs#Ys
of nil#Ys then 〈s〉1

10Its real name is Number. ´ * ´ , since it is part of the Number module.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

84 Declarative Computation Model

[] Xs#nil then 〈s〉2
[] (X|Xr)#(Y|Yr) andthen X=<Y then 〈s〉3
else 〈s〉4 end

It consists of a sequence of alternative cases delimited with the “[] ” symbol. The
alternatives are often called clauses. This statement translates into the following
kernel syntax:

case Xs of nil then 〈s〉1
else

case Ys of nil then 〈s〉2
else

case Xs of X|Xr then
case Ys of Y|Yr then

if X=<Y then 〈s〉3 else 〈s〉4 end
else 〈s〉4 end

else 〈s〉4 end
end

end

The translation illustrates an important property of the full case statement:
clauses are tested sequentially starting with the first clause. Execution continues
past a clause only if the clause’s pattern is inconsistent with the input argument.

Nested patterns are handled by looking first at the outermost pattern and then
working inwards. The nested pattern (X|Xr)#(Y|Yr) has one outer pattern of
the form A#B and two inner patterns of the form A|B . All three patterns are tuples
that are written with infix syntax, using the infix operators ´ #´ and ´ | ´ . They
could have been written with the usual syntax as ´ #´ (A B) and ´ | ´ (A B) . Each
inner pattern (X|Xr) and (Y|Yr) is put in its own primitive case statement.
The outer pattern using ´ #´ disappears from the translation because it occurs
also in the case ’s input argument. The matching with ´ #´ can therefore be done
at translation time.

The operators andthen and orelse

The operators andthen and orelse are used in calculations with boolean values.
The expression:

〈expression〉1 andthen 〈expression〉2
translates into:

if 〈expression〉1 then 〈expression〉2 else false end

The advantage of using andthen is that 〈expression〉2 is not evaluated if 〈expression〉1
is false . There is an analogous operator orelse . The expression:

〈expression〉1 orelse 〈expression〉2
translates into:

if 〈expression〉1 then true else 〈expression〉2 end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 85

〈statement〉 ::= fun ´ { ´ 〈variable〉 { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| ...
〈expression〉 ::= fun ´ { ´ ´ $´ { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| proc ´ { ´ ´ $´ { 〈pattern〉 } ´ } ´ 〈inStatement〉 end

| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| local { 〈declarationPart〉 }+ in 〈expression〉 end

| if 〈expression〉 then 〈inExpression〉
{ elseif 〈expression〉 then 〈inExpression〉 }
[else 〈inExpression〉] end

| case 〈expression〉
of 〈pattern〉 [andthen 〈expression〉] then 〈inExpression〉
{ ´ [] ´ 〈pattern〉 [andthen 〈expression〉] then 〈inExpression〉 }
[else 〈inExpression〉] end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉
〈inExpression〉 ::= [{ 〈declarationPart〉 }+ in] [〈statement〉] 〈expression〉

Table 2.7: Function syntax

That is, 〈expression〉2 is not evaluated if 〈expression〉1 is true .

Nesting markers

The nesting marker “$” turns any statement into an expression. The expression’s
value is what is at the position indicated by the nesting marker. For example, the
statement {P X1 X2 X3} can be written as {P X1 $ X3} , which is an expression
whose value is X2. This makes the source code more concise, since it avoids having
to declare and use the identifier X2. The variable corresponding to X2 is hidden
from the source code.

Nesting markers can make source code more readable to a proficient program-
mer, while making it harder for a beginner to see how the code translates to the
kernel language. We will use them only when they greatly increase readability.
For example, instead of writing:

local X in {Obj get(X)} {Browse X} end

we will instead write {Browse {Obj get($)}} . Once you get used to nesting
markers, they are both concise and clear. Note that the syntax of procedure
values as explained in Section 2.3.3 is consistent with the nesting marker syntax.

2.5.2 Functions (the fun statement)

The declarative model provides a linguistic abstraction for programming with
functions. This is our first example of a linguistic abstraction, as defined in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

86 Declarative Computation Model

Section 2.1.2. We define the new syntax for function definitions and function
calls and show how they are translated into the kernel language.

Function definitions

A function definition differs from a procedure definition in two ways: it is intro-
duced with the keyword fun and the body must end with an expression. For
example, a simple definition is:

fun {F X1 ... XN} 〈statement〉 〈expression〉 end

This translates to the following procedure definition:

proc {F X1 ... XN ?R} 〈statement〉 R=〈expression〉 end

The extra argument R is bound to the expression in the procedure body. If the
function body is an if statement, then each alternative of the if can end in an
expression:

fun {Max X Y}
if X>=Y then X else Y end

end

This translates to:

proc {Max X Y ?R}
R = if X>=Y then X else Y end

end

We can further translate this by transforming the if from an expression to a
statement. This gives the final result:

proc {Max X Y ?R}
if X>=Y then R=X else R=Y end

end

Similar rules apply for the local and case statements, and for other statements
we will see later. Each statement can be used as an expression. Roughly speak-
ing, whenever an execution sequence in a procedure ends in a statement, the
corresponding sequence in a function ends in an expression. Table 2.7 gives the
complete syntax of expressions. This table takes all the statements we have seen
so far and shows how to use them as expressions. In particular, there are also
function values, which are simply procedure values written in functional syntax.

Function calls

A function call {F X1 ... XN} translates to the procedure call {F X1 ... XN

R} , where R replaces the function call where it is used. For example, the following
nested call of F:

{Q {F X1 ... XN} ... }

is translated to:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 87

local R in
{F X1 ... XN R}
{Q R ... }

end

In general, nested functions are evaluated before the function in which they are
nested. If there are several, then they are evaluated in the order they appear in
the program.

Function calls in data structures

There is one more rule to remember for function calls. It has to do with a call
inside a data structure (record, tuple, or list). Here is an example:

Ys={F X}|{Map Xr F}

In this case, the translation puts the nested calls after the bind operation:

local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}

end

This ensures that the recursive call is last. Section 2.4.6 explains why this is
important for execution efficiency. The full Map function is defined as follows:

fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end

end

Map applies the function F to all elements of a list and returns the result. Here
is an example call:

{Browse {Map [1 2 3 4] fun {$ X} X*X end }}

This displays [1 4 9 16] . The definition of Map translates as follows to the
kernel language:

proc {Map Xs F ?Ys}
case Xs of nil then Ys=nil
else case Xs of X|Xr then

local Y Yr in
Ys=Y|Yr
{F X Y}
{Map Xr F Yr}

end
end end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

88 Declarative Computation Model

〈interStatement〉 ::= 〈statement〉
| declare { 〈declarationPart〉 }+ [〈interStatement〉]
| declare { 〈declarationPart〉 }+ in 〈interStatement〉

〈declarationPart〉 ::= 〈variable〉 | 〈pattern〉 ´ =´ 〈expression〉 | 〈statement〉

Table 2.8: Interactive statement syntax

"Browse" procedure value

x
1

"Browse" procedure value

x
1

unbound

unboundx
2

unboundx
4

unboundx
3

"X"

"Y"

unbound"X"

"Y" x
2

unbound

Result of second declare X YResult of first declare X Y

Figure 2.19: Declaring global variables

The dataflow variable Yr is used as a “placeholder” for the result in the recursive
call {Map Xr F Yr} . This lets the recursive call be the last call. In our model,
this means that the recursion executes with the same space and time efficiency
as an iterative construct like a while loop.

2.5.3 Interactive interface (the declare statement)

The Mozart system has an interactive interface that allows to introduce program
fragments incrementally and execute them as they are introduced. The fragments
have to respect the syntax of interactive statements, which is given in Table 2.8.
An interactive statement is either any legal statement or a new form, the declare

statement. We assume that the user feeds interactive statements to the system
one by one. (In the examples given throughout this book, the declare statement
is often left out. It should be added if the example declares new variables.)

The interactive interface allows to do much more than just feed statements.
It has all the functionality needed for software development. Appendix A gives
a summary of some of this functionality. For now, we assume that the user just
knows how to feed statements.

The interactive interface has a single, global environment. The declare

statement adds new mappings to this environment. It follows that declare can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.5 From kernel language to practical language 89

only be used interactively, not in standalone programs. Feeding the following
declaration:

declare X Y

creates two new variables in the store, x1 and x2. and adds mappings from X and
Y to them. Because the mappings are in the global environment we say that X

and Y are global variables or interactive variables. Feeding the same declaration
a second time will cause X and Y to map to two other new variables, x3 and x4.
Figure 2.19 shows what happens. The original variables, x1 and x2, are still in the
store, but they are no longer referred to by X and Y. In the figure, Browse maps
to a procedure value that implements the browser. The declare statement adds
new variables and mappings, but leaves existing variables in the store unchanged.

Adding a new mapping to an identifier that already maps to a variable may
cause the variable to become inaccessible, if there are no other references to it.
If the variable is part of a calculation, then it is still accessible from within the
calculation. For example:

declare X Y
X=25
declare A
A=person(age:X)
declare X Y

Just after the binding X=25, X maps to 25, but after the second declare X

Y it maps to a new unbound variable. The 25 is still accessible through the
global variable A, which is bound to the record person(age:25) . The record
contains 25 because X mapped to 25 when the binding A=person(age:X) was
executed. The second declare X Ychanges the mapping of X, but not the record
person(age:25) since the record already exists in the store. This behavior of
declare is designed to support a modular programming style. Executing a
program fragment will not cause the results of any previously-executed fragment
to change.

There is a second form of declare :

declare X Y in 〈stmt〉
which declares two global variables, as before, and then executes 〈stmt〉. The
difference with the first form is that 〈stmt〉 declares no variables (unless it contains
a declare).

The Browser

The interactive interface has a tool, called the Browser, which allows to look into
the store. This tool is available to the programmer as a procedure called Browse .
The procedure Browse has one argument. It is called as {Browse 〈expr〉} , where
〈expr〉 is any expression. It can display partial values and it will update the
display whenever the partial values are bound more. Feeding the following:

{Browse 1}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

90 Declarative Computation Model

Figure 2.20: The Browser

displays the integer 1. Feeding:

declare Y in
{Browse Y}

displays just the name of the variable, namely Y. No value is displayed. This
means that Y is currently unbound. Figure 2.20 shows the browser window after
these two operations. If Y is bound, e.g., by doing Y=2, then the browser will
update its display to show this binding.

Dataflow execution

We saw earlier that declarative variables support dataflow execution, i.e., an
operation waits until all arguments are bound before executing. For sequential
programs this is not very useful, since the program will wait forever. On the
other hand, it is useful for concurrent programs, in which more than one instruc-
tion sequence can be executing at the same time. An independently-executing
instruction sequence is called a thread. Programming with more than one thread
is called concurrent programming; it is introduced in Chapter 4.

All examples in this chapter execute in a single thread. To be precise, each
program fragment fed into the interactive interface executes in its own thread.
This lets us give simple examples of dataflow execution in this chapter. For
example, feed the following statement:

declare A B C in
C=A+B
{Browse C}

This will display nothing, since the instruction C=A+B blocks (both of its argu-
ments are unbound). Now, feed the following statement:

A=10

This will bind A, but the instruction C=A+B still blocks since B is still unbound.
Finally, feed the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 91

B=200

This displays 210 in the browser. Any operation, not just addition, will block
if it does not get enough input information to calculate its result. For example,
comparisons can block. The equality comparison X==Y will block if it cannot
decide whether or not X is equal to or different from Y. This happens, e.g., if one
or both of the variables are unbound.

Programming errors often result in dataflow suspensions. If you feed a state-
ment that should display a result and nothing is displayed, then the probable
cause of the problem is a blocked operation. Carefully check all operations to
make sure that their arguments are bound. Ideally, the system’s debugger should
detect when a program has blocked operations that cannot continue.

2.6 Exceptions

How do we handle exceptional situations within a program? For example, dividing
by zero, opening a nonexistent file, or selecting a nonexistent field of a record?
These errors do not occur in a correct program, so they should not encumber
normal programming style. On the other hand, they do occur sometimes. It
should be possible for programs to manage these errors in a simple way. The
declarative model cannot do this without adding cumbersome checks throughout
the program. A more elegant way is to extend the model with an exception-
handling mechanism. This section does exactly that. We give the syntax and
semantics of the extended model and explain what exceptions look like in the full
language.

2.6.1 Motivation and basic concepts

In the semantics of Section 2.4, we speak of “raising an error” when a statement
cannot continue correctly. For example, a conditional raises an error when its
argument is a non-boolean value. Up to now, we have been deliberately vague
about exactly what happens next. Let us now be more precise. We would like to
be able to detect these errors and handle them from within a running program.
The program should not stop when they occur. Rather, it should in a controlled
way transfer execution to another part, called the exception handler, and pass
the exception handler a value that describes the error.

What should the exception-handling mechanism look like? We can make two
observations. First, it should be able to confine the error, i.e., quarantine it so that
it does not contaminate the whole program. We call this the error confinement
principle:

Assume that the program is made up of interacting “components”
organized in hierarchical fashion. Each component is built of smaller
components. We put “component” in quotes because the language
does not need to have a component concept. It just needs to be

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

92 Declarative Computation Model

= raise exception

= exception-catching
execution context

execution context=jump

Figure 2.21: Exception handling

compositional, i.e., programs are built in layered fasion. Then the
error confinement principle states that an error in a component should
be catchable at the component boundary. Outside the component, the
error is either invisible or reported in a nice way.

Therefore, the mechanism causes a “jump” from inside the component to its
boundary. The second observation is that this jump should be a single operation.
The mechanism should be able, in a single operation, to exit from arbitrarily
many levels of nested context. Figure 2.21 illustrates this. In our semantics, a
context is simply an entry on the semantic stack, i.e., an instruction that has to
be executed later. Nested contexts are created by procedure calls and sequential
compositions.

The declarative model cannot jump out in a single operation. The jump has
to be coded explicitly as little hops, one per context, using boolean variables and
conditionals. This makes programs more cumbersome, especially since the extra
coding has to be added everywhere that an error can possibly occur. It can be
shown theoretically that the only way to keep programs simple is to extend the
model [103, 105].

We propose a simple extension to the model that satisfies these conditions. We
add two statements: the try statement and the raise statement. The try state-
ment creates an exception-catching context together with an exception handler.
The raise statement jumps to the boundary of the innermost exception-catching
context and invokes the exception handler there. Nested try statements create
nested contexts. Executing try 〈s〉 catch 〈x〉 then 〈s〉1 end is equivalent to ex-
ecuting 〈s〉, if 〈s〉 does not raise an exception. On the other hand, if 〈s〉 raises an
exception, i.e., by executing a raise statement, then the (still ongoing) execu-
tion of 〈s〉 is aborted. All information related to 〈s〉 is popped from the semantic
stack. Control is transferred to 〈s〉1, passing it a reference to the exception in 〈x〉.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 93

Any partial value can be an exception. This means that the exception-
handling mechanism is extensible by the programmer, i.e., new exceptions can be
defined as they are needed by the program. This lets the programmer foresee new
exceptional situations. Because an exception can be an unbound variable, raising
an exception and determining what the exception is can be done concurrently. In
other words, an exception can be raised (and caught) before it is known which
exception it is! This is quite reasonable in a language with dataflow variables:
we may at some point know that there exists a problem but not know yet which
problem.

An example

Let us give a simple example of exception handling. Consider the following func-
tion, which evaluates simple arithmetic expressions and returns the result:

fun {Eval E}
if {IsNumber E} then E
else

case E
of plus(X Y) then {Eval X}+{Eval Y}
[] times(X Y) then {Eval X}*{Eval Y}
else raise illFormedExpr(E) end
end

end
end

For this example, we say an expression is ill-formed if it is not recognized by
Eval , i.e., if it contains other values than numbers, plus , and times . Trying
to evaluate an ill-formed expression E will raise an exception. The exception is
a tuple, illFormedExpr(E) , that contains the ill-formed expression. Here is an
example of using Eval :

try
{Browse {Eval plus(plus(5 5) 10)}}
{Browse {Eval times(6 11)}}
{Browse {Eval minus(7 10)}}

catch illFormedExpr(E) then
{Browse ´ *** Illegal expression ´ #E#´ *** ´ }

end

If any call to Eval raises an exception, then control transfers to the catch clause,
which displays an error message.

2.6.2 The declarative model with exceptions

We extend the declarative computation model with exceptions. Table 2.9 gives
the syntax of the extended kernel language. Programs can use two new state-
ments, try and raise . In addition, there is a third statement, catch 〈x〉 then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

94 Declarative Computation Model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception

Table 2.9: The declarative kernel language with exceptions

〈s〉 end , that is needed internally for the semantics and is not allowed in pro-
grams. The catch statement is a “marker” on the semantic stack that defines
the boundary of the exception-catching context. We now give the semantics of
these statements.

The try statement

The semantic statement is:

(try 〈s〉1 catch 〈x〉 then 〈s〉2 end , E)

Execution consists of the following actions:

• Push the semantic statement (catch 〈x〉 then 〈s〉2 end , E) on the stack.

• Push (〈s〉1, E) on the stack.

The raise statement

The semantic statement is:

(raise 〈x〉 end , E)

Execution consists of the following actions:

• Pop elements off the stack looking for a catch statement.

– If a catch statement is found, pop it from the stack.

– If the stack is emptied and no catch is found, then stop execution
with the error message “Uncaught exception”.

• Let (catch 〈y〉 then 〈s〉 end , Ec) be the catch statement that is found.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 95

〈statement〉 ::= try 〈inStatement〉
[catch 〈pattern〉 then 〈inStatement〉
{ ´ [] ´ 〈pattern〉 then 〈inStatement〉 }]

[finally 〈inStatement〉] end

| raise 〈inExpression〉 end

| ...
〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉
〈inExpression〉 ::= [{ 〈declarationPart〉 }+ in] [〈statement〉] 〈expression〉

Table 2.10: Exception syntax

• Push (〈s〉, Ec + {〈y〉 → E(〈x〉)}) on the stack.

Let us see how an uncaught exception is handled by the Mozart system. For
interactive execution, an error message is printed in the Oz emulator window.
For standalone applications, the application terminates and an error message is
sent on the standard error output of the process. It is possible to change this
behavior to something else that is more desirable for particular applications, by
using the System module Property .

The catch statement

The semantic statement is:

(catch 〈x〉 then 〈s〉 end , E)

Execution is complete after this pair is popped from the semantic stack. I.e., the
catch statement does nothing, just like skip .

2.6.3 Full syntax

Table 2.10 gives the syntax of the try statement in the full language. It has an
optional finally clause. The catch clause has an optional series of patterns.
Let us see how these extensions are defined.

The finally clause

A try statement can specify a finally clause which is always executed, whether
or not the statement raises an exception. The new syntax:

try 〈s〉1 finally 〈s〉2 end

is translated to the kernel language as:

try 〈s〉1
catch X then
〈s〉2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

96 Declarative Computation Model

raise X end
end
〈s〉2

(where an identifier X is chosen that is not free in 〈s〉2). It is possible to define a
translation in which 〈s〉2 only occurs once; we leave this to the reader.

The finally clause is useful when dealing with entities that are external to
the computation model. With finally , we can guarantee that some “cleanup”
action gets performed on the entity, whether or not an exception occurs. A typical
example is reading a file. Assume F is an open file11, the procedure ProcessFile

manipulates the file in some way, and the procedure CloseFile closes the file.
Then the following program ensures that F is always closed after ProcessFile

completes, whether or not an exception was raised:

try
{ProcessFile F}

finally {CloseFile F} end

Note that this try statement does not catch the exception; it just executes
CloseFile whenever ProcessFile completes. We can combine both catching
the exception and executing a final statement:

try
{ProcessFile F}

catch X then
{Browse ´ *** Exception ´ #X#´ when processing file *** ´ }

finally {CloseFile F} end

This behaves like two nested try statements: the innermost with just a catch

clause and the outermost with just a finally clause.

Pattern matching

A try statement can use pattern matching to catch only exceptions that match a
given pattern. Other exceptions are passed to the next enclosing try statement.
The new syntax:

try 〈s〉
catch 〈p〉1 then 〈s〉1

[] 〈p〉2 then 〈s〉2
...
[] 〈p〉n then 〈s〉n

end

is translated to the kernel language as:

try 〈s〉
catch X then

case X

11We will see later how file input/output is handled.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.6 Exceptions 97

of 〈p〉1 then 〈s〉1
[] 〈p〉2 then 〈s〉2
...
[] 〈p〉n then 〈s〉n
else raise X end
end

end

If the exception does not match any of the patterns, then it is simply raised again.

2.6.4 System exceptions

The Mozart system itself raises a few exceptions. They are called system ex-
ceptions. They are all records with one of the three labels failure , error , or
system :

• failure : indicates an attempt to perform an inconsistent bind operation
(e.g., 1=2) in the store (see Section 2.7.2).

• error : indicates a runtime error in the program, i.e., a situation that should
not occur during normal operation. These errors are either type or domain
errors. A type error occurs when invoking an operation with an argument of
incorrect type, e.g., applying a nonprocedure to some argument ({foo 1} ,
where foo is an atom), or adding an integer to an atom (e.g., X=1+a). A
domain error occurs when invoking an operation with an argument that is
outside of its domain (even if it has the right type), e.g., taking the square
root of a negative number, dividing by zero, or selecting a nonexistent field
of a record.

• system : indicates a runtime condition occurring in the environment of the
Mozart operating system process, e.g., an unforeseeable situation like a
closed file or window or a failure to open a connection between two Mozart
processes in distributed programming (see Chapter 11).

What is stored inside the exception record depends on the Mozart system version.
Therefore programmers should rely only on the label. For example:

fun {One} 1 end
fun {Two} 2 end
try {One}={Two}
catch

failure(...) then {Browse caughtFailure}
end

The pattern failure(...) catches any record whose label is failure .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

98 Declarative Computation Model

2.7 Advanced topics

This section gives additional information for deeper understanding of the declar-
ative model, its trade-offs, and possible variations.

2.7.1 Functional programming languages

Functional programming consists of defining functions on complete values, where
the functions are true functions in the mathematical sense. A language in which
this is the only possible way to calculate is called a pure functional language.
Let us examine how the declarative model relates to pure functional program-
ming. For further reading on the history, formal foundations, and motivations
for functional programming we recommend the survey article by Hudak [85].

The λ calculus

Pure functional languages are based on a formalism called the λ calculus. There
are many variants of the λ calculus. All of these variants have in common two
basic operations, namely defining and evaluating functions. For example, the
function value fun {$ X} X*X end is identical to the λ expression λx. x ∗ x.
This expression consists of two parts: the x before the dot, which is the function’s
argument, and the expression x ∗ x, which is the function’s result. The Append

function, which appends two lists together, can be defined as a function value:

Append= fun {$ Xs Ys}
if {IsNil Xs} then Xs
else {Cons {Car Xs} {Append {Cdr Xs} Ys}}
end

end

This is equivalent to the following λ expression:

append = λxs, ys . if isNil(xs) then ys
else cons(car(xs), append(cdr(xs), ys))

The definition of Append uses the following helper functions:

fun {IsNil X} X==nil end
fun {IsCons X} case X of _|_ then true else false end end
fun {Car H|T} H end
fun {Cdr H|T} T end
fun {Cons H T} H|T end

Restricting the declarative model

The declarative model is more general than the λ calculus in two ways. First,
it defines functions on partial values, i.e., with unbound variables. Second, it
uses a procedural syntax. We can define a pure functional language by putting

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 99

two syntactic restrictions on the declarative model so that it always calculates
functions on complete values:

• Always bind a variable to a value immediately when it is declared. That is,
the local statement always has one of the following two forms:

local 〈x〉=〈v〉 in 〈s〉 end
local 〈x〉={ 〈y〉 〈y〉1 ... 〈y〉n} in 〈s〉 end

• Use only the function syntax, not the procedure syntax. For function calls
inside data structures, do the nested call before creating the data structure
(instead of after, as in Section 2.5.2). This avoids putting unbound variables
in data structures.

With these restrictions, the model no longer needs unbound variables. The declar-
ative model with these restrictions is called the (strict) functional model. This
model is close to well-known functional programming languages such as Scheme
and Standard ML. The full range of higher-order programming techniques is pos-
sible. Pattern matching is possible using the case statement.

Varieties of functional programming

Let us explore some variations on the theme of functional programming:12

• The functional model of this chapter is dynamically typed like Scheme.
Many functional languages are statically typed. Section 2.7.3 explains the
differences between the two approaches. Furthermore, many statically-
typed languages, e.g., Haskell and Standard ML, do type inferencing, which
allows the compiler to infer the types of all functions.

• Thanks to dataflow variables and the single-assignment store, the declar-
ative model allows programming techniques that are not found in most
functional languages, including Scheme, Standard ML, Haskell, and Er-
lang. This includes certain forms of last call optimization and techniques
to compute with partial values as shown in Chapter 3.

• The declarative concurrent model of Chapter 4 adds concurrency while still
keeping all the good properties of functional programming. This is possible
because of dataflow variables and the single-assignment store.

• In the declarative model, functions are eager by default, i.e., function argu-
ments are evaluated before the function body is executed. This is also called
strict evaluation. The functional languages Scheme and Standard ML are
strict. There is another useful execution order, lazy evaluation, in which

12In addition to what is listed here, the functional model does not have any special syntactic
or implementation support for currying. Currying is a higher-order programming technique
that is explained in Section 3.6.6.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

100 Declarative Computation Model

〈statement〉 ::= 〈expression〉 ´ =´ 〈expression〉 | ...
〈expression〉 ::= 〈expression〉 ´ ==´ 〈expression〉

| 〈expression〉 ´ \= ´ 〈expression〉 | ...
〈binaryOp〉 ::= ´ =´ | ´ ==´ | ´ \= ´ | ...

Table 2.11: Equality (unification) and equality test (entailment check)

function arguments are evaluated only if their result is needed. Haskell is
a lazy functional language.13 Lazy evaluation is a powerful flow control
technique in functional programming [87]. It allows to program with po-
tentially infinite data structures without giving explicit bounds. Section 4.5
explains this in detail. An eager declarative program can evaluate functions
and then never use them, thus doing superfluous work. A lazy declarative
program, on the other hand, does the absolute minimum amount of work
to get its result.

2.7.2 Unification and entailment

In Section 2.2 we have seen how to bind dataflow variables to partial values
and to each other, using the equality (´ =´) operation as shown in Table 2.11.
In Section 2.3.5 we have seen how to compare values, using the equality test
(´ ==´ and ´ \= ´) operations. So far, we have seen only the simple cases of these
operations. Let us now examine the general cases.

Binding a variable to a value is a special case of an operation called unification.
The unification 〈Term1〉=〈Term2〉 makes the partial values 〈Term1〉 and 〈Term2〉
equal, if possible, by adding zero or more bindings to the store. For example, f(X

Y)=f(1 2) does two bindings: X=1 and Y=2. If the two terms cannot be made
equal, then an exception is raised. Unification exists because of partial values; if
there would be only complete values then it would have no meaning.

Testing whether a variable is equal to a value is a special case of the entailment
check and disentailment check operations. The entailment check 〈Term1〉==〈Term2〉
(and its opposite, the disentailment check 〈Term1〉\= 〈Term2〉) is a two-argument
boolean function that blocks until it is known whether 〈Term1〉 and 〈Term2〉 are
equal or not equal.14 Entailment and disentailment checks never do any binding.

13To be precise, Haskell is a non-strict language. This is identical to laziness for most practical
purposes. The difference is explained in Section 4.9.2.

14The word “entailment” comes from logic. It is a form of logical implication. This is because
the equality 〈Term1〉==〈Term2〉 is true if the store, considered as a conjunction of equalities,
“logically implies” 〈Term1〉==〈Term2〉.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 101

Unification (the = operation)

A good way to conceptualize unification is as an operation that adds information
to the single-assignment store. The store is a set of dataflow variables, where
each variable is either unbound or bound to some other store entity. The store’s
information is just the set of all its bindings. Doing a new binding, for example
X=Y, will add the information that X and Y are equal. If X and Y are already
bound when doing X=Y, then some other bindings may be added to the store. For
example, if the store already has X=foo(A) and Y=foo(25) , then doing X=Y will
bind A to 25. Unification is a kind of “compiler” that is given new information
and “compiles it into the store”, taking account the bindings that are already
there. To understand how this works, let us look at some possibilities.

• The simplest cases are bindings to values, e.g., X=person(name:X1 age:X2) ,
and variable-variable bindings, e.g., X=Y. If X and Y are unbound, then these
operations each add one binding to the store.

• Unification is symmetric. For example, person(name:X1 age:X2)=X means
the same as X=person(name:X1 age:X2) .

• Any two partial values can be unified. For example, unifying the two
records:

person(name:X1 age:X2)
person(name:"George" age:25)

This binds X1 to "George" and X2 to 25.

• If the partial values are already equal, then unification does nothing. For
example, unifying X and Y where the store contains the two records:

X=person(name:"George" age:25)
Y=person(name:"George" age:25)

This does nothing.

• If the partial values are incompatible then they cannot be unified. For
example, unifying the two records:

person(name:X1 age:26)
person(name:"George" age:25)

The records have different values for their age fields, namely 25 and 26,
so they cannot be unified. This unification will raise a failure exception,
which can be caught by a try statement. The unification might or might
not bind X1 to "George" ; it depends on exactly when it finds out that
there is an incompatibility. Another way to get a unification failure is by
executing the statement fail .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

102 Declarative Computation Model

f a b

f a b

Y=f(a:_ b:Y)

X=f(a:X b:X)

X=f(a:X b:_)

Y

X

f a bXX=Y

Figure 2.22: Unification of cyclic structures

• Unification is symmetric in the arguments. For example, unifying the two
records:

person(name:"George" age:X2)
person(name:X1 age:25)

This binds X1 to "George" and X2 to 25, just like before.

• Unification can create cyclic structures, i.e., structures that refer to them-
selves. For example, the unification X=person(grandfather:X) . This
creates a record whose grandfather field refers to itself. This situation
happens in some crazy time-travel stories.

• Unification can bind cyclic structures. For example, let’s create two cyclic
structures, in X and Y, by doing X=f(a:X b:_) and Y=f(a:_ b:Y) . Now,
doing the unification X=Y creates a structure with two cycles, which we can
write as X=f(a:X b:X) . This example is illustrated in Figure 2.22.

The unification algorithm

Let us give a precise definition of unification. We will define the operation
unify(x, y) that unifies two partial values x and y in the store σ. Unification
is a basic operation of logic programming. When used in the context of unifica-
tion, store variables are called logic variables. Logic programming, which is also
called relational programming, is discussed in Chapter 9.

The store The store consists of a set of k variables, x1, ..., xk, that are parti-
tioned as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 103

• Sets of unbound variables that are equal (also called equivalence sets of
variables). The variables in each set are equal to each other but not to any
other variables.

• Variables bound to a number, record, or procedure (also called determined
variables).

An example is the store {x1 = foo(a: x2) , x2 = 25, x3 = x4 = x5, x6, x7 = x8}
that has eight variables. It has three equivalence sets, namely {x3, x4, x5}, {x6},
and {x7, x8}. It has two determined variables, namely x1 and x2.

The primitive bind operation We define unification in terms of a primitive
bind operation on the store σ. The operation binds all variables in an equivalence
set:

• bind(ES, 〈v〉) binds all variables in the equivalence set ES to the number or
record 〈v〉. For example, the operation bind({x7, x8}, foo(a: x2)) modifies
the example store so that x7 and x8 are no longer in an equivalence set but
both become bound to foo(a: x2) .

• bind(ES1, ES2) merges the equivalence set ES1 with the equivalence set
ES2. For example, the operation bind({x3, x4, x5}, {x6}) modifies the ex-
ample store so that x3, x4, x5, and x6 are in a single equivalence set, namely
{x3, x4, x5, x6}.

The algorithm We now define the operation unify(x, y) as follows:

1. If x is in the equivalence set ESx and y is in the equivalence set ESy, then
do bind(ESx, ESy). If x and y are in the same equivalence set, this is the
same as doing nothing.

2. If x is in the equivalence set ESx and y is determined, then do bind(ESx, y).

3. If y is in the equivalence set ESy and x is determined, then do bind(ESy, x).

4. If x is bound to l(l1 : x1, ..., ln : xn) and y is bound to l′(l′1 : y1, ..., l
′
m : ym)

with l 6= l′ or {l1, ..., ln} 6= {l′1, ..., l′m}, then raise a failure exception.

5. If x is bound to l(l1 : x1, ..., ln : xn) and y is bound to l(l1 : y1, ..., ln : yn),
then for i from 1 to n do unify(xi, yi).

Handling cycles The above algorithm does not handle unification of partial
values with cycles. For example, assume the store contains x = f(a: x) and
y = f(a: y) . Calling unify(x, y) results in the recursive call unify(x, y), which
is identical to the original call. The algorithm loops forever! Yet it is clear
that x and y have exactly the same structure: what the unification should do is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

104 Declarative Computation Model

add exactly zero bindings to the store and then terminate. How can we fix this
problem?

A simple fix is to make sure that unify(x, y) is called at most once for each
possible pair of two variables (x, y). Since any attempt to call it again will not
do anything new, it can return immediately. With k variables in the store, this
means at most k2 unify calls, so the algorithm is guaranteed to terminate. In
practice, the number of unify calls is much less than this. We can implement
the fix with a table that stores all called pairs. This gives the new algorithm
unify′(x, y):

• Let M be a new, empty table.

• Call unify′′(x, y).

This needs the definition of unify′′(x, y):

• If (x, y) ∈M then we are done.

• Otherwise, insert (x, y) in M and then do the original algorithm for unify(x, y),
in which the recursive calls to unify are replaced by calls to unify′′.

This algorithm can be written in the declarative model by passing M as two extra
arguments to unify′′. A table that remembers previous calls so that they can be
avoided in the future is called a memoization table.

Displaying cyclic structures

We have seen that unification can create cyclic structures. To display these in
the browser, it has to be configured right. In the browser’s Options menu, pick
the Representation entry and choose the Graph mode. There are three display
modes, namely Tree (the default), Graph, and Minimal Graph. Tree does not
take sharing or cycles into account. Graph correctly handles sharing and cycles by
displaying a graph. Minimal Graph shows the smallest graph that is consistent
with the data. We give some examples. Consider the following two unifications:

local X Y Z in
f(X b)=f(a Y)
f(Z a)=Z
{Browse [X Y Z]}

end

This shows the list [a b R14=f(R14 a)] in the browser, if the browser is set
up to show the Graph representation. The term R14=f(R14 a) is the textual
representation of a cyclic graph. The variable name R14 is introduced by the
browser; different versions of Mozart might introduce different variable names.
As a second example, feed the following unification when the browser is set up
for Graph, as before:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 105

declare X Y Z in
a(X c(Z) Z)=a(b(Y) Y d(X))
{Browse X#Y#Z}

Now set up the browser for the Minimal Graph mode and display the term again.
How do you explain the difference?

Entailment and disentailment checks (the == and \= operations)

The entailment check X==Y is a boolean function that tests whether X and Y are
equal or not. The opposite check, X\=Y , is called a disentailment check. Both
checks use essentially the same algorithm.15 The entailment check returns true

if the store implies the information X=Y in a way that is verifiable (the store
“entails” X=Y) and false if the store will never imply X=Y, again in a way that
is verifiable (the store “disentails” X=Y). The check blocks if it cannot determine
whether X and Y are equal or will never be equal. It is defined as follows:

• It returns the value true if the graphs starting from the nodes of X and Y

have the same structure, i.e., all pairwise corresponding nodes have identical
values or are the same node. We call this structure equality.

• It returns the value false if the graphs have different structure, or some
pairwise corresponding nodes have different values.

• It blocks when it arrives at pairwise corresponding nodes that are different,
but at least one of them is unbound.

Here is an example:

declare L1 L2 L3 Head Tail in
L1=Head|Tail
Head=1
Tail=2|nil

L2=[1 2]
{Browse L1==L2}

L3= ´ | ´ (1:1 2: ´ | ´ (2 nil))
{Browse L1==L3}

All three lists L1 , L2 , and L3 are identical. Here is an example where the entail-
ment check cannot decide:

declare L1 L2 X in
L1=[1]
L2=[X]
{Browse L1==L2}

15Strictly speaking, there is a single algorithm that does both the entailment and disen-
tailment checks simultaneously. It returns true or false depending on which check calls
it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

106 Declarative Computation Model

Feeding this example will not display anything, since the entailment check cannot
decide whether L1 and L2 are equal or not. In fact, both are possible: if X is
bound to 1 then they are equal and if X is bound to 2 then they are not. Try
feeding X=1 or X=2 to see what happens. What about the following example:

declare L1 L2 X in
L1=[X]
L2=[X]
{Browse L1==L2}

Both lists contain the same unbound variable X. What will happen? Think about
it before reading the answer in the footnote.16 Here is a final example:

declare L1 L2 X in
L1=[1 a]
L2=[X b]
{Browse L1==L2}

This will display false . While the comparison 1==X blocks, further inspection of
the two graphs shows that there is a definite difference, so the full check returns
false .

2.7.3 Dynamic and static typing

“The only way of discovering the limits of the possible is to venture
a little way past them into the impossible.”
– Clarke’s Second Law, Arthur C. Clarke (1917–)

It is important for a language to be strongly-typed, i.e., to have a type system
that is enforced by the language. (This is contrast to a weakly-typed language,
in which the internal representation of a type can be manipulated by a program.
We will not speak further of weakly-typed languages in this book.) There are
two major families of strong typing: dynamic typing and static typing. We have
introduced the declarative model as being dynamically typed, but we have not
yet explained the motivation for this design decision, nor the differences between
static and dynamic typing that underlie it. In a dynamically-typed language,
variables can be bound to entities of any type, so in general their type is known
only at run time. In a statically-typed language, on the other hand, all variable
types are known at compile time. The type can be declared by the programmer or
inferred by the compiler. When designing a language, one of the major decisions
to make is whether the language is to be dynamically typed, statically typed, or
some mixture of both. What are the advantages and disadvantages of dynamic
and static typing? The basic principle is that static typing puts restrictions on
what programs one can write, reducing expressiveness of the language in return
for giving advantages such as improved error catching ability, efficiency, security,
and partial program verification. Let us examine this closer:

16The browser will display true , since L1 and L2 are equal no matter what X might be
bound to.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.7 Advanced topics 107

• Dynamic typing puts no restrictions on what programs one can write. To be
precise, all syntactically-legal programs can be run. Some of these programs
will raise exceptions, possibly due to type errors, which can be caught by
an exception handler. Dynamic typing gives the widest possible variety of
programming techniques. The increased flexibility is felt quite strongly in
practice. The programmer spends much less time adjusting the program to
fit the type system.

• Dynamic typing makes it a trivial matter to do separate compilation, i.e.,
modules can be compiled without knowing anything about each other. This
allows truly open programming, in which independently-written modules
can come together at run time and interact with each other. It also makes
program development scalable, i.e., extremely large programs can be divided
into modules that can be compiled individually without recompiling other
modules. This is harder to do with static typing because the type discipline
must be enforced across module boundaries.

• Dynamic typing shortens the turnaround time between an idea and its
implementation. It enables an incremental development environment that
is part of the run-time system. It allows to test programs or program
fragments even when they are in an incomplete or inconsistent state.

• Static typing allows to catch more program errors at compile time. The
static type declarations are a partial specification of the program, i.e., they
specify part of the program’s behavior. The compiler’s type checker veri-
fies that the program satisfies this partial specification. This can be quite
powerful. Modern static type systems can catch a surprising number of
semantic errors.

• Static typing allows a more efficient implementation. Since the compiler has
more information about what values a variable can contain, it can choose a
more efficient representation. For example, if a variable is of boolean type,
the compile can implement it with a single bit. In a dynamically-typed
language, the compiler cannot always deduce the type of a variable. When
it cannot, then it usually has to allocate a full memory word, so that any
possible value (or a pointer to a value) can be accommodated.

• Static typing can improve the security of a program. Secure ADTs can be
constructed based solely on the protection offered by the type system.

Unfortunately, the choice between dynamic and static typing is most often based
on emotional (“gut”) reactions, not on rational argument. Adherents of dynamic
typing relish the expressive freedom and rapid turnaround it gives them and
criticize the reduced expressiveness of static typing. On the other hand, adherents
of static typing emphasize the aid it gives them for writing correct and efficient
programs and point out that it finds many program errors at compile time. Little

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

108 Declarative Computation Model

hard data exists to quantify these differences. In our experience, the differences
are not great. Programming with static typing is like word processing with a
spelling checker: a good writer can get along without it, but it can improve the
quality of a text.

Each approach has a role in practical application development. Static typ-
ing is recommended when the programming techniques are well-understood and
when efficiency and correctness are paramount. Dynamic typing is recommended
for rapid development and when programs must be as flexible as possible, such
as application prototypes, operating systems, and some artificial intelligence ap-
plications.

The choice between static or dynamic typing does not have to be all or noth-
ing. In each approach, a bit of the other can be added, gaining some of its ad-
vantages. For example, different kinds of polymorphism (where a variable might
have values of several different types) add flexibility to statically-typed function-
al and object-oriented languages. It is an active research area to design static
type systems that capture as much as possible of the flexibility of dynamic type
systems, while encouraging good programming style and still permitting compile
time verification.

The computation models given in this book are all subsets of the Oz lan-
guage, which is dynamically typed. One research goal of the Oz project is to
explore what programming techniques are possible in a computation model that
integrates several programming paradigms. The only way to achieve this goal is
with dynamic typing.

When the programming techniques are known, then a possible next step is to
design a static type system. While research in increasing the functionality and
expressiveness of Oz is still ongoing in the Mozart Consortium, the Alice project
at Saarland University in Saarbrücken, Germany, has chosen to add a static type
system. Alice is a statically-typed language that has much of the expressiveness
of Oz. At the time of writing, Alice is interoperable with Oz (programs can
be written partly in Alice and partly in Oz) since it is based on the Mozart
implementation.

2.8 Exercises

1. Consider the following statement:

proc {P X}
if X>0 then {P X-1} end

end

Is the identifier occurrence of P in the procedure body free or bound? Justify
your answer. Hint: this is easy to answer if you first translate to kernel
syntax.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.8 Exercises 109

2. Section 2.4 explains how a procedure call is executed. Consider the following
procedure MulByN :

declare MulByN N in
N=3
proc {MulByN X ?Y}

Y=N*X
end

together with the call {MulByN A B} . Assume that the environment at the
call contains {A→ 10, B→ x1}. When the procedure body is executed, the
mapping N→ 3 is added to the environment. Why is this a necessary step?
In particular, would not N→ 3 already exist somewhere in the environment
at the call? Would not this be enough to ensure that the identifier Nalready
maps to 3? Give an example where N does not exist in the environment
at the call. Then give a second example where N does exist there, but is
bound to a different value than 3.

3. If a function body has an if statement with a missing else case, then an
exception is raised if the if condition is false. Explain why this behavior
is correct. This situation does not occur for procedures. Explain why not.

4. This exercise explores the relationship between the if statement and the
case statement.

(a) Define the if statement in terms of the case statement. This shows
that the conditional does not add any expressiveness over pattern
matching. It could have been added as a linguistic abstraction.

(b) Define the case statement in terms of the if statement, using the
operations Label , Arity , and ´ . ´ (feature selection).

This shows that the if statement is essentially a more primitive version of
the case statement.

5. This exercise tests your understanding of the full case statement. Given
the following procedure:

proc {Test X}
case X
of a|Z then {Browse ´ case ´ (1)}
[] f(a) then {Browse ´ case ´ (2)}
[] Y|Z andthen Y==Z then {Browse ´ case ´ (3)}
[] Y|Z then {Browse ´ case ´ (4)}
[] f(Y) then {Browse ´ case ´ (5)}
else {Browse ´ case ´ (6)} end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

110 Declarative Computation Model

Without executing any code, predict what will happen when you feed {Test

[b c a]} , {Test f(b(3))} , {Test f(a)} , {Test f(a(3))} , {Test f(d)} ,
{Test [a b c]} , {Test [c a b]} , {Test a|a} , and {Test ´ | ´ (a b

c)} . Use the kernel translation and the semantics if necessary to make the
predictions. After making the predictions, check your understanding by
running the examples in Mozart.

6. Given the following procedure:

proc {Test X}
case X of f(a Y c) then {Browse ´ case ´ (1)}
else {Browse ´ case ´ (2)} end

end

Without executing any code, predict what will happen when you feed:

declare X Y {Test f(X b Y)}

Same for:

declare X Y {Test f(a Y d)}

Same for:

declare X Y {Test f(X Y d)}

Use the kernel translation and the semantics if necessary to make the predic-
tions. After making the predictions, check your understanding by running
the examples in Mozart. Now run the following example:

declare X Y
if f(X Y d)==f(a Y c) then {Browse ´ case ´ (1)}
else {Browse ´ case ´ (2)} end

Does this give the same result or a different result than the previous exam-
ple? Explain the result.

7. Given the following code:

declare Max3 Max5
proc {SpecialMax Value ?SMax}

fun {SMax X}
if X>Value then X else Value end

end
end
{SpecialMax 3 Max3}
{SpecialMax 5 Max5}

Without executing any code, predict what will happen when you feed:

{Browse [{Max3 4} {Max5 4}]}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

2.8 Exercises 111

Check your understanding by running this example in Mozart.

8. This exercise explores the relationship between linguistic abstractions and
higher-order programming.

(a) Define the function AndThen as follows:

fun {AndThen BP1 BP2}
if {BP1} then {BP2} else false end

end

Does the following call:

{AndThen fun {$} 〈expression〉1 end
fun {$} 〈expression〉2 end }

give the same result as 〈expression〉1 andthen 〈expression〉2? Does it
avoid the evaluation of 〈expression〉2 in the same situations?

(b) Write a function OrElse that is to orelse as AndThen is to andthen .
Explain its behavior.

9. This exercise examines the importance of tail recursion, in the light of the
semantics given in the chapter. Consider the following two functions:

fun {Sum1 N}
if N==0 then 0 else N+{Sum1 N-1} end

end

fun {Sum2 N S}
if N==0 then S else {Sum2 N-1 N+S} end

end

(a) Expand the two definitions into kernel syntax. It should be clear that
Sum2 is tail recursive and Sum1 is not.

(b) Execute the two calls {Sum1 10} and {Sum2 10 0} by hand, using
the semantics of this chapter to follow what happens to the stack and
the store. How large does the stack become in either case?

(c) What would happen in the Mozart system if you would call {Sum1

100000000} or {Sum2 100000000 0} ? Which one is likely to work?
Which one is not? Try both on Mozart to verify your reasoning.

10. Consider the following function SMerge that merges two sorted lists:

fun {SMerge Xs Ys}
case Xs#Ys
of nil#Ys then Ys
[] Xs#nil then Xs
[] (X|Xr)#(Y|Yr) then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

112 Declarative Computation Model

if X=<Y then
X|{SMerge Xr Ys}

else
Y|{SMerge Xs Yr}

end
end

end

Expand SMerge into the kernel syntax. Note that X#Y is a tuple of two
arguments that can also be written ´ #´ (X Y) . The resulting procedure
should be tail recursive, if the rules of Section 2.5.2 are followed correctly.

11. Last call optimization is important for much more than just recursive calls.
Consider the following mutually recursive definition of the functions IsOdd

and IsEven :

fun {IsEven X}
if X==0 then true else {IsOdd X-1} end

end

fun {IsOdd X}
if X==0 then false else {IsEven X-1} end

end

We say that these functions are mutually recursive since each function calls
the other. Mutual recursion can be generalized to any number of functions.
A set of functions is mutually recursive if they can be put in a sequence
such that each function calls the next and the last calls the first. For this
exercise, show that the calls {IsOdd N} and {IsEven N} execute with
constant stack size for all nonnegative N. In general, if each function in
a mutually-recursive set has just one function call in its body, and this
function call is a last call, then all functions in the set will execute with
their stack size bounded by a constant.

12. Section 2.7.2 explains that the bind operation is actually much more gen-
eral than just binding variables: it makes two partial values equal (if they
are compatible). This operation is called unification. The purpose of this
exercise is to explore why unification is interesting. Consider the three uni-
fications X=[a Z] , Y=[W b] , and X=Y. Show that the variables X, Y, Z, and
Ware bound to the same values, no matter in which order the three unifi-
cations are done. In Chapter 4 we will see that this order-independence is
important for declarative concurrency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 3

Declarative Programming
Techniques

“S’il vous plâıt... dessine-moi un arbre!”
“If you please – draw me a tree!”
– Freely adapted from Le Petit Prince, Antoine de Saint-Exupéry
(1900–1944)

“The nice thing about declarative programming is that you can write
a specification and run it as a program. The nasty thing about declar-
ative programming is that some clear specifications make incredibly
bad programs. The hope of declarative programming is that you can
move from a specification to a reasonable program without leaving
the language.”
– The Craft of Prolog, Richard O’Keefe (?–)

Consider any computational operation, i.e., a program fragment with inputs and
outputs. We say the operation is declarative if, whenever called with the same
arguments, it returns the same results independent of any other computation
state. Figure 3.1 illustrates the concept. A declarative operation is independent
(does not depend on any execution state outside of itself), stateless1 (has no
internal execution state that is remembered between calls), and deterministic
(always gives the same results when given the same arguments). We will show
that all programs written using the computation model of the last chapter are
declarative.

Why declarative programming is important

Declarative programming is important because of two properties:

• Declarative programs are compositional. A declarative program con-
sists of components that can each be written, tested, and proved correct

1The concept of “stateless” is sometimes called “immutable”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

114 Declarative Programming Techniques

Rest of computation

operation
Declarative

Results

Arguments

Figure 3.1: A declarative operation inside a general computation

independently of other components and of its own past history (previous
calls).

• Reasoning about declarative programs is simple. Programs written
in the declarative model are easier to reason about than programs written in
more expressive models. Since declarative programs compute only values,
simple algebraic and logical reasoning techniques can be used.

These two properties are important both for programming in the large and in the
small, respectively. It would be nice if all programs could easily be written in the
declarative model. Unfortunately, this is not the case. The declarative model is
a good fit for certain kinds of programs and a bad fit for others. This chapter
and the next examine the programming techniques of the declarative model and
explain what kinds of programs can and cannot be easily written in it.

We start by looking more closely at the first property. Let us define a com-
ponent as a precisely delimited program fragment with well-defined inputs and
outputs. A component can be defined in terms of a set of simpler components. For
example, in the declarative model a procedure is one kind of component. The
application program is the topmost component in a hierarchy of components.
The hierarchy bottoms out in primitive components which are provided by the
system.

In a declarative program, the interaction between components is determined
solely by each component’s inputs and outputs. Consider a program with a
declarative component. This component can be understood on its own, without
having to understand the rest of the program. The effort needed to understand
the whole program is the sum of the efforts needed for the declarative component
and for the rest.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

115

Large−scale program structure
Time and space efficiency

Nondeclarative needs

Limitations and extensions
Relation to other declarative models

What is declarativeness?

Iterative and recursive computation
Programming with lists and trees

Definition

The model

with recursion
Programming

Higher−order programming
Control abstractions Abstract data types

Secure abstract data types

Procedural Data

The real world

Abstraction

Figure 3.2: Structure of the chapter

If there would be a more intimate interaction between the component and
the rest of the program, then they could not be understood independently. They
would have to be understood together, and the effort needed would be much big-
ger. For example, it might be (roughly) proportional to the product of the efforts
needed for each part. For a program with many components that interact inti-
mately, this very quickly explodes, making understanding difficult or impossible.
An example of such an intimate interaction is a concurrent program with shared
state, as explained in Chapter 8.

Intimate interactions are often necessary. They cannot be “legislated away”
by programming in a model that does not directly support them (as Section 4.7
clearly explains). But an important principle is that they should only be used
when necessary and not otherwise. To support this principle, as many components
as possible should be declarative.

Writing declarative programs

The simplest way to write a declarative program is to use the declarative mod-
el of the last chapter. The basic operations on data types are declarative, e.g.,
the arithmetic, list, and record operations. It is possible to combine declara-
tive operations to make new declarative operations, if certain rules are followed.
Combining declarative operations according to the operations of the declarative
model will result in a declarative operation. This is explained in Section 3.1.3.

The standard rule in algebra that “equals can be replaced by equals” is another
example of a declarative combination. In programming languages, this property

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

116 Declarative Programming Techniques

Declarative
programming

Descriptive

Programmable

Definitional

Observational

Declarative model

Functional programming

Logic programming

Figure 3.3: A classification of declarative programming

is called referential transparency. It greatly simplifies reasoning about programs.
For example, if we know that f(a) = a2, then we can replace f(a) by a2 in any
other place where it occurs. The equation b = 7f(a)2 then becomes b = 7a4. This
is possible because f(a) is declarative: it depends only on its arguments and not
on any other computation state.

The basic technique for writing declarative programs is to consider the pro-
gram as a set of recursive function definitions, using higher-orderness to simplify
the program structure. A recursive function is one whose definition body refers
to the function itself, either directly or indirectly. Direct recursion means that
the function itself is used in the body. Indirect recursion means that the function
refers to another function that directly or indirectly refers to the original function.
Higher-orderness means that functions can have other functions as arguments and
results. This ability underlies all the techniques for building abstractions that we
will show in the book. Higher-orderness can compensate somewhat for the lack
of expressiveness of the declarative model, i.e., it makes it easy to code limited
forms of concurrency and state in the declarative model.

Structure of the chapter

This chapter explains how to write practical declarative programs. The chap-
ter is roughly organized into the six parts shown in Figure 3.2. The first part
defines “declarativeness”. The second part gives an overview of programming
techniques. The third and fourth parts explain procedural and data abstraction.
The fifth part shows how declarative programming interacts with the rest of the
computing environment. The sixth part steps back to reflect on the usefulness of
the declarative model and situate it with respect to other models.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.1 What is declarativeness? 117

〈s〉 ::=
skip Empty statement

| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation

Table 3.1: The descriptive declarative kernel language

3.1 What is declarativeness?

The declarative model of Chapter 2 is an especially powerful way of writing declar-
ative programs, since all programs written in it will be declarative by this fact
alone. But it is still only one way out of many for doing declarative programming.
Before explaining how to program in the declarative model, let us situate it with
respect to the other ways of being declarative. Let us also explain why programs
written in it are always declarative.

3.1.1 A classification of declarative programming

We have defined declarativeness in one particular way, so that reasoning about
programs is simplified. But this is not the only way to make precise what declar-
ative programming is. Intuitively, it is programming by defining the what (the
results we want to achieve) without explaining the how (the algorithms, etc., need-
ed to achieve the results). This vague intuition covers many different ideas. Let
us try to explain them. Figure 3.3 classifies the most important ones. The first
level of classification is based on the expressiveness. There are two possibilities:

• A descriptive declarativeness. This is the least expressive. The declarative
“program” just defines a data structure. Table 3.1 defines a language at
this level. This language can only define records! It contains just the first
five statements of the kernel language in Table 2.1. Section 3.8.2 shows how
to use this language to define graphical user interfaces. Other examples are
a formatting language like HTML, which gives the structure of a document
without telling how to do the formatting, or an information exchange lan-
guage like XML, which is used to exchange information in an open format
that is easily readable by all. The descriptive level is too weak to write
general programs. So why is it interesting? Because it consists of data
structures that are easy to calculate with. The records of Table 3.1, HTML
and XML documents, and the declarative user interfaces of Section 3.8.2
can all be created and transformed easily by a program.

• A programmable declarativeness. This is as expressive as a Turing machine.2

2A Turing machine is a simple formal model of computation that is as powerful as any

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

118 Declarative Programming Techniques

For example, Table 2.1 defines a language at this level. See the introduc-
tion to Chapter 6 for more on the relationship between the descriptive and
programmable levels.

There are two fundamentally different ways to view programmable declarative-
ness:

• A definitional view, where declarativeness is a property of the component
implementation. For example, programs written in the declarative model
are guaranteed to be declarative, because of properties of the model.

• An observational view, where declarativeness is a property of the component
interface. The observational view follows the principle of abstraction: that
to use a component it is enough to know its specification without knowing
its implementation. The component just has to behave declaratively, i.e.,
as if it were independent, stateless, and deterministic, without necessarily
being written in a declarative computation model.

This book uses both the definitional and observational views. When we are
interested in looking inside a component, we will use the definitional view. When
we are interested in how a component behaves, we will use the observational view.

Two styles of definitional declarative programming have become particularly
popular: the functional and the logical. In the functional style, we say that a
component defined as a mathematical function is declarative. Functional lan-
guages such as Haskell and Standard ML follow this approach. In the logical
style, we say that a component defined as a logical relation is declarative. Log-
ic languages such as Prolog and Mercury follow this approach. It is harder to
formally manipulate functional or logical programs than descriptive programs,
but they still follow simple algebraic laws.3 The declarative model used in this
chapter encompasses both functional and logic styles.

The observational view lets us use declarative components in a declarative
program even if they are written in a nondeclarative model. For example, a
database interface can be a valuable addition to a declarative language. Yet,
the implementation of this interface is almost certainly not going to be logical
or functional. It suffices that it could have been defined declaratively. Some-
times a declarative component will be written in a functional or logical style, and
sometimes it will not be. In later chapters we will build declarative components
in nondeclarative models. We will not be dogmatic about the matter; we will
consider the component to be declarative if it behaves declaratively.

computer that can be built, as far as is known in the current state of computer science. That
is, any computation that can be programmed on any computer can also be programmed on a
Turing machine.

3For programs that do not use the nondeclarative abilities of these languages.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.1 What is declarativeness? 119

3.1.2 Specification languages

Proponents of declarative programming sometimes claim that it allows to dispense
with the implementation, since the specification is all there is. That is, the
specification is the program. This is true in a formal sense, but not in a practical
sense. Practically, declarative programs are very much like other programs: they
require algorithms, data structures, structuring, and reasoning about the order of
operations. This is because declarative languages can only use mathematics that
can be implemented efficiently. There is a trade-off between expressiveness and
efficiency. Declarative programs are usually a lot longer than what a specification
could be. So the distinction between specification and implementation still makes
sense, even for declarative programs.

It is possible to define a declarative language that is much more expressive
than what we use in this book. Such a language is called a specification language.
It is usually impossible to implement specification languages efficiently. This does
not mean that they are impractical; on the contrary. They are an important tool
for thinking about programs. They can be used together with a theorem prover,
i.e., a program that can do certain kinds of mathematical reasoning. Practical
theorem provers are not completely automatic; they need human help. But they
can take over much of the drudgery of reasoning about programs, i.e., the tedious
manipulation of mathematical formulas. With the aid of the theorem prover,
a developer can often prove very strong properties about his or her program.
Using a theorem prover in this way is called proof engineering. Up to now, proof
engineering is only practical for small programs. But this is enough for it to be
used successfully when safety is of critical importance, e.g., when lives are at
stake, such as in medical apparatus or public transportation.

Specification languages are outside the scope of this book.

3.1.3 Implementing components in the declarative model

Combining declarative operations according to the operations of the declarative
model always results in a declarative operation. This section explains why this
is so. We first define more precisely what it means for a statement to be declar-
ative. Given any statement in the declarative model. Partition the free variable
identifiers in the statement into inputs and outputs. Then, given any binding
of the input identifiers to partial values and the output identifiers to unbound
variables, executing the statement will give one of three results: (1) some binding
of the output variables, (2) suspension, or (3) an exception. If the statement is
declarative, then for the same bindings of the inputs, the result is always the
same.

For example, consider the statement Z=X. Assume that X is the input and Z

is the output. For any binding of X to a partial value, executing this statement
will bind Z to the same partial value. Therefore the statement is declarative.

We can use this result to prove that the statement

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

120 Declarative Programming Techniques

if X>Y then Z=X else Z=Y end

is declarative. Partition the statement’s three free identifiers, X, Y, Z, into two
input identifiers X and Y and one output identifier Z. Then, if X and Y are bound
to any partial values, the statement’s execution will either block or bind Z to the
same partial value. Therefore the statement is declarative.

We can do this reasoning for all operations in the declarative model:

• First, all basic operations in the declarative model are declarative. This
includes all operations on basic types, which are explained in Chapter 2.

• Second, combining declarative operations with the constructs of the declar-
ative model gives a declarative operation. The following five compound
statements exist in the declarative model:

– The statement sequence.

– The local statement.

– The if statement.

– The case statement.

– Procedure declaration, i.e., the statement 〈x〉=〈v〉 where 〈v〉 is a pro-
cedure value.

They allow building statements out of other statements. All these ways of
combining statements are deterministic (if their component statements are
deterministic, then so are they) and they do not depend on any context.

3.2 Iterative computation

We will now look at how to program in the declarative model. We start by
looking at a very simple kind of program, the iterative computation. An iterative
computation is a loop whose stack size is bounded by a constant, independent
of the number of iterations. This kind of computation is a basic programming
tool. There are many ways to write iterative programs. It is not always obvious
when a program is iterative. Therefore, we start by giving a general schema that
shows how to construct many interesting iterative computations in the declarative
model.

3.2.1 A general schema

An important class of iterative computations starts with an initial state S0 and
transforms the state in successive steps until reaching a final state Sfinal:

S0 → S1 → · · · → Sfinal

An iterative computation of this class can be written as a general schema:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 121

fun {Sqrt X}
Guess=1.0

in
{SqrtIter Guess X}

end
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
fun {Improve Guess X}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {Abs X} if X<0.0 then ˜X else X end end

Figure 3.4: Finding roots using Newton’s method (first version)

fun {Iterate Si}
if { IsDone Si} then Si

else Si+1 in
Si+1={ Transform Si}
{Iterate Si+1}

end
end

In this schema, the functions IsDone and Transform are problem dependent.
Let us prove that any program that follows this schema is iterative. We will show
that the stack size does not grow when executing Iterate . For clarity, we give
just the statements on the semantic stack, leaving out the environments and the
store:

• Assume the initial semantic stack is [R={Iterate S0}].

• Assume that { IsDone S0} returns false . Just after executing the if , the
semantic stack is [S1={ Transform S0} , R={Iterate S1}].

• After executing { Transform S1} , the semantic stack is [R={Iterate S1}].

We see that the semantic stack has just one element at every recursive call, namely
[R={Iterate Si+1}].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

122 Declarative Programming Techniques

3.2.2 Iteration with numbers

A good example of iterative computation is Newton’s method for calculating the
square root of a positive real number x. The idea is to start with a guess g of
the square root, and to improve this guess iteratively until it is accurate enough.
The improved guess g′ is the average of g and x/g:

g′ = (g + x/g)/2.

To see that the improved guess is beter, let us study the difference between the
guess and

√
x:

ε = g −
√

x

Then the difference between g′ and
√

x is:

ε′ = g′ −
√

x = (g + x/g)/2−
√

x = ε2/2g

For convergence, ε′ should be smaller than ε. Let us see what conditions that this
imposes on x and g. The condition ε′ < ε is the same as ε2/2g < ε, which is the
same as ε < 2g. (Assuming that ε > 0, since if it is not, we start with ε′, which
is always greater than 0.) Substituting the definition of ε, we get the condition√

x + g > 0. If x > 0 and the initial guess g > 0, then this is always true. The
algorithm therefore always converges.

Figure 3.4 shows one way of defining Newton’s method as an iterative compu-
tation. The function {SqrtIter Guess X} calls {SqrtIter {Improve Guess

X} X} until Guess satisfies the condition {GoodEnough Guess X} . It is clear
that this is an instance of the general schema, so it is an iterative computation.
The improved guess is calculated according to the formula given above. The
“good enough” check is |x − g2|/x < 0.00001, i.e., the square root has to be
accurate to five decimal places. This check is relative, i.e., the error is divided by
x. We could also use an absolute check, e.g., something like |x − g2| < 0.00001,
where the magnitude of the error has to be less than some constant. Why is using
a relative check better when calculating square roots?

3.2.3 Using local procedures

In the Newton’s method program of Figure 3.4, several “helper” routines are
defined: SqrtIter , Improve , GoodEnough , and Abs. These routines are used as
building blocks for the main function Sqrt . In this section, we will discuss where
to define helper routines. The basic principle is that a helper routine defined only
as an aid to define another routine should not be visible elsewhere. (We use the
word “routine” for both functions and procedures.)

In the Newton example, SqrtIter is only needed inside Sqrt , Improve and
GoodEnough are only needed inside SqrtIter , and Abs is a utility function that
could be used elsewhere. There are two basic ways to express this visibility, with
somewhat different semantics. The first way is shown in Figure 3.5: the helper

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 123

local
fun {Improve Guess X}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {SqrtIter Guess X}

if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
in

fun {Sqrt X}
Guess=1.0

in
{SqrtIter Guess X}

end
end

Figure 3.5: Finding roots using Newton’s method (second version)

routines are defined outside of Sqrt in a local statement. The second way is
shown in Figure 3.6: each helper routine is defined inside of the routine that
needs it.4

In Figure 3.5, there is a trade-off between readability and visibility: Improve

and GoodEnough could be defined local to SqrtIter only. This would result in
two levels of local declarations, which is harder to read. We have decided to put
all three helper routines in the same local declaration.

In Figure 3.6, each helper routine sees the arguments of its enclosing routine
as external references. These arguments are precisely those with which the helper
routines are called. This means we could simplify the definition by removing these
arguments from the helper routines. This gives Figure 3.7.

There is a trade-off between putting the helper definitions outside the routine
that needs them or putting them inside:

• Putting them inside (Figures 3.6 and 3.7) lets them see the arguments of
the main routines as external references, according to the lexical scoping
rule (see Section 2.4.3). Therefore, they need fewer arguments. But each
time the main routine is invoked, new helper routines are created. This
means that new procedure values are created.

• Putting them outside (Figures 3.4 and 3.5) means that the procedure values
are created once and for all, for all calls to the main routine. But then the

4We leave out the definition of Abs to avoid needless repetition.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

124 Declarative Programming Techniques

fun {Sqrt X}
fun {SqrtIter Guess X}

fun {Improve Guess X}
(Guess + X/Guess) / 2.0

end
fun {GoodEnough Guess X}

{Abs X-Guess*Guess}/X < 0.00001
end

in
if {GoodEnough Guess X} then Guess
else

{SqrtIter {Improve Guess X} X}
end

end
Guess=1.0

in
{SqrtIter Guess X}

end

Figure 3.6: Finding roots using Newton’s method (third version)

fun {Sqrt X}
fun {SqrtIter Guess}

fun {Improve}
(Guess + X/Guess) / 2.0

end
fun {GoodEnough}

{Abs X-Guess*Guess}/X < 0.00001
end

in
if {GoodEnough} then Guess
else

{SqrtIter {Improve}}
end

end
Guess=1.0

in
{SqrtIter Guess}

end

Figure 3.7: Finding roots using Newton’s method (fourth version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.2 Iterative computation 125

fun {Sqrt X}
fun {Improve Guess}

(Guess + X/Guess) / 2.0
end
fun {GoodEnough Guess}

{Abs X-Guess*Guess}/X < 0.00001
end
fun {SqrtIter Guess}

if {GoodEnough Guess} then Guess
else

{SqrtIter {Improve Guess}}
end

end
Guess=1.0

in
{SqrtIter Guess}

end

Figure 3.8: Finding roots using Newton’s method (fifth version)

helper routines need more arguments so that the main routine can pass
information to them.

In Figure 3.7, new definitions of Improve and GoodEnough are created on each
iteration of SqrtIter , whereas SqrtIter itself is only created once. This sug-
gests a good trade-off, where SqrtIter is local to Sqrt and both Improve and
GoodEnough are outside SqrtIter . This gives the final definition of Figure 3.8,
which we consider the best in terms of both efficiency and visibility.

3.2.4 From general schema to control abstraction

The general schema of Section 3.2.1 is a programmer aid. It helps the programmer
design efficient programs but it is not seen by the computation model. Let us go
one step further and provide the general schema as a program component that
can be used by other components. We say that the schema becomes a control
abstraction, i.e., an abstraction that can be used to provide a desired control flow.
Here is the general schema:

fun {Iterate Si}
if { IsDone Si} then Si

else Si+1 in
Si+1={ Transform Si}
{Iterate Si+1}

end
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

126 Declarative Programming Techniques

This schema implements a general while loop with a calculated result. To make
the schema into a control abstraction, we have to parameterize it by extracting
the parts that vary from one use to another. There are two such parts: the
functions IsDone and Transform . We make these two parts into parameters of
Iterate :

fun {Iterate S IsDone Transform}
if {IsDone S} then S
else S1 in

S1={Transform S}
{Iterate S1 IsDone Transform}

end
end

To use this control abstraction, the arguments IsDone and Transform are given
one-argument functions. Passing functions as arguments to functions is part
of a range of programming techniques called higher-order programming. These
techniques are further explained in Section 3.6. We can make Iterate behave
exactly like SqrtIter by passing it the functions GoodEnough and Improve .
This can be written as follows:

fun {Sqrt X}
{Iterate

1.0
fun {$ G} {Abs X-G*G}/X<0.00001 end
fun {$ G} (G+X/G)/2.0 end }

end

This uses two function values as arguments to the control abstraction. This is
a powerful way to structure a program because it separates the general control
flow from this particular use. Higher-order programming is especially helpful for
structuring programs in this way. If this control abstraction is used often, the
next step could be to provide it as a linguistic abstraction.

3.3 Recursive computation

Iterative computations are a special case of a more general kind of computation,
called recursive computation. Let us see the difference between the two. Recall
that an iterative computation can be considered as simply a loop in which a
certain action is repeated some number of times. Section 3.2 implements this in
the declarative model by introducing a control abstraction, the function Iterate .
The function first tests a condition. If the condition is false, it does an action
and then calls itself.

Recursion is more general than this. A recursive function can call itself any-
where in the body and can call itself more than once. In programming, recursion
occurs in two major ways: in functions and in data types. A function is recur-
sive if its definition has at least one call to itself. The iteration abstraction of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.3 Recursive computation 127

Section 3.2 is a simple case. A data type is recursive if it is defined in terms of
itself. For example, a list is defined in terms of a smaller list. The two forms of
recursion are strongly related since recursive functions can be used to calculate
with recursive data types.

We saw that an iterative computation has a constant stack size. This is not
always the case for a recursive computation. Its stack size may grow as the input
grows. Sometimes this is unavoidable, e.g., when doing calculations with trees,
as we will see later. In other cases, it can be avoided. An important part of
declarative programming is to avoid a growing stack size whenever possible. This
section gives an example of how this is done. We start with a typical case of
a recursive computation that is not iterative, namely the naive definition of the
factorial function. The mathematical definition is:

0! = 1
n! = n · (n− 1)! if n > 0

This is a recurrence equation, i.e., the factorial n! is defined in terms of a factorial
with a smaller argument, namely (n−1)!. The naive program follows this mathe-
matical definition. To calculate {Fact N} there are two possibilities, namely N=0

or N>0. In the first case, return 1. In the second case, calculate {Fact N-1} ,
multiply by N, and return the result. This gives the following program:

fun {Fact N}
if N==0 then 1
elseif N>0 then N*{Fact N-1}
else raise domainError end
end

end

This defines the factorial of a big number in terms of the factorial of a smaller
number. Since all numbers are nonnegative, they will bottom out at zero and the
execution will finish.

Note that factorial is a partial function. It is not defined for negative N. The
program reflects this by raising an exception for negative N. The definition in
Chapter 1 has an error since for negative N it goes into an infinite loop.

We have done two things when writing Fact . First, we followed the mathe-
matical definition to get a correct implementation. Second, we reasoned about
termination, i.e., we showed that the program terminates for all legal arguments,
i.e., arguments inside the function’s domain.

3.3.1 Growing stack size

This definition of factorial gives a computation whose maximum stack size is
proportional to the function argument N. We can see this by using the semantics.
First translate Fact into the kernel language:

proc {Fact N ?R}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

128 Declarative Programming Techniques

if N==0 then R=1
elseif N>0 then N1 R1 in

N1=N-1
{Fact N1 R1}
R=N*R1

else raise domainError end
end

end

Already we can guess that the stack size might grow, since the multiplication
comes after the recursive call. That is, during the recursive call the stack has to
keep information about the multiplication for when the recursive call returns. Let
us follow the semantics and calculate by hand what happens when executing the
call {Fact 5 R} . For clarity, we simplify slightly the presentation of the abstract
machine by substituting the value of a store variable into the environment. That
is, the environment {..., N → n, ...} is written as {..., N → 5, ...} if the store is
{..., n = 5, ...}.

• The initial semantic stack is [({Fact N R} , {N→ 5, R→ r0})].

• At the first call:

[({Fact N1 R1} , {N1→ 4, R1→ r1, ...}),
(R=N*R1, {R→ r0, R1→ r1N→ 5, ...})]

• At the second call:

[({Fact N1 R1} , {N1→ 3, R1→ r2, ...}),
(R=N*R1, {R→ r1, R1→ r2, N→ 4, ...}),
(R=N*R1, {R→ r0, R1→ r1, N→ 5, ...})]

• At the third call:

[({Fact N1 R1} , {N1→ 2, R1→ r3, ...}),
(R=N*R1, {R→ r2, R1→ r3, N→ 3, ...}),
(R=N*R1, {R→ r1, R1→ r2, N→ 4, ...}),
(R=N*R1, {R→ r0, R1→ r1, N→ 5, ...})]

It is clear that the stack grows bigger by one statement per call. The last recursive
call is the fifth, which returns immediately with r5 = 1. Then five multiplications
are done to get the final result r0 = 120.

3.3.2 Substitution-based abstract machine

This example shows that the abstract machine of Chapter 2 can be rather cum-
bersome for hand calculation. This is because it keeps both variable identifiers
and store variables, using environments to map from one to the other. This is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.3 Recursive computation 129

realistic; it is how the abstract machine is implemented on a real computer. But
it is not so nice for hand calculation.

We can make a simple change to the abstract machine that makes it much
easier to use for hand calculation. The idea is to replace the identifiers in the
statements by the store entities that they refer to. This is called doing a substi-
tution. For example, the statement R=N*R1 becomes r2 = 3∗ r3 when substituted
according to {R→ r2, N→ 3, R1→ r3}.

The substitution-based abstract machine has no environments. It directly
substitutes identifiers by store entities in statements. For the recursive factorial
example, this gives the following:

• The initial semantic stack is [{Fact 5 r0}].

• At the first call: [{Fact 4 r1} , r0=5* r1].

• At the second call: [{Fact 3 r2} , r1=4* r2, r0=5* r1].

• At the third call: [{Fact 2 r3} , r2=3* r3, r1=4* r2, r0=5* r1].

As before, we see that the stack grows by one statement per call. We summarize
the differences between the two versions of the abstract machine:

• The environment-based abstract machine, defined in Chapter 2, is faithful
to the implementation on a real computer, which uses environments. How-
ever, environments introduce an extra level of indirection, so they are hard
to use for hand calculation.

• The substitution-based abstract machine is easier to use for hand calcu-
lation, because there are many fewer symbols to manipulate. However,
substitutions are costly to implement, so they are generally not used in a
real implementation.

Both versions do the same store bindings and the same manipulations of the
semantic stack.

3.3.3 Converting a recursive to an iterative computation

Factorial is simple enough that is can be rearranged to become iterative. Let us
see how this is done. Later on, we will give a systematic way of making iterative
computations. For now, we just give a hint. In the previous calculation:

R=(5*(4*(3*(2*(1*1)))))

it is enough to rearrange the numbers:

R=(((((1*5)*4)*3)*2)*1)

Then the calculation can be done incrementally, starting with 1*5 . This gives 5,
then 20 , then 60 , then 120 , and finally 120 . The iterative definition of factorial
that does things this way is:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

130 Declarative Programming Techniques

fun {Fact N}
fun {FactIter N A}

if N==0 then A
elseif N>0 then {FactIter N-1 A*N}
else raise domainError end
end

end
in

{FactIter N 1}
end

The function that does the iteration, FactIter , has a second argument A. This
argument is crucial; without it an iterative factorial is impossible. The second
argument is not apparent in the simple mathematical definition of factorial we
used first. We had to do some reasoning to bring it in.

3.4 Programming with recursion

Recursive computations are at the heart of declarative programming. This section
shows how to write in this style. We show the basic techniques for programming
with lists, trees, and other recursive data types. We show how to make the
computation iterative when possible. The section is organized as follows:

• The first step is defining recursive data types. Section 3.4.1 gives a simple
notation that lets us define the most important recursive data types.

• The most important recursive data type is the list. Section 3.4.2 presents
the basic programming techniques for lists.

• Efficient declarative programs have to define iterative computations. Sec-
tion 3.4.3 presents accumulators, a systematic technique to achieve this.

• Computations often build data structures incrementally. Section 3.4.4 presents
difference lists, an efficient technique to achieve this while keeping the
computation iterative.

• An important data type related to the list is the queue. Section 3.4.5
shows how to implement queues efficiently. It also introduces the basic idea
of amortized efficiency.

• The second most important recursive data type, next to linear structures
such as lists and queues, is the tree. Section 3.4.6 gives the basic program-
ming techniques for trees.

• Sections 3.4.7 and 3.4.8 give two realistic case studies, a tree drawing
algorithm and a parser, that between them use many of the techniques of
this section.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 131

3.4.1 Type notation

The list type is a subset of the record type. There are other useful subsets of
the record type, e.g., binary trees. Before going into writing programs, let us
introduce a simple notation to define lists, trees, and other subtypes of records.
This will help us to write functions on these types.

A list Xs is either nil or X|Xr where Xr is a list. Other subsets of the record
type are also useful. For example, a binary tree can be defined as leaf(key:K

value:V) or tree(key:K value:V left:LT right:RT) where LT and RTare
both binary trees. How can we write these types in a concise way? Let us create
a notation based on the context-free grammar notation for defining the syntax of
the kernel language. The nonterminals represent either types or values. Let us
use the type hierarchy of Figure 2.16 as a basis: all the types in this hierarchy
will be available as predefined nonterminals. So 〈Value〉 and 〈Record〉 both exist,
and since they are sets of values, we can say 〈Record〉 ⊂ 〈Value〉. Now we can
define lists:

〈List〉 ::= 〈Value〉 ´ | ´ 〈List〉
| nil

This means that a value is in 〈List〉 if it has one of two forms. Either it is X|Xr

where X is in 〈Value〉 and Xr is in 〈List〉. Or it is the atom nil . This is a recursive
definition of 〈List〉. It can be proved that there is just one set 〈List〉 that is the
smallest set that satisfies this definition. The proof is beyond the scope of this
book, but can be found in any introductory book on semantics, e.g., [208]. We
take this smallest set as the value of 〈List〉. Intuitively, 〈List〉 can be constructed
by starting with nil and repeatedly applying the grammar rule to build bigger
and bigger lists.

We can also define lists whose elements are of a given type:

〈List T〉 ::= T ´ | ´ 〈List T〉
| nil

Here T is a type variable and 〈List T〉 is a type function. Applying the type func-
tion to any type returns the type of a list of that type. For example, 〈List 〈Int〉〉
is the list of integer type. Observe that 〈List 〈Value〉〉 is equal to 〈List〉 (since they
have identical definitions).

Let us define a binary tree whose keys are literals and whose elements are of
type T:

〈BTree T〉 ::= tree(key: 〈Literal〉 value: T
left: 〈BTree T〉 right: 〈BTree T〉)

| leaf(key: 〈Literal〉 value: T)

The type of a procedure is 〈proc {$ T1, ...,Tn} 〉, where T1, ..., Tn are the types
of its arguments. The procedure’s type is sometimes called the signature of the
procedure, because it gives some key information about the procedure in a concise

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

132 Declarative Programming Techniques

form. The type of a function is 〈fun {$ T1, ...,Tn}: T〉, which is equivalent to
〈proc {$ T1, ...,Tn, T} 〉. For example, the type 〈fun {$ 〈List〉 〈List〉}: 〈List〉 〉
is a function with two list arguments that returns a list.

Limits of the notation

This type notation can define many useful sets of values, but its expressiveness
is definitely limited. Here are some cases where the notation is not good enough:

• The notation cannot define the positive integers, i.e., the subset of 〈Int〉
whose elements are all greater than zero.

• The notation cannot define sets of partial values. For example, difference
lists cannot be defined.

We can extend the notation to handle the first case, e.g., by adding boolean
conditions.5 In the examples that follow, we will add these conditions in the
text when they are needed. This means that the type notation is descriptive: it
gives logical assertions about the set of values that a variable may take. There
is no claim that the types could be checkable by a compiler. On the contrary,
they often cannot be checked. Even types that are simple to specify, such as the
positive integers, cannot in general be checked by a compiler.

3.4.2 Programming with lists

List values are very concise to create and to take apart, yet they are powerful
enough to encode any kind of complex data structure. The original Lisp language
got much of its power from this idea [120]. Because of lists’ simple structure,
declarative programming with them is easy and powerful. This section gives the
basic techniques of programming with lists:

• Thinking recursively: the basic approach is to solve a problem in terms of
smaller versions of the problem.

• Converting recursive to iterative computations: naive list programs are often
wasteful because their stack size grows with the input size. We show how
to use state transformations to make them practical.

• Correctness of iterative computations: a simple and powerful way to reason
about iterative computations is by using state invariants.

• Constructing programs by following the type: a function that calculates with
a given type almost always has a recursive structure that closely mirrors
the type definition.

5This is similar to the way we define language syntax in Section 2.1.1: a context-free notation
with extra conditions when they are needed.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 133

We end up this section with a bigger example, the mergesort algorithm. Later
sections show how to make the writing of iterative functions more systematic
by introducing accumulators and difference lists. This lets us write iterative
functions from the start. We find that these techniques “scale up”, i.e., they
work well even for large declarative programs.

Thinking recursively

A list is a recursive data structure: it is defined in terms of a smaller version of
itself. To write a function that calculates on lists we have to follow this recursive
structure. The function consists of two parts:

• A base case. For small lists (say, of zero, one, or two elements), the function
computes the answer directly.

• A recursive case. For bigger lists, the function computes the result in terms
of the results of one or more smaller lists.

As our first example, we take a simple recursive function that calculates the length
of a list according to this technique:

fun {Length Ls}
case Ls
of nil then 0
[] _|Lr then 1+{Length Lr}
end

end
{Browse {Length [a b c]}}

Its type signature is 〈fun {$ 〈List〉}: 〈Int〉〉, a function of one list that returns
an integer. The base case is the empty list nil , for which the function returns 0.
The recursive case is any other list. If the list has length n, then its tail has length
n− 1. The tail is smaller than the original list, so the program will terminate.

Our second example is a function that appends two lists Ls and Ms together
to make a third list. The question is, on which list do we use induction? Is it the
first or the second? We claim that the induction has to be done on the first list.
Here is the function:

fun {Append Ls Ms}
case Ls
of nil then Ms
[] X|Lr then X|{Append Lr Ms}
end

end

Its type signature is 〈fun {$ 〈List〉 〈List〉}: 〈List〉〉. This function follows exactly
the following two properties of append:

• append(nil , m) = m

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

134 Declarative Programming Techniques

• append(x| l, m) = x | append(l, m)

The recursive case always calls Append with a smaller first argument, so the
program terminates.

Recursive functions and their domains

Let us define the function Nth to get the nth element of a list.

fun {Nth Xs N}
if N==1 then Xs.1
elseif N>1 then {Nth Xs.2 N-1}
end

end

Its type is 〈fun {$ 〈List〉 〈Int〉}: 〈Value〉〉. Remember that a list Xs is either
nil or a tuple X|Y with two arguments. Xs.1 gives X and Xs.2 gives Y. What
happens when we feed the following:

{Browse {Nth [a b c d] 5}}

The list has only four elements. Trying to ask for the fifth element means trying
to do Xs.1 or Xs.2 when Xs=nil . This will raise an exception. An exception is
also raised if N is not a positive integer, e.g., when N=0. This is because there is
no else clause in the if statement.

This is an example of a general technique to define functions: always use
statements that raise exceptions when values are given outside their domains.
This will maximize the chances that the function as a whole will raise an exception
when called with an input outside its domain. We cannot guarantee that an
exception will always be raised in this case, e.g., {Nth 1|2|3 2} returns 2 while
1|2|3 is not a list. Such guarantees are hard to come by. They can sometimes
be obtained in statically-typed languages.

The case statement also behaves correctly in this regard. Using a case

statement to recurse over a list will raise an exception when its argument is not
a list. For example, let us define a function that sums all the elements of a list
of integers:

fun {SumList Xs}
case Xs
of nil then 0
[] X|Xr then X+{SumList Xr}
end

end

Its type is 〈fun {$ 〈List 〈Int〉〉}: 〈Int〉〉. The input must be a list of integers
because SumList internally uses the integer 0. The following call:

{Browse {SumList [1 2 3]}}

displays 6. Since Xs can be one of two values, namely nil or X|Xr , it is natural
to use a case statement. As in the Nth example, not using an else in the case

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 135

will raise an exception if the argument is outside the domain of the function. For
example:

{Browse {SumList 1|foo}}

raises an exception because 1|foo is not a list, and the definition of SumList

assumes that its input is a list.

Naive definitions are often slow

Let us define a function to reverse the elements of a list. Start with a recursive
definition of list reversal:

• Reverse of nil is nil .

• Reverse of X|Xs is Z, where
reverse of Xs is Ys, and
append Ys and [X] to get Z.

This works because X is moved from the front to the back. Following this recursive
definition, we can immediately write a function:

fun {Reverse Xs}
case Xs
of nil then nil
[] X|Xr then

{Append {Reverse Xr} [X]}
end

end

Its type is 〈fun {$ 〈List〉}: 〈List〉〉. Is this function efficient? To find out, we
have to calculate its execution time given an input list of length n. We can do this
rigorously with the techniques of Section 3.5. But even without these techniques,
we can see intuitively what happens. There will be n recursive calls followed by
n calls to Append . Each Append call will have a list of length n/2 on average.
The total execution time is therefore proportional to n · n/2, namely n2. This
is rather slow. We would expect that reversing a list, which is not exactly a
complex calculation, would take time proportional to the input length and not
to its square.

This program has a second defect: the stack size grows with the input list
length, i.e., it defines a recursive computation that is not iterative. Naively
following the recursive definition of reverse has given us a rather inefficient result!
Luckily, there are simple techniques for getting around both these inefficiencies.
They will let us define linear-time iterative computations whenever possible. We
will see two useful techniques: state transformations and difference lists.

Converting recursive to iterative computations

Let us see how to convert recursive computations into iterative ones. Instead of
using Reverse , we take a simpler function that calculates the length of a list:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

136 Declarative Programming Techniques

fun {Length Xs}
case Xs of nil then 0
[] _|Xr then 1+{Length Xr}
end

end

Note that the SumList function has the same structure. This function is linear-
time but the stack size is proportional to the recursion depth, which is equal
to the length of Xs. Why does this problem occur? It is because the addition
1+{Length Xr} happens after the recursive call. The recursive call is not last,
so the function’s environment cannot be recovered before it.

How can we calculate the list length with an iterative computation, which has
bounded stack size? To do this, we have to formulate the problem as a sequence
of state transformations. That is, we start with a state S0 and we transform it
successively, giving S1, S2, ..., until we reach the final state Sfinal, which contains
the answer. To calculate the list length, we can take the length i of the part of
the list already seen as the state. Actually, this is only part of the state. The rest
of the state is the part Ys of the list not yet seen. The complete state Si is then
the pair (i, Ys). The general intermediate case is as follows for state Si (where
the full list Xs is [e1 e2 · · · en]):

Xs︷ ︸︸ ︷
e1 e2 · · · ei ei+1 · · · en︸ ︷︷ ︸

Ys

At each recursive call, i will be incremented by 1 and Ys reduced by one element.
This gives us the function:

fun {IterLength I Ys}
case Ys
of nil then I
[] _|Yr then {IterLength I+1 Yr}
end

end

Its type is 〈fun {$ 〈Int〉 〈List〉}: 〈Int〉〉. Note the difference with the previous
definition. Here the addition I+1 is done before the recursive call to IterLength ,
which is the last call. We have defined an iterative computation.

In the call {IterLength I Ys} , the initial value of I is 0. We can hide this
initialization by defining IterLength as a local procedure. The final definition
of Length is therefore:

local
fun {IterLength I Ys}

case Ys
of nil then I
[] _|Yr then {IterLength I+1 Yr}
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 137

in
fun {Length Xs}

{IterLength 0 Xs}
end

end

This defines an iterative computation to calculate the list length. Note that we
define IterLength outside of Length . This avoids creating a new procedure
value each time Length is called. There is no advantage to defining IterLength

inside Length , since it does not use Length ’s argument Xs.
We can use the same technique on Reverse as we used for Length . In the

case of Reverse , the state uses the reverse of the part of the list already seen
instead of its length. Updating the state is easy: we just put a new list element
in front. The initial state is nil . This gives the following version of Reverse :

local
fun {IterReverse Rs Ys}

case Ys
of nil then Rs
[] Y|Yr then {IterReverse Y|Rs Yr}
end

end
in

fun {Reverse Xs}
{IterReverse nil Xs}

end
end

This version of Reverse is both a linear-time and an iterative computation.

Correctness with state invariants

Let us prove that IterLength is correct. We will use a general technique that
works well for IterReverse and other iterative computations. The idea is to
define a property P (Si) of the state that we can prove is always true, i.e., it is
a state invariant. If P is chosen well, then the correctness of the computation
follows from P (Sfinal). For IterLength we define P as follows:

P ((i, Ys)) ≡ (length(Xs) = i + length(Ys))

where length(L) gives the length of the list L. This combines i and Ys in such a
way that we suspect it is a state invariant. We use induction to prove this:

• First prove P (S0). This follows directly from S0 = (0, Xs).

• Assuming P (Si) and Si is not the final state, prove P (Si+1). This follows
from the semantics of the case statement and the function call. Write
Si = (i, Ys). We are not in the final state, so Ys is of nonzero length. From
the semantics, I+1 adds 1 to i and the case statement removes one element
from Ys. Therefore P (Si+1) holds.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

138 Declarative Programming Techniques

Since Ys is reduced by one element at each call, we eventually arrive at the final
state Sfinal = (i, nil), and the function returns i. Since length(nil) = 0, from
P (Sfinal) it follows that i = length(Xs).

The difficult step in this proof is to choose the property P . It has to satisfy two
constraints. First, it has to combine the arguments of the iterative computation
such that the result does not change as the computation progresses. Second, it
has to be strong enough that the correctness follows from P (Sfinal). A rule of
thumb for finding a good P is to execute the program by hand in a few small
cases, and from them to picture what the general intermediate case is.

Constructing programs by following the type

The above examples of list functions all have a curious property. They all have a
list argument, 〈List T〉, which is defined as:

〈List T〉 ::= nil

| T ´ | ´ 〈List T〉

and they all use a case statement which has the form:

case Xs
of nil then 〈expr〉 % Base case
[] X|Xr then 〈expr〉 % Recursive call
end

What is going on here? The recursive structure of the list functions exactly
follows the recursive structure of the type definition. We find that this property
is almost always true of list functions.

We can use this property to help us write list functions. This can be a tremen-
dous help when type definitions become complicated. For example, let us write a
function that counts the elements of a nested list. A nested list is a list in which
each element can itself be a list, e.g., [[1 2] 4 nil [[5] 10]] . We define the
type 〈NestedList T〉 as follows:

〈NestedList T〉 ::= nil

| 〈NestedList T〉 ´ | ´ 〈NestedList T〉
| T ´ | ´ 〈NestedList T〉

To avoid ambiguity, we have to add a condition on T, namely that T is neither nil

nor a cons. Now let us write the function {LengthL 〈NestedList T〉}: 〈Int〉 which
counts the number of elements in a nested list. Following the type definition gives
this skeleton:

fun {LengthL Xs}
case Xs
of nil then 〈expr〉
[] X|Xr andthen {IsList X} then
〈expr〉 % Recursive calls for X and Xr

[] X|Xr then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 139

〈expr〉 % Recursive call for Xr
end

end

(The third case does not have to mention {Not {IsList X}} since it follows
from the negation of the second case.) Here {IsList X} is a function that
checks whether X is nil or a cons:

fun {IsCons X} case X of _|_ then true else false end end
fun {IsList X} X==nil orelse {IsCons X} end

Fleshing out the skeleton gives the following function:

fun {LengthL Xs}
case Xs
of nil then 0
[] X|Xr andthen {IsList X} then

{LengthL X}+{LengthL Xr}
[] X|Xr then

1+{LengthL Xr}
end

end

Here are two example calls:

X=[[1 2] 4 nil [[5] 10]]
{Browse {LengthL X}}
{Browse {LengthL [X X]}}

What do these calls display?
Using a different type definition for nested lists gives a different length func-

tion. For example, let us define the type 〈NestedList2 T〉 as follows:

〈NestedList2 T〉 ::= nil

| 〈NestedList2 T〉 ´ | ´ 〈NestedList2 T〉
| T

Again, we have to add the condition that T is neither nil nor a cons. Note
the subtle difference between 〈NestedList T〉 and 〈NestedList2 T〉! Following the
definition of 〈NestedList2 T〉 gives a different and simpler function LengthL2 :

fun {LengthL2 Xs}
case Xs
of nil then 0
[] X|Xr then

{LengthL2 X}+{LengthL2 Xr}
else 1 end

end

What is the difference between LengthL and LengthL2 ? We can deduce it by
comparing the types 〈NestedList T〉 and 〈NestedList2 T〉. A 〈NestedList T〉 always
has to be a list, whereas a 〈NestedList2 T〉 can also be of type T. Therefore the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

140 Declarative Programming Techniques

L

L1

L2

S1

S2

S

L11

L12

L21

L22 S22

S21

S12

S11

Split

Split Merge

Merge

Split Merge

Input
list list

Sorted

Figure 3.9: Sorting with mergesort

call {LengthL2 foo} is legal (it returns 1), wherease {LengthL foo} is illegal
(it raises an exception). It is reasonable to consider this as an error in LengthL2 .

There is an important lesson to be learned here. It is important to define a
recursive type before writing the recursive function that uses it. Otherwise it is
easy to be misled by an apparently simple function that is incorrect. This is true
even in functional languages that do type inference, such as Standard ML and
Haskell. Type inference can verify that a recursive type is used correctly, but the
design of a recursive type remains the programmer’s responsibility.

Sorting with mergesort

We define a function that takes a list of numbers or atoms and returns a new list
sorted in ascending order. It uses the comparison operator <, so all elements have
to be of the same type (all integers, all floats, or all atoms). We use the mergesort
algorithm, which is efficient and can be programmed easily in a declarative model.
The mergesort algorithm is based on a simple strategy called divide-and-conquer:

• Split the list into two smaller lists of approximately equal length.

• Use mergesort recursively to sort the two smaller lists.

• Merge the two sorted lists together to get the final result.

Figure 3.9 shows the recursive structure. Mergesort is efficient because the split
and merge operations are both linear-time iterative computations. We first define
the merge and split operations and then mergesort itself:

fun {Merge Xs Ys}
case Xs # Ys
of nil # Ys then Ys
[] Xs # nil then Xs
[] (X|Xr) # (Y|Yr) then

if X<Y then X|{Merge Xr Ys}
else Y|{Merge Xs Yr}
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 141

S1 S2 S3 Sn
P1 P2 P3

S1

P

if
SnBase case

Recursive case

Figure 3.10: Control flow with threaded state

end
end

The type is 〈fun {$ 〈List T〉 〈List T〉}: 〈List T〉〉, where T is either 〈Int〉, 〈Float〉,
or 〈Atom〉. We define split as a procedure because it has two outputs. It could
also be defined as a function returning a pair as a single output.

proc {Split Xs ?Ys ?Zs}
case Xs
of nil then Ys=nil Zs=nil
[] [X] then Ys=[X] Zs=nil
[] X1|X2|Xr then Yr Zr in

Ys=X1|Yr
Zs=X2|Zr
{Split Xr Yr Zr}

end
end

The type is 〈proc {$ 〈List T〉 〈List T〉 〈List T〉} 〉. Here is the definition of merge-
sort itself:

fun {MergeSort Xs}
case Xs
of nil then nil
[] [X] then [X]
else Ys Zs in

{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}

end
end

Its type is 〈fun {$ 〈List T〉}: 〈List T〉〉 with the same restriction on T as in
Merge . The splitting up of the input list bottoms out at lists of length zero and
one, which can be sorted immediately.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

142 Declarative Programming Techniques

3.4.3 Accumulators

We have seen how to program simple list functions and how to make them itera-
tive. Realistic declarative programming is usually done in a different way, namely
by writing functions that are iterative from the start. The idea is to carry state
forward at all times and never do a return calculation. A state S is represented
by adding a pair of arguments, S1 and Sn, to each procedure. This pair is called
an accumulator. S1 represents the input state and Sn represents the output state.
Each procedure definition is then written in a style that looks like this:

proc {P X S1 ?Sn}
if {BaseCase X} then Sn=S1
else

{P1 S1 S2}
{P2 S2 S3}
{P3 S3 Sn}

end
end

The base case does no calculation, so the output state is the same as the input
state (Sn=S1). The recursive case threads the state through each recursive call
(P1, P2, and P3) and eventually returns it to P. Figure 3.10 gives an illustration.
Each arrow represents one state variable. The state value is given at the arrow’s
tail and passed to the arrow’s head. By state threading we mean that each proce-
dure’s output is the next procedure’s input. The technique of threading a state
through nested procedure calls is called accumulator programming.

Accumulator programming is used in the IterLength and IterReverse

functions we saw before. In these functions the accumulator structure is not so
clear, because they are functions. What is happening is that the input state is
passed to the function and the output state is what the function returns.

Multiple accumulators

Consider the following procedure, which takes an expression containing identifiers,
integers, and addition operations (using label plus). It calculates two results:
it translates the expression into machine code for a simple stack machine and it
calculates the number of instructions in the resulting code.

proc {ExprCode E C1 ?Cn S1 ?Sn}
case E
of plus(A B) then C2 C3 S2 S3 in

C2=plus|C1
S2=S1+1
{ExprCode B C2 C3 S2 S3}
{ExprCode A C3 Cn S3 Sn}

[] I then
Cn=push(I)|C1
Sn=S1+1

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 143

end
end

This procedure has two accumulators: one to build the list of machine instructions
and another to hold the number of instructions. Here is a sample execution:

declare Code Size in
{ExprCode plus(plus(a 3) b) nil Code 0 Size}
{Browse Size#Code}

This displays:

5#[push(a) push(3) plus push(b) plus]

More complicated programs usually need more accumulators. When writing large
declarative programs, we have typically used around half a dozen accumulators
simultaneously. The Aquarius Prolog compiler was written in this style [198,
194]. Some of its procedures have as many as 12 accumulators. This means 24
additional arguments! This is difficult to do without mechanical aid. We used an
extended DCG preprocessor6 that takes declarations of accumulators and adds
the arguments automatically [96].

We no longer program in this style; we find that programming with explicit
state is simpler and more efficient (see Chapter 6). It is reasonable to use a few
accumulators in a declarative program; it is actually quite rare that a declarative
program does not need a few. On the other hand, using many is a sign that some
of them would probably be better written with explicit state.

Mergesort with an accumulator

In the previous definition of mergesort, we first called the function Split to
divide the input list into two halves. There is a simpler way to do the mergesort,
by using an accumulator. The parameter represents “the part of the list still to
be sorted”. The specification of MergeSortAcc is:

• S#L2={MergeSortAcc L1 N} takes an input list L1 and an integer N. It
returns two results: S, the sorted list of the first N elements of L1 , and L2 ,
the remaining elements of L1 . The two results are paired together with the
tupling constructor.

The accumulator is defined by L1 and L2 . This gives the following definition:

fun {MergeSort Xs}
fun {MergeSortAcc L1 N}

if N==0 then
nil # L1

elseif N==1 then
[L1.1] # L1.2

elseif N>1 then

6DCG (Definite Clause Grammar) is a grammar notation that is used to hide the explicit
threading of accumulators.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

144 Declarative Programming Techniques

NL=N div 2
NR=N-NL
Ys # L2 = {MergeSortAcc L1 NL}
Zs # L3 = {MergeSortAcc L2 NR}

in
{Merge Ys Zs} # L3

end
end

in
{MergeSortAcc Xs {Length Xs}}.1

end

The Merge function is unchanged. Remark that this mergesort does a different
split than the previous one. In this version, the split separates the first half of
the input list from the second half. In the previous version, split separates the
odd-numbered list elements from the even-numbered elements.

This version has the same time complexity as the previous version. It uses less
memory because it does not create the two split lists. They are defined implicitly
by the combination of the accumulating parameter and the number of elements.

3.4.4 Difference lists

A difference list is a pair of two lists, each of which might have an unbound tail.
The two lists have a special relationship: it must be possible to get the second
list from the first by removing zero or more elements from the front. Here are
some examples:

X#X % Represents the empty list
nil#nil % idem
[a]#[a] % idem
(a|b|c|X)#X % Represents [a b c]
(a|b|c|d|X)#(d|X) % idem
[a b c d]#[d] % idem

A difference list is a representation of a standard list. We will talk of the difference
list sometimes as a data structure by itself, and sometimes as representing a
standard list. Be careful not to confuse these two viewpoints. The difference list
[a b c d]#[d] might contain the lists [a b c d] and [d] , but it represents
neither of these. It represents the list [a b c] .

Difference lists are a special case of difference structures. A difference struc-
ture is a pair of two partial values where the second value is embedded in the first.
The difference structure represents a value that is the first structure minus the
second structure. Using difference structures makes it easy to construct iterative
computations on many recursive datatypes, e.g., lists or trees. Difference lists
and difference structures are special cases of accumulators in which one of the
accumulator arguments can be an unbound variable.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 145

The advantage of using difference lists is that when the second list is an
unbound variable, another difference list can be appended to it in constant time.
To append (a|b|c|X)#X and (d|e|f|Y)#Y , just bind X to (d|e|f|Y) . This
creates the difference list (a|b|c|d|e|f|Y)#Y . We have just appended the lists
[a b c] and [d e f] with a single binding. Here is a function that appends
any two difference lists:

fun {AppendD D1 D2}
S1#E1=D1
S2#E2=D2

in
E1=S2
S1#E2

end

It can be used like a list append:

local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end

This displays (1|2|3|4|5|Y)#Y . The standard list append function, defined as
follows:

fun {Append L1 L2}
case L1
of X|T then X|{Append T L2}
[] nil then L2
end

end

iterates on its first argument, and therefore takes time proportional to the length
of the first argument. The difference list append is much more efficient: it takes
constant time.

The limitation of using difference lists is that they can be appended only once.
This property means that difference lists can only be used in special circum-
stances. For example, they are a natural way to write programs that construct
big lists in terms of lots of little lists that must be appended together.

Difference lists as defined here originated from Prolog and logic program-
ming [182]. They are the basis of many advanced Prolog programming tech-
niques. As a concept, a difference list lives somewhere between the concept of
value and the concept of state. It has the good properties of a value (programs
using them are declarative), but it also has some of the power of state because it
can be appended once in constant time.

Flattening a nested list

Consider the problem of flattening a nested list, i.e., calculating a list that has
all the elements of the nested list but is no longer nested. We first give a solution
using lists and then we show that a much better solution is possible with difference
lists. For the list solution, let us reason with mathematical induction based on the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

146 Declarative Programming Techniques

type 〈NestedList〉 we defined earlier, in the same way we did with the LengthL

function:

• Flatten of nil is nil .

• Flatten of X|Xr where X is a nested list, is Z where
flatten of X is Y,
flatten of Xr is Yr , and
append Y and Yr to get Z.

• Flatten of X|Xr where X is not a list, is Z where
flatten of Xr is Yr , and
Z is X|Yr .

Following this reasoning, we get the following definition:

fun {Flatten Xs}
case Xs
of nil then nil
[] X|Xr andthen {IsList X} then

{Append {Flatten X} {Flatten Xr}}
[] X|Xr then

X|{Flatten Xr}
end

end

Calling:

{Browse {Flatten [[a b] [[c] [d]] nil [e [f]]]}}

displays [a b c d e f] . This program is very inefficient because it needs to do
many append operations (see Exercises). Now let us reason again in the same
way, but with difference lists instead of standard lists:

• Flatten of nil is X#X (empty difference list).

• Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2,
flatten of Xr is Y3#Y4, and
equate Y2 and Y3 to append the difference lists.

• Flatten of X|Xr where X is not a list, is (X|Y1)#Y2 where
flatten of Xr is Y1#Y2.

We can write the second case as follows:

• Flatten of X|Xr where X is a nested list, is Y1#Y4 where
flatten of X is Y1#Y2 and
flatten of Xr is Y2#Y4.

This gives the following program:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 147

fun {Flatten Xs}
proc {FlattenD Xs ?Ds}

case Xs
of nil then Y in Ds=Y#Y
[] X|Xr andthen {IsList X} then Y1 Y2 Y4 in

Ds=Y1#Y4
{FlattenD X Y1#Y2}
{FlattenD Xr Y2#Y4}

[] X|Xr then Y1 Y2 in
Ds=(X|Y1)#Y2
{FlattenD Xr Y1#Y2}

end
end Ys

in
{FlattenD Xs Ys#nil} Ys

end

This program is efficient: it does a single cons operation for each non-list in the
input. We convert the difference list returned by FlattenD into a regular list by
binding its second argument to nil . We write FlattenD as a procedure because
its output is part of its last argument, not the whole argument (see Section 2.5.2).
It is common style to write a difference list in two arguments:

fun {Flatten Xs}
proc {FlattenD Xs ?S E}

case Xs
of nil then S=E
[] X|Xr andthen {IsList X} then Y2 in

{FlattenD X S Y2}
{FlattenD Xr Y2 E}

[] X|Xr then Y1 in
S=X|Y1
{FlattenD Xr Y1 E}

end
end Ys

in
{FlattenD Xs Ys nil} Ys

end

As a further simplification, we can write FlattenD as a function. To do this, we
use the fact that S is the output:

fun {Flatten Xs}
fun {FlattenD Xs E}

case Xs
of nil then E
[] X|Xr andthen {IsList X} then

{FlattenD X {FlattenD Xr E}}
[] X|Xr then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

148 Declarative Programming Techniques

X|{FlattenD Xr E}
end

end
in

{FlattenD Xs nil}
end

What is the role of E? It gives the “rest” of the output, i.e., when the FlattenD

call exhausts its own contribution to the output.

Reversing a list

Let us look again at the naive list reverse of the last section. The problem with
naive reverse is that it uses a costly append function. Perhaps it will be more
efficient with the constant-time append of difference lists? Let us do the naive
reverse with difference lists:

• Reverse of nil is X#X (empty difference list).

• Reverse of X|Xs is Z, where
reverse of Xs is Y1#Y2 and
append Y1#Y2 and (X|Y)#Y together to get Z.

Rewrite the last case as follows, by doing the append:

• Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#Y2 and
equate Y2 and X|Y .

It is perfectly allowable to move the equate before the reverse (why?). This gives:

• Reverse of X|Xs is Y1#Y, where
reverse of Xs is Y1#(X|Y) .

Here is the final definition:

fun {Reverse Xs}
proc {ReverseD Xs ?Y1 Y}

case Xs
of nil then Y1=Y
[] X|Xr then

{ReverseD Xr Y1 X|Y}
end

end Y1
in

{ReverseD Xs Y1 nil} Y1
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 149

Look carefully and you will see that this is almost exactly the same iterative
solution as in the last section. The only difference between IterReverse and
ReverseD is the argument order: the output of IterReverse is the second
argument of ReverseD . So what’s the advantage of using difference lists? With
them, we derived ReverseD without thinking, whereas to derive IterReverse

we had to guess an intermediate state that could be updated.

3.4.5 Queues

An important basic data structure is the queue. A queue is a sequence of elements
with an insert and a delete operation. The insert operation adds an element to
one end of the queue and the delete operation removes an element from the other
end. We say the queue has FIFO (First-In-First-Out) behavior. Let us investigate
how to program queues in the declarative model.

A naive queue

An obvious way to implement queues is by using lists. If L represents the queue
content, then inserting X gives the new queue X|L and deleting X is done by
calling {ButLast L X L1} , which binds X to the deleted element and returns
the new queue in L1 . ButLast returns the last element of L in X and all elements
but the last in L1 . It can be defined as:

proc {ButLast L ?X ?L1}
case L
of [Y] then X=Y L1=nil
[] Y|L2 then L3 in

L1=Y|L3
{ButLast L2 X L3}

end
end

The problem with this implementation is that ButLast is slow: it takes time
proportional to the number of elements in the queue. On the contrary, we would
like both the insert and delete operations to be constant-time. That is, doing an
operation on a given implementation and machine always takes time less than
some constant number of seconds. The value of the constant depends on the
implementation and machine. Whether or not we can achieve the constant-time
goal depends on the expressiveness of the computation model:

• In a strict functional programming language, i.e., the declarative model
without dataflow variables (see Section 2.7.1), we cannot achieve it. The
best we can do is to get amortized constant-time operations [138]. That
is, any sequence of n insert and delete operations takes a total time that
is proportional to some constant times n. Any individual operation might
not be constant-time, however.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

150 Declarative Programming Techniques

• In the declarative model, which extends the strict functional model with
dataflow variables, we can achieve the constant-time goal.

We will show how to define both solutions. In both definitions, each operation
takes a queue as input and returns a new queue as output. As soon as a queue
is used by the program as input to an operation, then it can no longer be used
as input to another operation. In other words, there can be only one version of
the queue in use at any time. We say that the queue is ephemeral.7 Each version
exists from the moment it is created to the moment it can no longer be used.

Amortized constant-time ephemeral queue

Here is the definition of a queue whose insert and delete operations have constant
amortized time bounds. The definition is taken from Okasaki [138]:

fun {NewQueue} q(nil nil) end

fun {Check Q}
case Q of q(nil R) then q({Reverse R} nil) else Q end

end

fun {Insert Q X}
case Q of q(F R) then {Check q(F X|R)} end

end

fun {Delete Q X}
case Q of q(F R) then F1 in F=X|F1 {Check q(F1 R)} end

end

fun {IsEmpty Q}
case Q of q(F R) then F==nil end

end

This uses the pair q(F R) to represent the queue. F and R are lists. F represents
the front of the queue and R represents the back of the queue in reversed form.
At any instant, the queue content is given by {Append F {Reverse R}} . An
element can be inserted by adding it to the front of R and deleted by removing it
from the front of F. For example, say that F=[a b] and R=[d c] . Deleting the
first element returns a and makes F=[b] . Inserting the element e makes R=[e d

c] . Both operations are constant-time.
To make this representation work, each element in R has to be moved to F

sooner or later. When should the move be done? Doing it element by element is
inefficient, since it means replacing F by {Append F {Reverse R}} each time,
which takes time at least proportional to the length of F. The trick is to do it only
occasionally. We do it when F becomes empty, so that F is non-nil if and only

7Queues implemented with explicit state (see Chapters 6 and 7) are also usually ephemeral.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 151

if the queue is non-empty. This invariant is maintained by the Check function,
which moves the content of R to F whenever F is nil.

The Check function does a list reverse operation on R. The reverse takes time
proportional to the length of R, i.e., to the number of elements it reverses. Each
element that goes through the queue is passed exactly once from R to F. Allocating
the reverse’s execution time to each element therefore gives a constant time per
element. This is why the queue is amortized.

Worst-case constant-time ephemeral queue

We can use difference lists to implement queues whose insert and delete operations
have constant worst-case execution times. We use a difference list that ends in
an unbound dataflow variable. This lets us insert elements in constant time by
binding the dataflow variable. Here is the definition:

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end

end

fun {Delete Q X}
case Q of q(N S E) then S1 in S=X|S1 q(N-1 S1 E) end

end

fun {IsEmpty Q}
case Q of q(N S E) then N==0 end

end

This uses the triple q(N S E) to represent the queue. At any instant, the queue
content is given by the difference list S#E. N is the number of elements in the
queue. Why is N needed? Without it, we would not know how many elements
were in the queue.

Example use

The following example works with either of the above definitions:

declare Q1 Q2 Q3 Q4 Q5 Q6 Q7in
Q1={NewQueue}
Q2={Insert Q1 peter}
Q3={Insert Q2 paul}
local X in Q4={Delete Q3 X} {Browse X} end
Q5={Insert Q4 mary}
local X in Q6={Delete Q5 X} {Browse X} end
local X in Q7={Delete Q6 X} {Browse X} end

This inserts three elements and deletes them. Each element is inserted before it
is deleted. Now let us see what each definition can do that the other cannot.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

152 Declarative Programming Techniques

With the second definition, we can delete an element before it is inserted.
Doing such a delete returns an unbound variable that will be bound to the cor-
responding inserted element. So the last four calls in the above example can be
changed as follows:

local X in Q4={Delete Q3 X} {Browse X} end
local X in Q5={Delete Q4 X} {Browse X} end
local X in Q6={Delete Q5 X} {Browse X} end
Q7={Insert Q6 mary}

This works because the bind operation of dataflow variables, which is used both
to insert and delete elements, is symmetric.

With the first definition, maintaining multiple versions of the queue simul-
taneously gives correct results, although the amortized time bounds no longer
hold.8 Here is an example with two versions:

declare Q1 Q2 Q3 Q4 Q5 Q6in
Q1={NewQueue}
Q2={Insert Q1 peter}
Q3={Insert Q2 paul}
Q4={Insert Q2 mary}
local X in Q5={Delete Q3 X} {Browse X} end
local X in Q6={Delete Q4 X} {Browse X} end

Both Q3 and Q4 are calculated from their common ancestor Q2. Q3 contains
peter and paul . Q4 contains peter and mary . What do the two Browse calls
display?

Persistent queues

Both definitions given above are ephemeral. What can we do if we need to
use multiple versions and still require constant-time execution? A queue that
supports multiple simultaneous versions is called persistent.9 Some applications
need persistent queues. For example, if during a calculation we pass a queue
value to another routine:

...
{SomeProc Qa}
Qb={Insert Qa x}
Qc={Insert Qb y}
...

8To see why not, consider any sequence of n queue operations. For the amortized constant-
time bound to hold, the total time for all operations in the sequence must be proportional to
n. But what happens if the sequence repeats an “expensive” operation in many versions? This
is possible, since we are talking of any sequence. Since the time for an expensive operation and
the number of versions can both be proportional to n, the total time bound grows as n2.

9This meaning of persistence should not be confused with persistence as used in transactions
and databases (Sections 8.5 and 9.6), which is a completely different concept.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 153

We assume that SomeProc can do queue operations but that the caller does not
want to see their effects. It follows that we may have two versions of the queue.
Can we write queues that keep the time bounds for this case? It can be done if
we extend the declarative model with lazy execution. Then both the amortized
and worst-case queues can be made persistent. We defer this solution until we
present lazy execution in Section 4.5.

For now, let us propose a simple workaround that is often sufficient to make the
worst-case queue persistent. It depends on there not being too many simultaneous
versions. We define an operation ForkQ that takes a queue Q and creates two
identical versions Q1 and Q2. As a preliminary, we first define a procedure ForkD

that creates two versions of a difference list:

proc {ForkD D ?E ?F}
D1#nil=D
E1#E0=E {Append D1 E0 E1}
F1#F0=F {Append D1 F0 F1}

in skip end

The call {ForkD D E F} takes a difference list D and returns two fresh copies
of it, E and F. Append is used to convert a list into a fresh difference list. Note
that ForkD consumes D, i.e., D can no longer be used afterwards since its tail is
bound. Now we can define ForkQ , which uses ForkD to make two versions of a
queue:

proc {ForkQ Q ?Q1 ?Q2}
q(N S E)=Q
q(N S1 E1)=Q1
q(N S2 E2)=Q2

in
{ForkD S#E S1#E1 S2#E2}

end

ForkQ consumes Q and takes time proportional to the size of the queue. We can
rewrite the example as follows using ForkQ :

...
{ForkQ Qa Qa1 Qa2}
{SomeProc Qa1}
Qb={Insert Qa2 x}
Qc={Insert Qb y}
...

This works well if it is acceptable for ForkQ to be an expensive operation.

3.4.6 Trees

Next to linear data structures such as lists and queues, trees are the most im-
portant recursive data structure in a programmer’s repertory. A tree is either a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

154 Declarative Programming Techniques

leaf node or a node that contains one or more trees. Nodes can carry additional
information. Here is one possible definition:

〈Tree〉 ::= leaf(〈Value〉)
| tree(〈Value〉 〈Tree〉1 ... 〈Tree〉n)

The basic difference between a list and a tree is that a list always has a linear
structure whereas a tree can have a branching structure. A list always has an
element followed by exactly one smaller list. A tree has an element followed by
some number of smaller trees. This number can be any natural number, i.e., zero
for leaf nodes and any positive number for non-leaf nodes.

There exist an enormous number of different kinds of trees, with different
conditions imposed on their structure. For example, a list is a tree in which
non-leaf nodes always have exactly one subtree. In a binary tree the non-leaf
nodes always have exactly two subtrees. In a ternary tree they have exactly three
subtrees. In a balanced tree, all subtrees of the same node have the same size
(i.e., the same number of nodes) or approximately the same size.

Each kind of tree has its own class of algorithms to construct trees, traverse
trees, and look up information in trees. This chapter uses several different kinds
of trees. We give an algorithm for drawing binary trees in a pleasing way, we show
how to use higher-order techniques for calculating with trees, and we implement
dictionaries with ordered binary trees.

This section sets the stage for these developments. We will give the basic
algorithms that underlie many of these more sophisticated variations. We define
ordered binary trees and show how to insert information, look up information,
and delete information from them.

Ordered binary tree

An ordered binary tree 〈OBTree〉 is a binary tree in which each node includes a
pair of values:

〈OBTree〉 ::= leaf

| tree(〈OValue〉 〈Value〉 〈OBTree〉1 〈OBTree〉2)

Each non-leaf node includes the values 〈OValue〉 and 〈Value〉. The first value
〈OValue〉 is any subtype of 〈Value〉 that is totally ordered, i.e., it has boolean
comparison functions. For example, 〈Int〉 (the integer type) is one possibility.
The second value 〈Value〉 is carried along for the ride. No particular condition is
imposed on it.

Let us call the ordered value the key and the second value the information.
Then a binary tree is ordered if for each non-leaf node, all the keys in the first
subtree are less than the node key, and all the keys in the second subtree are
greater than the node key.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 155

Storing information in trees

An ordered binary tree can be used as a repository of information, if we define
three operations: looking up, inserting, and deleting entries.

To look up information in an ordered binary tree means to search whether a
given key is present in one of the tree nodes, and if so, to return the information
present at that node. With the orderedness condition, the search algorithm can
eliminate half the remaining nodes at each step. This is called binary search. The
number of operations it needs is proportional to the depth of the tree, i.e., the
length of the longest path from the root to a leaf. The look up can be programmed
as follows:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) then

if X<Y then {Lookup X T1}
elseif X>Y then {Lookup X T2}
else found(V) end

end
end

Calling {Lookup X T} returns found(V) if a node with X is found, and notfound

otherwise. Another way to write Lookup is by using andthen in the case state-
ment:

fun {Lookup X T}
case T
of leaf then notfound
[] tree(Y V T1 T2) andthen X==Y then found(V)
[] tree(Y V T1 T2) andthen X<Y then {Lookup X T1}
[] tree(Y V T1 T2) andthen X>Y then {Lookup X T2}
end

end

Many developers find the second way more readable because it is more visual, i.e.,
it gives patterns that show what the tree looks like instead of giving instructions
to decompose the tree. In a word, it is more declarative. This makes it easier to
verify that it is correct, i.e., to make sure that no cases have been overlooked. In
more complicated tree algorithms, pattern matching with andthen is a definite
advantage over explicit if statements.

To insert or delete information in an ordered binary tree, we construct a new
tree that is identical to the original except that it has more or less information.
Here is the insertion operation:

fun {Insert X V T}
case T
of leaf then tree(X V leaf leaf)
[] tree(Y W T1 T2) andthen X==Y then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

156 Declarative Programming Techniques

T1

T1

Y

leaf

Figure 3.11: Deleting node Y when one subtree is a leaf (easy case)

tree(X V T1 T2)
[] tree(Y W T1 T2) andthen X<Y then

tree(Y W {Insert X V T1} T2)
[] tree(Y W T1 T2) andthen X>Y then

tree(Y W T1 {Insert X V T2})
end

end

Calling {Insert X V T} returns a new tree that has the pair (X V) inserted
in the right place. If T already contains X, then the new tree replaces the old
information with V.

Deletion and tree reorganizing

The deletion operation holds a surprise in store. Here is a first try at it:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then leaf
[] tree(Y W T1 T2) andthen X<Y then

tree(Y W {Delete X T1} T2)
[] tree(Y W T1 T2) andthen X>Y then

tree(Y W T1 {Delete X T2})
end

end

Calling {Delete X T} should return a new tree that has no node with key X.
If T does not contain X, then T is returned unchanged. Deletion seems simple
enough, but the above definition is incorrect. Can you see why?

It turns out that Delete is not as simple as Lookup or Insert . The error in
the above definition is that when X==Y, the whole subtree is removed instead of
just a single node. This is only correct if the subtree is degenerate, i.e., if both
T1 and T2 are leaf nodes. The fix is not completely obvious: when X==Y, we have
to reorganize the subtree so that it no longer has the key Y but is still an ordered
binary tree. There are two cases, illustrated in Figures 3.11 and 3.12.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 157

Remove Y Move up Yp

T1

Y

T2 T1
Yp

T2

?

T1

Yp
key of T2
Smallest

Tp
T2 minus Yp

Figure 3.12: Deleting node Y when neither subtree is a leaf (hard case)

Figure 3.11 is the easy case, when one subtree is a leaf. The reorganized tree
is simply the other subtree. Figure 3.12 is the hard case, when both subtrees are
not leaves. How do we fill the gap after removing Y? Another key has to take the
place of Y, “percolating up” from inside one of the subtrees. The idea is to pick
the smallest key of T2, call it Yp, and make it the root of the reorganized tree.
The remaining nodes of T2 make a smaller subtree, call it Tp, which is put in the
reorganized tree. This ensures that the reorganized tree is still ordered, since by
construction all keys of T1 are less than Yp, which is less than all keys of Tp.

It is interesting to see what happens when we repeatedly delete a tree’s roots.
This will “hollow out” the tree from the inside, removing more and more of the
left-hand part of T2. Eventually, T2’s left subtree is removed completely and the
right subtree takes its place. Continuing in this way, T2 shrinks more and more,
passing through intermediate stages in which it is a complete, but smaller ordered
binary tree. Finally, it disappears completely.

To implement the fix, we use a function {RemoveSmallest T2} that returns
the smallest key of T2, its associated value, and a new tree that lacks this key.
With this function, we can write a correct version of Delete as follows:

fun {Delete X T}
case T
of leaf then leaf
[] tree(Y W T1 T2) andthen X==Y then

case {RemoveSmallest T2}
of none then T1
[] Yp#Vp#Tp then tree(Yp Vp T1 Tp)
end

[] tree(Y W T1 T2) andthen X<Y then
tree(Y W {Delete X T1} T2)

[] tree(Y W T1 T2) andthen X>Y then
tree(Y W T1 {Delete X T2})

end
end

The function RemoveSmallest returns either a triple Yp#Vp#Tp or the atom
none . We define it recursively as follows:

fun {RemoveSmallest T}
case T

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

158 Declarative Programming Techniques

of leaf then none
[] tree(Y V T1 T2) then

case {RemoveSmallest T1}
of none then Y#V#T2
[] Yp#Vp#Tp then Yp#Vp#tree(Y V Tp T2)
end

end
end

One could also pick the largest element of T1 instead of the smallest element of
T2. This gives much the same result.

The extra difficulty of Delete compared to Insert or Lookup occurs fre-
quently with tree algorithms. The difficulty occurs because an ordered tree sat-
isfies a global condition, namely being ordered. Many kinds of trees are defined
by global conditions. Algorithms for these trees are complex because they have
to maintain the global condition. In addition, tree algorithms are harder to write
than list algorithms because the recursion has to combine results from several
smaller problems, not just one.

Tree traversal

Traversing a tree means to perform an operation on its nodes in some well-defined
order. There are many ways to traverse a tree. Many of these are derived from
one of two basic traversals, called depth-first and breadth-first traversal. Let us
look at these traversals.

Depth-first is the simplest traversal. For each node, it visits first the left-most
subtree, then the node itself, and then the right-most subtree. This makes it easy
to program since it closely follows how nested procedure calls execute. Here is a
traversal that displays each node’s key and information:

proc {DFS T}
case T
of leaf then skip
[] tree(Key Val L R) then

{DFS L}
{Browse Key#Val}
{DFS R}

end
end

The astute reader will realize that this depth-first traversal does not make much
sense in the declarative model, because it does not calculate any result.10 We can
fix this by adding an accumulator. Here is a traversal that calculates a list of all
key/value pairs:

proc {DFSAcc T S1 Sn}
case T

10Browse cannot be defined in the declarative model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 159

proc {BFS T}
fun {TreeInsert Q T}

if T\=leaf then {Insert Q T} else Q end
end

proc {BFSQueue Q1}
if {IsEmpty Q1} then skip
else

X Q2={Delete Q1 X}
tree(Key Val L R)=X

in
{Browse Key#Val}
{BFSQueue {TreeInsert {TreeInsert Q2 L} R}}

end
end

in
{BFSQueue {TreeInsert {NewQueue} T}}

end

Figure 3.13: Breadth-first traversal

of leaf then Sn=S1
[] tree(Key Val L R) then S2 S3 in

{DFSAcc L S1 S2}
S3=Key#Val|S2
{DFSAcc R S3 Sn}

end
end

Breadth-first is a second basic traversal. It first traverses all nodes at depth 0,
then all nodes at depth 1, and so forth, going one level deeper at a time. At each
level, it traverses the nodes from left to right. The depth of a node is the length
of the path from the root to the current node, not including the current node. To
implement breadth-first traversal, we need a queue to keep track of all the nodes
at a given depth. Figure 3.13 shows how it is done. It uses the queue data type
we defined in the previous section. The next node to visit comes from the head
of the queue. The node’s two subtrees are added to the tail of the queue. The
traversal will get around to visiting them when all the other nodes of the queue
have been visited, i.e., all the nodes at the current depth.

Just like for the depth-first traversal, breadth-first traversal is only useful in
the declarative model if supplemented by an accumulator. Figure 3.14 gives an
example that calculates a list of all key/value pairs in a tree.

Depth-first traveral can be implemented in a similar way as breadth-first
traversal, by using an explicit data structure to keep track of the nodes to vis-
it. To make the traversal depth-first, we simply use a stack instead of a queue.
Figure 3.15 defines the traversal, using a list to implement the stack.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

160 Declarative Programming Techniques

proc {BFSAcc T S1 ?Sn}
fun {TreeInsert Q T}

if T\=leaf then {Insert Q T} else Q end
end

proc {BFSQueue Q1 S1 ?Sn}
if {IsEmpty Q1} then Sn=S1
else

X Q2={Delete Q1 X}
tree(Key Val L R)=X
S2=Key#Val|S1

in
{BFSQueue {TreeInsert {TreeInsert Q2 R} L} S2 Sn}

end
end

in
{BFSQueue {TreeInsert {NewQueue} T} S1 Sn}

end

Figure 3.14: Breadth-first traversal with accumulator

proc {DFS T}
fun {TreeInsert S T}

if T\=leaf then T|S else S end
end

proc {DFSStack S1}
case S1
of nil then skip
[] X|S2 then

tree(Key Val L R)=X
in

{Browse Key#Val}
{DFSStack {TreeInsert {TreeInsert S2 R} L}}

end
end

in
{DFSStack {TreeInsert nil T}}

end

Figure 3.15: Depth-first traversal with explicit stack

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 161

How does the new version of DFS compare with the original? Both versions
use a stack to remember the subtrees to be visited. In the original, the stack is
hidden: it is the semantic stack. There are two recursive calls. When the first call
is taken, the second one is waiting on the semantic stack. In the new version, the
stack is explicit. The new version is tail recursive, just like BFS, so the semantic
stack does not grow. The new version simply trades space on the semantic stack
for space on the store.

Let us see how much memory the DFS and BFS algorithms use. Assume we
have a tree of depth n with 2n leaf nodes and 2n − 1 non-leaf nodes. How big do
the stack and queue arguments get? We can prove that the stack has at most n
elements and the queue has at most 2(n−1) elements. Therefore, DFSis much more
economical: it uses memory proportional to the tree depth. BFS uses memory
proportional to the size of the tree.

3.4.7 Drawing trees

Now that we have introduced trees and programming with them, let us write
a more significant program. We will write a program to draw a binary tree in
an aesthetically pleasing way. The program calculates the coordinates of each
node. This program is interesting because it traverses the tree for two reasons:
to calculate the coordinates and to add the coordinates to the tree itself.

The tree drawing constraints

We first define the tree’s type:

〈Tree〉 ::= tree(key: 〈Literal〉 val: 〈Value〉 left: 〈Tree〉 right: 〈Tree〉)
| leaf

Each node is either a leaf or has two children. In contrast to Section 3.4.6, this
uses a record to define the tree instead of a tuple. There is a very good reason for
this which will become clear when we talk about the principle of independence.
Assume that we have the following constraints on how the tree is drawn:

1. There is a minimum horizontal spacing between both subtrees of every
node. To be precise, the rightmost node of the left subtree is at a minimal
horizontal distance from the leftmost node of the right subtree.

2. If a node has two child nodes, then its horizontal position is the arithmetic
average of their horizontal positions.

3. If a node has only one child node, then the child is directly underneath it.

4. The vertical position of a node is proportional to its level in the tree.

In addition, to avoid clutter the drawing shows only the nodes of type tree .
Figure 3.16 shows these constraints graphically in terms of the coordinates of
each node. The example tree of Figure 3.17 is drawn as shown in Figure 3.19.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

162 Declarative Programming Techniques

(c,y’)

(a,y)

(b,y’)

d

(a,y)

1. Distance d between subtrees has minimum value

2. If two children exist, a is average of b and c(a,y’)

4. Vertical position y is proportional to level in the tree

3. If only one child exists, it is directly below parent

Figure 3.16: The tree drawing constraints

tree(key:a val:111
left:tree(key:b val:55

left:tree(key:x val:100
left:tree(key:z val:56 left:leaf right:leaf)
right:tree(key:w val:23 left:leaf right:leaf))

right:tree(key:y val:105 left:leaf
right:tree(key:r val:77 left:leaf right:leaf)))

right:tree(key:c val:123
left:tree(key:d val:119

left:tree(key:g val:44 left:leaf right:leaf)
right:tree(key:h val:50

left:tree(key:i val:5 left:leaf right:leaf)
right:tree(key:j val:6 left:leaf right:leaf)))

right:tree(key:e val:133 left:leaf right:leaf)))

Figure 3.17: An example tree

Calculating the node positions

The tree drawing algorithm calculates node positions by traversing the tree, pass-
ing information between nodes, and calculating values at each node. The traversal
has to be done carefully so that all the information is available at the right time.
Exactly what traversal is the right one depends on what the constraints are. For
the above four constraints, it is sufficient to traverse the tree in a depth-first order.
In this order, each left subtree of a node is visited before the right subtree. A
basic depth-first traversal looks like this:

proc {DepthFirst Tree}
case Tree
of tree(left:L right:R ...) then

{DepthFirst L}
{DepthFirst R}

[] leaf then
skip

end
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 163

The tree drawing algorithm does a depth-first traversal and calculates the (x,y)
coordinates of each node during the traversal. As a preliminary to running the
algorithm, we extend the tree nodes with the fields x and y at each node:

fun {AddXY Tree}
case Tree
of tree(left:L right:R ...) then

{Adjoin Tree
tree(x:_ y:_ left:{AddXY L} right:{AddXY R})}

[] leaf then
leaf

end
end

The function AddXY returns a new tree with the two fields x and y added to
all nodes. It uses the Adjoin function which can add new fields to records
and override old ones. This is explained in Appendix B.3.2. The tree drawing
algorithm will fill in these two fields with the coordinates of each node. If the two
fields exist nowhere else in the record, then there is no conflict with any other
information in the record.

To implement the tree drawing algorithm, we extend the depth-first traversal
by passing two arguments down (namely, level in the tree and limit on leftmost
position of subtree) and two arguments up (namely, horizontal position of the
subtree’s root and rightmost position of subtree). Downward-passed arguments
are sometimes called inherited arguments. Upward-passed arguments are some-
times called synthesized arguments. With these extra arguments, we have enough
information to calculate the positions of all nodes. Figure 3.18 gives the com-
plete tree drawing algorithm. The Scale parameter gives the basic size unit of
the drawn tree, i.e., the minimum distance between nodes. The initial arguments
are Level =1 and LeftLim =Scale . There are four cases, depending on whether
a node has two subtrees, one subtree (left or right), or zero subtrees. Pattern
matching in the case statement picks the right case. This takes advantage of the
fact that the tests are done in sequential order.

3.4.8 Parsing

As a second case study of declarative programming, let us write a parser for a
small imperative language with syntax similar to Pascal. This uses many of the
techniques we have seen, in particular, it uses an accumulator and builds a tree.

What is a parser

A parser is part of a compiler. A compiler is a program that translates a sequence
of characters, which represents a program, into a sequence of low-level instructions
that can be executed on a machine. In its most basic form, a compiler consists
of three parts:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

164 Declarative Programming Techniques

Scale=30

proc {DepthFirst Tree Level LeftLim ?RootX ?RightLim}
case Tree
of tree(x:X y:Y left:leaf right:leaf ...) then

X=RootX=RightLim=LeftLim
Y=Scale*Level

[] tree(x:X y:Y left:L right:leaf ...) then
X=RootX
Y=Scale*Level
{DepthFirst L Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:leaf right:R ...) then
X=RootX
Y=Scale*Level
{DepthFirst R Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:L right:R ...) then
LRootX LRightLim RRootX RLeftLim

in
Y=Scale*Level
{DepthFirst L Level+1 LeftLim LRootX LRightLim}
RLeftLim=LRightLim+Scale
{DepthFirst R Level+1 RLeftLim RRootX RightLim}
X=RootX=(LRootX+RRootX) div 2

end
end

Figure 3.18: Tree drawing algorithm

• Tokenizer. The tokenizer reads a sequence of characters and outputs a
sequence of tokens.

• Parser. The parser reads a sequence of tokens and outputs an abstract
syntax tree. This is sometimes called a parse tree.

• Code generator. The code generator traverses the syntax tree and gen-
erates low-level instructions for a real machine or an abstract machine.

Usually this structure is extended by optimizers to improve the generated code.
In this section, we will just write the parser. We first define the input and output
formats of the parser.

The parser’s input and output languages

The parser accepts a sequence of tokens according to the grammar given in Ta-
ble 3.2 and outputs an abstract syntax tree. The grammar is carefully designed
to be right recursive and deterministic. This means that the choice of grammar

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 165

Figure 3.19: The example tree displayed with the tree drawing algorithm

rule is completely determined by the next token. This makes it possible to write
a top down, left to right parser with only one token lookahead.

For example, say we want to parse a 〈Term〉. It consists of a non-empty series
of 〈Fact〉 separated by 〈TOP〉 tokens. To parse it, we first parse a 〈Fact〉. Then we
examine the next token. If it is a 〈TOP〉, then we know the series continues. If it
is not a 〈TOP〉, then we know the series has ended, i.e., the 〈Term〉 has ended. For
this parsing strategy to work, there must be no overlap between 〈TOP〉 tokens and
the other possible tokens that come after a 〈Fact〉. By inspecting the grammar
rules, we see that the other tokens must be taken from {〈EOP〉, 〈COP〉, ;, end,
then, do, else,)}. We confirm that all the tokens defined by this set are different
from the tokens defined by 〈TOP〉.

There are two kinds of symbols in Table 3.2: nonterminals and terminals.
A nonterminal symbol is one that is further expanded according to a grammar
rule. A terminal symbol corresponds directly to a token in the input. It is
not expanded. The nonterminal symbols are 〈Prog〉 (complete program), 〈Stat〉
(statement), 〈Comp〉 (comparison), 〈Expr〉 (expression), 〈Term〉 (term), 〈Fact〉
(factor), 〈COP〉 (comparison operator), 〈EOP〉 (expression operator), and 〈TOP〉
(term operator). To parse a program, start with 〈Prog〉 and expand until finding
a sequence of tokens that matches the input.

The parser output is a tree (i.e., a nested record) with syntax given in Ta-
ble 3.3. Superficially, Tables 3.2 and 3.3 have very similar content, but they are
actually quite different: the first defines a sequence of tokens and the second
defines a tree. The first does not show the structure of the input program–we
say it is flat. The second exposes this structure–we say it is nested. Because
it exposes the program’s structure, we call the nested record an abstract syntax

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

166 Declarative Programming Techniques

〈Prog〉 ::= program 〈Id〉 ; 〈Stat〉 end
〈Stat〉 ::= begin { 〈Stat〉 ; } 〈Stat〉 end

| 〈Id〉 := 〈Expr〉
| if 〈Comp〉 then 〈Stat〉 else 〈Stat〉
| while 〈Comp〉 do 〈Stat〉
| read 〈Id〉
| write 〈Expr〉

〈Comp〉 ::= { 〈Expr〉 〈COP〉 } 〈Expr〉
〈Expr〉 ::= { 〈Term〉 〈EOP〉 } 〈Term〉
〈Term〉 ::= { 〈Fact〉 〈TOP〉 } 〈Fact〉
〈Fact〉 ::= 〈Integer〉 | 〈Id〉 | (〈Expr〉)
〈COP〉 ::= ´ ==´ | ´ != ´ | ´ >´ | ´ <´ | ´ =<´ | ´ >=´

〈EOP〉 ::= ´ +´ | ´ - ´

〈TOP〉 ::= ´ * ´ | ´ / ´

〈Integer〉 ::= (integer)
〈Id〉 ::= (atom)

Table 3.2: The parser’s input language (which is a token sequence)

tree. It is abstract because it is encoded as a data structure in the language, and
no longer in terms of tokens. The parser’s role is to extract the structure from
the flat input. Without this structure, it is extremely difficult to write the code
generator and code optimizers.

The parser program

The main parser call is the function {Prog S1 Sn} , where S1 is an input list of
tokens and Sn is the rest of the list after parsing. This call returns the parsed
output. For example:

declare A Sn in
A={Prog

[program foo ´ ; ´ while a ´ +´ 3 ´ <´ b ´ do´ b ´ := ´ b ´ +´ 1 ´ end ´]
Sn}

{Browse A}

displays:

prog(foo while(´ <´ (´ +´ (a 3) b) assign(b ´ +´ (b 1))))

We give commented program code for the complete parser. Prog is written as
follows:

fun {Prog S1 Sn}
Y Z S2 S3 S4 S5

in
S1=program|S2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.4 Programming with recursion 167

〈Prog〉 ::= prog(〈Id〉 〈Stat〉)

〈Stat〉 ::= ´ ; ´ (〈Stat〉 〈Stat〉)

| assign(〈Id〉 〈Expr〉)

| ´ if ´ (〈Comp〉 〈Stat〉 〈Stat〉)

| while(〈Comp〉 〈Stat〉)

| read(〈Id〉)

| write(〈Expr〉)

〈Comp〉 ::= 〈COP〉(〈Expr〉 〈Expr〉)

〈Expr〉 ::= 〈Id〉 | 〈Integer〉 | 〈OP〉(〈Expr〉 〈Expr〉)

〈COP〉 ::= ´ ==´ | ´ != ´ | ´ >´ | ´ <´ | ´ =<´ | ´ >=´

〈OP〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´

〈Integer〉 ::= (integer)
〈Id〉 ::= (atom)

Table 3.3: The parser’s output language (which is a tree)

Y={Id S2 S3}
S3=´ ; ´ |S4
Z={Stat S4 S5}
S5=´ end ´ |Sn
prog(Y Z)

end

The accumulator is threaded through all terminal and nonterminal symbols. Each
nonterminal symbol has a procedure to parse it. Statements are parsed with Stat ,
which is written as follows:

fun {Stat S1 Sn}
T|S2=S1

in
case T
of begin then

{Sequence Stat fun {$ X} X== ´ ; ´ end S2 ´ end ´ |Sn}
[] ´ if ´ then C X1 X2 S3 S4 S5 S6 in

{Comp C S2 S3}
S3=´ then ´ |S4
X1={Stat S4 S5}
S5=´ else ´ |S6
X2={Stat S6 Sn}
´ if ´ (C X1 X2)

[] while then C X S3 S4 in
C={Comp S2 S3}
S3=´ do´ |S4
X={Stat S4 Sn}
while(C X)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

168 Declarative Programming Techniques

[] read then I in
I={Id S2 Sn}
read(I)

[] write then E in
E={Expr S2 Sn}
write(E)

elseif {IsIdent T} then E S3 in
S2=´ := ´ |S3
E={Expr S3 Sn}
assign(T E)

else
S1=Sn
raise error(S1) end

end
end

The one-token lookahead is put in T. With a case statement, the correct branch
of the Stat grammar rule is found. Statement sequences (surrounded by begin

– end) are parsed by the procedure Sequence . This is a generic procedure that
also handles comparison sequences, expression sequences, and term sequences. It
is written as follows:

fun {Sequence NonTerm Sep S1 Sn}
X1 S2 T S3

in
X1={NonTerm S1 S2}
S2=T|S3
if {Sep T} then X2 in

X2={Sequence NonTerm Sep S3 Sn}
T(X1 X2) % Dynamic record creation

else
S2=Sn
X1

end
end

This takes two input functions, NonTerm, which is passed any nonterminal, and
Sep, which detects the separator symbol in a sequence. Comparisons, expressions,
and terms are parsed as follows with Sequence :

fun {Comp S1 Sn} {Sequence Expr COP S1 Sn} end
fun {Expr S1 Sn} {Sequence Term EOP S1 Sn} end
fun {Term S1 Sn} {Sequence Fact TOP S1 Sn} end

Each of these three functions has its corresponding function for detecting sepa-
rators:

fun {COP Y}
Y==´ <´ orelse Y==´ >´ orelse Y==´ =<´ orelse
Y==´ >=´ orelse Y==´ ==´ orelse Y==´ != ´

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 169

end
fun {EOP Y} Y== ´ +´ orelse Y==´ - ´ end
fun {TOP Y} Y== ´ * ´ orelse Y==´ / ´ end

Finally, factors and identifiers are parsed as follows:

fun {Fact S1 Sn}
T|S2=S1

in
if {IsInt T} orelse {IsIdent T} then

S2=Sn
T

else E S2 S3 in
S1=´ (´ |S2
E={Expr S2 S3}
S3=´) ´ |Sn
E

end
end

fun {Id S1 Sn} X in S1=X|Sn true ={IsIdent X} X end
fun {IsIdent X} {IsAtom X} end

Integers are represented as built-in integer values and detected using the built-in
IsInt function.

This parsing technique works for grammars where one-token lookahead is
enough. Some grammars, called ambiguous grammars, require to look at more
than one token to decide which grammar rule is needed. A simple way to parse
them is with nondeterministic choice, as explained in Chapter 9.

3.5 Time and space efficiency

Declarative programming is still programming; even though it has strong math-
ematical properties it still results in real programs that run on real computers.
Therefore, it is important to think about computational efficiency. There are two
parts to efficiency: execution time (e.g., in seconds) and memory usage (e.g., in
bytes). We will show how to calculate both of these.

3.5.1 Execution time

Using the kernel language and its semantics, we can calculate the execution time
up to a constant factor. For example, for a mergesort algorithm we will be able
to say that the execution time is proportional to n log n, given an input list of
length n. The asymptotic time complexity of an algorithm is the tightest upper
bound on its execution time as a function of the input size, up to a constant
factor. This is sometimes called the worst-case time complexity.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

170 Declarative Programming Techniques

〈s〉 ::=
skip k
| 〈x〉1=〈x〉2 k
| 〈x〉=〈v〉 k
| 〈s〉1 〈s〉2 T (s1) + T (s2)
| local 〈x〉 in 〈s〉 end k + T (s)
| proc { 〈x〉 〈y〉1 ... 〈y〉n} 〈s〉 end k
| if 〈x〉 then 〈s〉1 else 〈s〉2 end k + max(T (s1), T (s2))
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end k + max(T (s1), T (s2))
| { 〈x〉 〈y〉1 ... 〈y〉n} Tx(sizex(Ix({y1, ..., yn}))

Table 3.4: Execution times of kernel instructions

To find the constant factor, it is necessary to measure actual runs of the pro-
gram on its implementation. Calculating the constant factor a priori is extremely
difficult. This is because modern computer systems have a complex hardware and
software structure that introduces much unpredictability in the execution time:
they do memory management (see Section 3.5.2), they have complex memory
systems (with virtual memory and several levels of caches), they have complex
pipelined and superscalar architectures (many instructions are simultaneously in
various stages of execution; an instruction’s execution time often depends on the
other instructions present), and the operating system does context switches at un-
predictable times. This unpredictability improves the average performance at the
price of increasing performance fluctuations. For more information on measuring
performance and its pitfalls, we recommend [91].

Big-oh notation

We will give the execution time of the program in terms of the “big-oh” notation
O(f(n)). This notation lets us talk about the execution time without having
to specify the constant factor. Let T (n) be a function that gives the execution
time of some program, measured in the size of the input n. Let f(n) be some
other function defined on nonnegative integers. Then we say T (n) is of O(f(n))
(pronounced T (n) is of order f(n)) if T (n) ≤ c.f(n) for some positive constant
c, for all n except for some small values n ≤ n0. That is, as n grows there is a
point after which T (n) never gets bigger than c.f(n).

Sometimes this is written T (n) = O(f(n)). Be careful! This use of equals
is an abuse of notation, since there is no equality involved. If g(n) = O(f(n))
and h(n) = O(f(n)), then it is not true that g(n) = h(n). A better way to
understand the big-oh notation is in terms of sets and membership: O(f(n)) is
a set of functions, and saying T (n) is of O(f(n)) means simply that T (n) is a
member of the set.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 171

Calculating the execution time

We use the kernel language as a guide. Each kernel instruction has a well-defined
execution time, which may be a function of the size of its arguments. Assume
we have a program that consists of the p functions F1, ..., Fp. We would like to
calculate the p functions TF1, ..., TFp. This is done in three steps:

1. Translate the program into the kernel language.

2. Use the kernel execution times to set up a collection of equations that
contain TF1, ..., TFp. We call these equations recurrence equations since
they define the result for n in terms of results for values smaller than n.

3. Solve the recurrence equations for TF1, ..., TFp.

Table 3.4 gives the execution time T (s) for each kernel statement 〈s〉. In this
table, s is an integer and the arguments yi = E(〈y〉i) for 1 ≤ i ≤ n, for the ap-
propriate environment E. Each instance of k is a different positive real constant.
The function Ix({y1, ..., yn}) returns the subset of a procedure’s arguments that
are used as inputs.11 The function sizex({y1, ..., yk}) is the “size” of the input
arguments for the procedure x. We are free to define size in any way we like; if
it is defined badly then the recurrence equations will have no solution. For the
instructions 〈x〉=〈y〉 and 〈x〉=〈v〉 there is a rare case when they can take more
than constant time, namely, when the two arguments are bound to large partial
values. In that case, the time is proportional to the size of the common part of
the two partial values.

Example: Append function

Let us give a simple example to show how this works. Consider the Append

function:

fun {Append Xs Ys}
case Xs
of nil then Ys
[] X|Xr then X|{Append Xr Ys}
end

end

This has the following translation into the kernel language:

proc {Append Xs Ys ?Zs}
case Xs
of nil then Zs=Ys
[] X|Xr then Zr in

Zs=X|Zr
{Append Xr Ys Zr}

11This can sometimes differ from call to call. For example, when a procedure is used to
perform different tasks at different calls.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

172 Declarative Programming Techniques

end
end

Using Table 3.4, we get the following recurrence equation for the recursive call:

TAppend (size(I({Xs, Ys, Zs}))) = k1+max(k2, k3+TAppend (size(I({Xr , Ys, Zr })))

(The subscripts for size and I are not needed here.) Let us simplify this. We
know that I({Xs, Ys, Zs}) = {Xs} and we assume that size({Xs}) = n, where n
is the length of Xs. This gives:

TAppend (n) = k1 + max(k2, k3 + TAppend (n− 1))

Further simplifying gives:

TAppend (n) = k4 + TAppend (n− 1)

We handle the base case by picking a particular value of Xs for which we can
directly calculate the result. Let us pick Xs=nil . This gives:

TAppend (0) = k5

Solving the two equations gives:

TAppend (n) = k4.n + k5

Therefore TAppend (n) is of O(n).

Recurrence equations

Before looking at more examples, let us take a step back and look at recurrence
equations in general. A recurrence equation has one of two forms:

• An equation that defines a function T (n) in terms of T (m1), ..., T (mk),
where m1, ..., mk < n.

• An equation that gives T (n) directly for certain values of n, e.g., T (0) or
T (1).

When calculating execution times, recurrence equations of many different kinds
pop up. Here is a table of some frequently occurring equations and their solutions:

Equation Solution
T (n) = k + T (n− 1) O(n)
T (n) = k1 + k2.n + T (n− 1) O(n2)
T (n) = k + T (n/2) O(logn)
T (n) = k1 + k2.n + T (n/2) O(n)
T (n) = k + 2.T (n/2) O(n)
T (n) = k1 + k2.n + 2.T (n/2) O(n logn)

There are many techniques to derive these solutions. We will see a few in the
examples that follow. The box explains two of the most generally useful ones.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 173

Solving recurrence equations

The following techniques are often useful:

• A simple three-step technique that almost always works in
practice. First, get exact numbers for some small inputs
(for example: T (0) = k, T (1) = k + 3, T (2) = k + 6).
Second, guess the form of the result (for example: T (n) =
an + b, for some as yet unknown a and b). Third, plug
the guessed form into the equations. In our example this
gives b = k and (an + b) = 3 + (a.(n− 1) + b). This gives
a = 3, for a final result of T (n) = 3n + k. The three-step
technique works if the guessed form is correct.

• A much more powerful technique, called generating func-
tions, that gives closed-form or asymptotic results in a
wide variety of cases without having to guess the form. It
requires some technical knowledge of infinite series and cal-
culus, but not more than is seen in a first university-level
course on these subjects. See Knuth [102] and Wilf [207]
for good introductions to generating functions.

Example: FastPascal

In Chapter 1, we introduced the function FastPascal and claimed with a bit of
handwaving that {FastPascal N} is of O(n2). Let us see if we can derive this
more rigorously. Here is the definition again:

fun {FastPascal N}
if N==1 then [1]
else L in

L={FastPascal N-1}
{AddList {ShiftLeft L} {ShiftRight L}}

end
end

We can derive the equations directly from looking at this definition, without
translating functions into procedures. Looking at the definition, it is easy to see
that ShiftRight is of O(1), i.e., it is constant time. Using similar reasoning as
for Append , we can derive that AddList and ShiftLeft are of O(n) where n is
the length of L. This gives us the following recurrence equation for the recursive
call:

TFastPascal (n) = k1 + max(k2, k3 + TFastPascal (n− 1) + k4.n)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

174 Declarative Programming Techniques

where n is the value of the argument N. Simplifying gives:

TFastPascal (n) = k5 + k4.n + TFastPascal (n− 1)

For the base case, we pick N=1. This gives:

TFastPascal (1) = k6

To solve these two equations, we first “guess” that the solution is of the form:

TFastPascal (n) = a.n2 + b.n + c

This guess comes from an intuitive argument like the one given in Chapter 1. We
then insert this form into the two equations. If we can successfully solve for a,
b, and c, then this means that our guess was correct. Inserting the form into the
two equations gives the following three equations in a, b, and c:

k4 − 2a = 0

k5 + a− b = 0

a + b + c− k6 = 0

We do not have to solve this system completely; it suffices to verify that a 6= 0.12

Therefore TFastPascal (n) is of O(n2).

Example: MergeSort

In the previous section we saw three mergesort algorithms. They all have the same
execution time, with different constant factors. Let us calculate the execution
time of the first algorithm. Here is the main function again:

fun {MergeSort Xs}
case Xs
of nil then nil
[] [X] then [X]
else Ys Zs in

{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}

end
end

Let T (n) be the execution time of {MergeSort Xs} , where n is the length of
Xs. Assume that Split and Merge are of O(n) in the length of their inputs.
We know that Split outputs two lists of lengths dn/2e and bn/2c, From the
definition of MergeSort , this lets us define the following recurrence equations:

• T (0) = k1

12If we guess a.n2 + b.n + c and the actual solution is of the form b.n + c, then we will get
a = 0.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 175

• T (1) = k2

• T (n) = k3 + k4n + T (dn/2e) + T (bn/2c) if n ≥ 2

This uses the ceiling and floor functions, which are a bit tricky. To get rid of
them, assume that n is a power of 2, i.e., n = 2k for some k. Then the equations
become:

• T (0) = k1

• T (1) = k2

• T (n) = k3 + k4n + 2T (n/2) if n ≥ 2

Expanding the last equation gives (where L(n) = k3 + k4n):

• T (n) =

k︷ ︸︸ ︷
L(n) + 2L(n/2) + 4L(n/4) + ... + (n/2)L(2) + 2T (1)

Replacing L(n) and T (1) by their values gives:

• T (n) =

k︷ ︸︸ ︷
(k4n + k3) + (k4n + 2k3) + (k4n + 4k3) + ... + (k4n + (n/2)k3) + k2

Doing the sum gives:

• T (n) = k4kn + (n− 1)k3 + k2

We conclude that T (n) = O(n log n). For values of n that are not powers of 2, we
use the easily-proved fact that n ≤ m ⇒ T (n) ≤ T (m) to show that the big-oh
bound still holds. The bound is independent of the content of the input list. This
means that the O(n log n) bound is also a worst-case bound.

3.5.2 Memory usage

Memory usage is not a single figure like execution time. It consists of two quite
different concepts:

• The instantaneous active memory size ma(t), in memory words. This
number gives how much memory the program needs to continue to exe-
cute successfully. A related number is the maximum active memory size,
Ma(t) = max0≤u≤t ma(u). This number is useful for calculating how much
physical memory your computer needs to execute the program successfully.

• The instantaneous memory consumption mc(t), in memory words/second.
This number gives how much memory the program allocates during its
execution. A large value for this number means that memory management
has more work to do, e.g., the garbage collector will be invoked more often.
This will increase execution time. A related number is the total memory
consumption, Mc(t) =

∫ t

0
mc(u)du, which is a measure for how much total

work memory management has to do to run the program.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

176 Declarative Programming Techniques

〈s〉 ::=
skip 0
| 〈x〉1=〈x〉2 0
| 〈x〉=〈v〉 memsize(v)
| 〈s〉1 〈s〉2 M(s1) + M(s2)
| local 〈x〉 in 〈s〉 end 1 + T (s)
| if 〈x〉 then 〈s〉1 else 〈s〉2 end max(M(s1), M(s2))
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end max(M(s1), M(s2))
| { 〈x〉 〈y〉1 ... 〈y〉n} Mx(sizex(Ix({y1, ..., yn}))

Table 3.5: Memory consumption of kernel instructions

These two numbers should not be confused. The first is much more important.
A program can allocate memory very slowly (e.g., 1 KB/s) and yet have a large
active memory (e.g., 100 MB). For example, a large in-memory database that han-
dles only simple queries. The opposite is also possible. A program can consume
memory at a high rate (e.g., 100 MB/s) and yet have a quite small active memo-
ry (e.g., 10 KB). For example, a simulation algorithm running in the declarative
model.13

Instantaneous active memory size

The active memory size can be calculated at any point during execution by fol-
lowing all the references from the semantic stack into the store and totaling the
size of all the reachable variables and partial values. It is roughly equal to the
size of all the data structures needed by the program during its execution.

Total memory consumption

The total memory consumption can be calculated with a technique similar to
that used for execution time. Each kernel language operation has a well-defined
memory consumption. Table 3.5 gives the memory consumption M(s) for each
kernel statement 〈s〉. Using this table, recurrence equations can be set up for
the program, from which the total memory consumption of the program can be
calculated as a function of the input size. To this number should be added the
memory consumption of the semantic stack. For the instruction 〈x〉=〈v〉 there
is a rare case in which memory consumption is less than memsize(v), namely
when 〈x〉 is partly instantiated. In that case, only the memory of the new entities
should be counted. The function memsize(v) is defined as follows, according to
the type and value of v:

13Because of this behavior, the declarative model is not good for running simulations unless
it has an excellent garbage collector!

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 177

• For an integer: 0 for small integers, otherwise proportional to integer size.
Calculate the number of bits needed to represent the integer in two’s com-
plement form. If this number is less than 28, then 0. Else divide by 32 and
round up to the nearest integer.

• For a float: 2.

• For a list pair: 2.

• For a tuple or record: 1 + n, where n = length(arity(v)).

• For a procedure value: k+n, where n is the number of external references of
the procedure body and k is a constant that depends on the implementation.

All figures are in number of 32-bit memory words, correct for Mozart 1.3.0. For
nested values, take the sum of all the values. For records and procedure values
there is an additional one-time cost. For each distinct record arity the additional
cost is roughly proportional to n (because the arity is stored once in a symbol
table). For each distinct procedure in the source code, the additional cost depends
on the size of the compiled code, which is roughly proportional to the total number
of statements and identifiers in the procedure body. In most cases, these one-time
costs add a constant to the total memory consumption; for the calculation they
can usually be ignored.

3.5.3 Amortized complexity

Sometimes we are not interested in the complexity of single operations, but rather
in the total complexity of a sequence of operations. As long as the total complex-
ity is reasonable, we might not care whether individual operations are sometimes
more expensive. Section 3.4.5 gives an example with queues: as long as a se-
quence of n insert and delete operations has a total execution time that is O(n),
we might not care whether individual operations are always O(1). They are al-
lowed occasionally to be more expensive, as long as this does not happen too
frequently. In general, if a sequence of n operations has a total execution time
O(f(n)), then we say that it has an amortized complexity of O(f(n)/n).

Amortized versus worst-case complexity

For many application domains, having a good amortized complexity is good
enough. However, there are three application domains that need guarantees on
the execution time of individual operations. They are hard real-time systems,
parallel systems, and interactive systems.

A hard real-time system has to satisfy strict deadlines on the completion of
calculations. Missing such a deadline can have dire consequences including loss
of lives. Such systems exist, e.g., in pacemakers and train collision avoidance (see
also Section 4.6.1).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

178 Declarative Programming Techniques

A parallel system executes several calculations simultaneously to achieve speedup
of the whole computation. Often, the whole computation can only advance after
all the simultaneous calculations complete. If one of these calculations occasion-
ally takes much more time, then the whole computation slows down.

An interactive system, such as a computer game, should have a uniform reac-
tion time. For example, if a multi-user action game sometimes delays its reaction
to a player’s input then the player’s satisfaction is much reduced.

The banker’s method and the physicist’s method

Calculating the amortized complexity is a little harder than calculating the worst-
case complexity. (And it will get harder still when we introduce lazy execution
in Section 4.5.) There are basically two methods, called the banker’s method and
the physicist’s method.

The banker’s method counts credits, where a “credit” represents a unit of
execution time or memory space. Each operation puts aside some credits. An
expensive operation is allowed when enough credits have been put aside to cover
its execution.

The physicist’s method is based on finding a potential function. This is a
kind of “height above sea level”. Each operation changes the potential, i.e., it
climbs or descends a bit. The cost of each operation is the change in potential,
namely, how much it climbs or descends. The total complexity is a function of
the difference between the initial and final potentials. As long as this difference
remains small, large variations are allowed in between.

For more information on these methods and many examples of their use with
declarative algorithms, we recommend the book by Okasaki [138].

3.5.4 Reflections on performance

Ever since the beginning of the computer era in the 1940’s, both space and time
have been becoming cheaper at an exponential rate (a constant factor improve-
ment each year). They are currently very cheap, both in absolute terms and in
perceived terms: a low-cost personal computer of the year 2000 typically has at
least 64MB of random-access memory and 4 GB of persistent storage on disk,
with a performance of several hundred million instructions per second, where
each instruction can perform a full 64-bit operation including floating point. It
is comparable to or faster than a Cray-1, the world’s fastest supercomputer in
1975. A supercomputer is defined to be one of the fastest computers existing at
a particular time. The first Cray-1 had a clock frequency of 80 MHz and could
perform several 64-bit floating point operations per cycle [178]. At constant cost,
personal computer performance is still improving according to Moore’s Law (that
is, doubling every two years), and this is predicted to continue at least throughout
the first decade of the 21st century.

Because of this situation, performance is usually not a critical issue. If your

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.5 Time and space efficiency 179

problem is tractable, i.e., there exists an efficient algorithm for it, then if you use
good techniques for algorithm design, the actual time and space that the algo-
rithm takes will almost always be acceptable. In other words, given a reasonable
asymptotic complexity of a program, the constant factor is almost never critical.
This is even true for most multimedia applications (which use video and audio)
because of the excellent graphics libraries that exist.

Not all problems are tractable, though. There are problems that are com-
putationally expensive, for example in the areas of combinatorial optimization,
operational research, scientific computation and simulation, machine learning,
speech and vision recognition, and computer graphics. Some of these problems
are expensive simply because they have to do a lot of work. For example, games
with realistic graphics, which by definition are always at the edge of what is pos-
sible. Other problems are expensive for more fundamental reasons. For example,
NP-complete problems. These problems are in NP, i.e., it is easy to check a solu-
tion, if you are given a candidate.14 But finding a solution may be much harder. A
simple example is the circuit satisfiability problem. Given a combinational digital
circuit that consists of And, Or , and Not gates. Does there exist a set of input val-
ues that makes the output 1? This problem is NP-complete [41]. An NP-complete
problem is a special kind of NP problem with the property that if you can solve
one in polynomial time, then you can solve all in polynomial time. Many com-
puter scientists have tried over several decades to find polynomial-time solutions
to NP-complete problems, and none have succeeded. Therefore, most comput-
er scientists suspect that NP-complete problems cannot be solved in polynomial
time. In this book, we will not talk any more about computationally-expensive
problems. Since our purpose is to show how to program, we limit ourselves to
tractable problems.

In some cases, the performance of a program can be insufficient, even if the
problem is theoretically tractable. Then the program has to be rewritten to im-
prove performance. Rewriting a program to improve some characteristic is called
optimizing it, although it is never “optimal” in any mathematical sense. Usually,
the program can easily be improved up to a point, after which diminishing returns
set in and the program rapidly becomes more complex for ever smaller improve-
ments. Optimization should therefore not be done unless necessary. Premature
optimization is the bane of computing.

Optimization has a good side and a bad side. The good side is that the overall
execution time of most applications is largely determined by a very small part of
the program text. Therefore performance optimization, if necessary, can almost
always be done by rewriting just this small part (sometimes a few lines suffice).
The bad side is that it is usually not obvious, even to experienced programmers,
where this part is a priori. Therefore, this part should be identified after the
application is running and only if a performance problem is noticed. If no such
problem exists, then no performance optimization should be done. The best

14NP stands for “nondeterministic polynomial time”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

180 Declarative Programming Techniques

technique to identify the “hotspots” is profiling, which instruments the application
to measure its run-time characteristics.

Reducing a program’s space use is easier than reducing its execution time.
The overall space use of a program depends on the data representation chosen. If
space is a critical issue, then a good technique is to use a compression algorithm
on the data when it is not part of an immediate computation. This trades space
for time.

3.6 Higher-order programming

Higher-order programming is the collection of programming techniques that be-
come available when using procedure values in programs. Procedure values are
also known as lexically-scoped closures. The term higher-order comes from the
concept of order of a procedure. A procedure all of whose arguments are not pro-
cedures is of order zero. A procedure that has at least one zero-order procedure
in an argument is of order one. And so forth: a procedure is of order n + 1 if
it has at least one argument of order n and none of higher order. Higher-order
programming means simply that procedures can be of any order, not just order
zero.

3.6.1 Basic operations

There are four basic operations that underlie all the techniques of higher-order
programming:

• Procedural abstraction: the ability to convert any statement into a pro-
cedure value.

• Genericity: the ability to pass procedure values as arguments to a proce-
dure call.

• Instantiation: the ability to return procedure values as results from a
procedure call.

• Embedding: the ability to put procedure values in data structures.

Let us first examine each of these operations in turn. Subsequently, we will see
more sophisticated techniques, such as loop abstractions, that use these basic
operations.

Procedural abstraction

We have already introduced procedural abstraction. Let us briefly recall the
basic idea. Any statement 〈stmt〉 can be “packaged” into a procedure by writing
it as proc {$} 〈stmt〉 end . This does not execute the statement, but instead
creates a procedure value (a closure). Because the procedure value contains a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 181

{X}

<stmt> proc {$}
<stmt>

end

X=

Normal execution Delayed execution

Execute a
statement

‘‘Package’’
a statement

Execute the
statement

time time

Figure 3.20: Delayed execution of a procedure value

contextual environment, executing it gives exactly the same result as executing
〈stmt〉. The decision whether or not to execute the statement is not made where
the statement is defined, but somewhere else in the program. Figure 3.20 shows
the two possibilities: either executing 〈stmt〉 immediately or with a delay.

Procedure values allow more than just delaying execution of a statement.
They can have arguments, which allows some of their behavior to be influenced
by the call. As we will see throughout the book, procedural abstraction is enor-
mously powerful. It underlies higher-order programming and object-oriented pro-
gramming, and is extremely useful for building abstractions. Let us give another
example of procedural abstraction. Consider the statement:

local A=1.0 B=3.0 C=2.0 D RealSol X1 X2 in
D=B*B-4.0*A*C
if D>=0.0 then

RealSol= true
X1=(˜B+{Sqrt D})/(2.0*A)
X2=(˜B-{Sqrt D})/(2.0*A)

else
RealSol= false
X1=˜B/(2.0*A)
X2={Sqrt ˜D}/(2.0*A)

end
{Browse RealSol#X1#X2}

end

This calculates the solutions of the quadratic equation x2 + 3x + 2 = 0. It uses

the quadratic formula
−b±

√
b2 − 4ac

2a
, which gives the two solutions of the

equation ax2 + bx+ c = 0. The value d = b2− 4ac is called the discriminant: if it
is positive or zero, then there are two real solutions. Otherwise, the two solutions

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

182 Declarative Programming Techniques

are conjugate complex numbers. The above statement can be converted into a
procedure by using it as the body of a procedure definition and passing the free
variables as arguments:

declare
proc {QuadraticEquation A B C ?RealSol ?X1 ?X2}

D=B*B-4.0*A*C
in

if D>=0.0 then
RealSol= true
X1=(˜B+{Sqrt D})/(2.0*A)
X2=(˜B-{Sqrt D})/(2.0*A)

else
RealSol= false
X1=˜B/(2.0*A)
X2={Sqrt ˜D}/(2.0*A)

end
end

This procedure will solve any quadratic equation. Just call it with the equation’s
coefficients as arguments:

declare RS X1 X2 in
{QuadraticEquation 1.0 3.0 2.0 RS X1 X2}
{Browse RS#X1#X2}

A common limitation

Many older imperative languages have a restricted form of procedural abstraction.
To understand this, let us look at Pascal and C [94, 99]. In C, all procedure def-
initions are global (they cannot be nested). This means that only one procedure
value can exist corresponding to each procedure definition. In Pascal, procedure
definitions can be nested, but procedure values can only be used in the same
scope as the procedure definition, and then only while the program is executing
in that scope. These restrictions make it impossible in general to “package up”
a statement and execute it somewhere else.

This means that many higher-order programming techniques are impossible.
For example, it is impossible to program new control abstractions. Instead, each
language provides a predefined set of control abstractions (such as loops, condi-
tionals, and exceptions). A few higher-order techniques are still possible. For
example, the quadratic equation example works because it has no external refer-
ences: it can be defined as a global procedure in C and Pascal. Generic operations
also often work for the same reason (see below).

The restrictions of C and Pascal are a consequence of the way these languages
do memory management. In both languages, the implementation puts part of the
store on the semantic stack. This part of the store is usually called local variables.
Allocation is done using a stack discipline. E.g., some local variables are allocated

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 183

at each procedure entry and deallocated at the corresponding exit. This is a
form of automatic memory management that is much simpler to implement than
garbage collection. Unfortunately, it is easy to create dangling references. It is
extremely difficult to debug a large program that occasionally behaves incorrectly
because of a dangling reference.

Now we can explain the restrictions. In both C and Pascal, creating a proce-
dure value is restricted so that the contextual environment never has any dangling
references. There are some language-specific techniques that can be used to light-
en this restriction. For example, in object-oriented languages such as C++ or
Java it is possible for objects to play the role of procedure values. This technique
is explained in Chapter 7.

Genericity

We have already seen an example of higher-order programming in an earlier
section. It was introduced so gently that perhaps you have not noticed that
it is doing higher-order programming. It is the control abstraction Iterate of
Section 3.2.4, which uses two procedure arguments, Transform and IsDone .

To make a function generic is to let any specific entity (i.e., any operation
or value) in the function body become an argument of the function. We say the
entity is abstracted out of the function body. The specific entity is given when the
function is called. Each time the function is called another entity can be given.

Let us look at a second example of a generic function. Consider the function
SumList :

fun {SumList L}
case L
of nil then 0
[] X|L1 then X+{SumList L1}
end

end

This function has two specific entities: the number zero (0) and the operation
plus (+). The zero is a neutral element for the plus operation. These two entities
can be abstracted out. Any neutral element and any operation are possible. We
give them as parameters. This gives the following generic function:

fun {FoldR L F U}
case L
of nil then U
[] X|L1 then {F X {FoldR L1 F U}}
end

end

This function is usually called FoldR because it associates to the right. We can
define SumList as a special case of FoldR :

fun {SumList L}
{FoldR L fun {$ X Y} X+Y end 0}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

184 Declarative Programming Techniques

end

We can use FoldR to define other functions on lists. Here is function that calcu-
lates the product:

fun {ProductList L}
{FoldR L fun {$ X Y} X*Y end 1}

end

Here is another that returns true if there is at least one true in the list:

fun {Some L}
{FoldR L fun {$ X Y} X orelse Y end false }

end

FoldR is an example of a loop abstraction. Section 3.6.2 looks at other kinds of
loop abstraction.

Mergesort made generic

The mergesort algorithm we saw in Section 3.4.2 is hardwired to use the ´ <´

comparison function. Let us make mergesort generic by passing the comparison
function as an argument. We change the Merge function to reference the function
argument F and the MergeSort function to reference the new Merge :

fun {GenericMergeSort F Xs}
fun {Merge Xs Ys}

case Xs # Ys
of nil # Ys then Ys
[] Xs # nil then Xs
[] (X|Xr) # (Y|Yr) then

if {F X Y} then X|{Merge Xr Ys}
else Y|{Merge Xs Yr} end

end
end
fun {MergeSort Xs}

case Xs
of nil then nil
[] [X] then [X]
else Ys Zs in

{Split Xs Ys Zs}
{Merge {MergeSort Ys} {MergeSort Zs}}

end
end

in
{MergeSort Xs}

end

This uses the old definition of Split . We put the definitions of Merge and
MergeSort inside the new function GenericMergeSort . This avoids passing
the function F as an argument to Merge and MergeSort . Instead, the two

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 185

procedures are defined once per call of GenericMergeSort . We can define the
original mergesort in terms of GenericMergeSort :

fun {MergeSort Xs}
{GenericMergeSort fun {$ A B} A<B end Xs}

end

Instead of fun {$ A B} A<B end , we could have written Number. ´ <´ because
the comparison ´ <´ is part of the module Number.

Instantiation

An example of instantiation is a function MakeSort that returns a sorting func-
tion. Functions like MakeSort are sometimes called “factories” or “generators”.
MakeSort takes a boolean comparison function F and returns a sorting routine
that uses F as comparison function. Let us see how to build MakeSort using a
generic sorting routine Sort . Assume that Sort takes two inputs, a list L and a
boolean function F, and returns a sorted list. Now we can define MakeSort :

fun {MakeSort F}
fun {$ L}

{Sort L F}
end

end

We can see MakeSort as specifying a set of possible sorting routines. Calling
MakeSort instantiates the specification. It returns an element of the set, which
we call an instance of the specification.

Embedding

Procedure values can be put in data structures. This has many uses:

• Explicit lazy evaluation, also called delayed evaluation. The idea
is not to build a complete data structure in one go, but to build it on
demand. Build only a small part of the data structure with procedures at
the extremities that can be called to build more. For example, the consumer
of a data structure is given a pair: part of the data structure and a new
function to calculate another pair. This means the consumer can control
explicitly how much of the data structure is evaluated.

• Modules. A module is a record that groups together a set of related oper-
ations.

• Software component. A software component is a generic procedure that
takes a set of modules as input arguments and returns a new module. It
can be seen as specifying a module in terms of the modules it needs (see
Section 6.7).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

186 Declarative Programming Techniques

proc {For A B S P}
proc {LoopUp C}

if C=<B then {P C} {LoopUp C+S} end
end
proc {LoopDown C}

if C>=B then {P C} {LoopDown C+S} end
end

in
if S>0 then {LoopUp A} end
if S<0 then {LoopDown A} end

end

Figure 3.21: Defining an integer loop

proc {ForAll L P}
case L
of nil then skip
[] X|L2 then

{P X}
{ForAll L2 P}

end
end

Figure 3.22: Defining a list loop

3.6.2 Loop abstractions

As the examples in the previous sections show, loops in the declarative model
tend to be verbose because they need explicit recursive calls. Loops can be made
more concise by defining them as control abstractions. There are many different
kinds of loops that we can define. In this section, we first define simple for-loops
over integers and lists and then we add accumulators to them to make them more
useful.

Integer loop

Let us define an integer loop, i.e., a loop that repeats an operation with a sequence
of integers. The procedure {For A B S P} calls {P I} for integers I that start
with A and continue to B, in steps of S. For example, executing {For 1 10 1

Browse} displays the integers 1, 2, ..., 10. Executing {For 10 1 ˜2 Browse}

displays 10, 8, 6, 4, 2. The For loop is defined in Figure 3.21. This definition
works for both positive and negative steps. It uses LoopUp for positive S and
LoopDown for negative S. Because of lexical scoping, LoopUp and LoopDown each
needs only one argument. They see B, S, and P as external references.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 187

..

. ...

{P X1}

{P X2}

{P X3}

{ForAll L P}

List loop

{P A }

{P A+S }

{P A+2*S}

{For A B S P}

Integer loop

{P A+n*S} {P Xn}

(where L=[X1 X2 ... Xn])(if S>0: as long as A+n*S=<B)

(if S<0: as long as A+n*S>=B)

Figure 3.23: Simple loops over integers and lists

List loop

Let us define a list loop, i.e., a loop that repeats an operation for all elements of
a list. The procedure {ForAll L P} calls {P X} for all elements X of the list L.
For example, {ForAll [a b c] Browse} displays a, b, c . The ForAll loop is
defined in Figure 3.21. Figure 3.23 compares For and ForAll in a graphic way.

Accumulator loops

The For and ForAll loops just repeat an action on different arguments, but
they do not calculate any result. This makes them quite useless in the declara-
tive model. They will show their worth only in the stateful model of Chapter 6.
To be useful in the declarative model, the loops can be extended with an accu-
mulator. In this way, they can calculate a result. Figure 3.24 defines ForAcc and
ForAllAcc , which extend For and ForAll with an accumulator.15 ForAcc and
ForAllAcc are the workhorses of the declarative model. They are both defined
with a variable Mid that is used to pass the current state of the accumulator to
the rest of the loop. Figure 3.25 compares ForAcc and ForAllAcc in a graphic
way.

Folding a list

There is another way to look at accumulator loops over lists. They can be seen
as a “folding” operation on a list, where folding means to insert an infix operator
between elements of the list. Consider the list l = [x1 x2 x3 ... xn]. Then folding
l with the infix operator f gives:

x1 f x2 f x3 f ... f xn

15In the Mozart system, ForAcc and ForAllAcc are called ForThread and FoldL ,
respectively.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

188 Declarative Programming Techniques

proc {ForAcc A B S P In ?Out}
proc {LoopUp C In ?Out}
Mid in

if C=<B then {P In C Mid} {LoopUp C+S Mid Out}
else In=Out end

end
proc {LoopDown C In ?Out}
Mid in

if C>=B then {P In C Mid} {LoopDown C+S Mid Out}
else In=Out end

end
in

if S>0 then {LoopUp A In Out} end
if S<0 then {LoopDown A In Out} end

end

proc {ForAllAcc L P In ?Out}
case L
of nil then In=Out
[] X|L2 then Mid in

{P In X Mid}
{ForAllAcc L2 P Mid Out}

end
end

Figure 3.24: Defining accumulator loops

To calculate this expression unambiguously we have to add parentheses. There
are two possibilities. We can do the left-most operations first (associate to the
left):

((...((x1 f x2) f x3) f ... xn−1) f xn)

or do the right-most operations first (associate to the right):

(x1 f (x2 f (x3 f ... (xn−1 f xn)...)))

As a finishing touch, we slightly modify these expressions so that each application
of f involves just one new element of l. This makes them easier to calculate and
reason with. To do this, we add a neutral element u. This gives the following
two expressions:

((...(((u f x1) f x2) f x3) f ... xn−1) f xn)

(x1 f (x2 f (x3 f ... (xn−1 f (xn f u))...)))

To calculate these expressions we define the two functions {FoldL L F U} and
{FoldR L F U} . The function {FoldL L F U} does the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 189

Accumulator loop over integers

{ForAcc A B S P In Out}

Accumulator loop over list

{ForAllAcc L P In Out}

(if S<0: as long as A+n*S>=B)

(if S>0: as long as A+n*S=<B)
(where L=[X1 X2 ... Xn])

In

. .

In

{P X1 }

{P X2 }

{P X3 }

{P Xn }

.

{P A }

{P A+S }

{P A+2*S }

{P A+n*S }

..

Out

.

Out

Figure 3.25: Accumulator loops over integers and lists

{F ... {F {F {F U X1} X2} X3} ... Xn}

The function {FoldR L F U} does the following:

{F X1 {F X2 {F X3 ... {F Xn U} ... }}}

Figure 3.26 shows FoldL and FoldR in a graphic way. We can relate FoldL

and FoldR to the accumulator loops we saw before. Comparing Figure 3.25 and
Figure 3.26, we can see that FoldL is just another name for ForAllAcc .

Iterative definitions of folding

Figure 3.24 defines ForAllAcc iteratively, and therefore also FoldL . Here is the
same definition in functional notation:

fun {FoldL L F U}
case L
of nil then U
[] X|L2 then

{FoldL L2 F {F U X}}
end

end

This is compacter than the procedural definition but it hides the accumulator,
which obscures its relationship with the other kinds of loops. Compactness is not
always a good thing.

What about FoldR ? The discussion on genericity in Section 3.6.1 gives a
recursive definition, not an iterative one. At first glance, it does not seem so
easy to define FoldR iteratively. Can you give an iterative definition of FoldR ?
The way to do it is to define an intermediate state and a state transformation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

190 Declarative Programming Techniques

U

{P X1 }

{P X2 }

{P X3 }

{P Xn }

.

Out

.

Out

{P Xn }

{P X3 }

{P X1 }

{P X2 }

U

..

Folding from the left Folding from the right

{FoldL L P U Out} {FoldR L P U Out}

Figure 3.26: Folding a list

function. Look at the expression given above: what is the intermediate state?
How do you get to the next state? Before peeking at the answer, we suggest you
put down the book and try to define an iterative FoldR . Here is one possible
definition:

fun {FoldR L F U}
fun {Loop L U}

case L
of nil then U
[] X|L2 then

{Loop L2 {F X U}}
end

end
in

{Loop {Reverse L} U}
end

Since FoldR starts by calculating with Xn, the last element of L, the idea is
to iterate over the reverse of L. We have seen before how to define an iterative
reverse.

3.6.3 Linguistic support for loops

Because loops are so useful, they are a perfect candidate for a linguistic abstrac-
tion. This section defines the declarative for loop, which is one way to do this.
The for loop is defined as part of the Mozart system [47]. The for loop is closely
related to the loop abstractions of the previous section. Using for loops is often
easier than using loop abstractions. When writing loops we recommend to try
them first.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 191

Iterating over integers

A common operation is iterating for successive integers from a lower bound I to
a higher bound J . Without loop syntax, the standard declarative way to do this
uses the {For A B S P} abstraction:

{For A B S proc {$ I} 〈stmt〉 end }

This is equivalent to the following for loop:

for I in A..B do 〈stmt〉 end

when the step S is 1, or:

for I in A..B;S do 〈stmt〉 end

when S is different from 1. The for loop declares the loop counter I , which is a
variable whose scope extends over the loop body 〈stmt〉.

Declarative versus imperative loops

There is a fundamental difference between a declarative loop and an imperative
loop, i.e., a loop in an imperative language such as C or Java. In the latter, the
loop counter is an assignable variable which is assigned a different value on each
iteration. The declarative loop is quite different: on each iteration it declares a
new variable. All these variables are referred to by the same identifier. There is
no destructive assignment at all. This difference can have major consequences.
For example, the iterations of a declarative loop are completely independent of
each other. Therefore, it is possible to run them concurrently without changing
the loop’s final result. For example:

for I in A..B do thread 〈stmt〉 end end

runs all iterations concurrently but each of them still accesses the right value of I .
Putting 〈stmt〉 inside the statement thread ... end runs it as an independent
activity. This is an example of declarative concurrency, which is the subject of
Chapter 4. Doing this in an imperative loop would raise havoc since each iteration
would no longer be sure it accesses the right value of I . The increments of the
loop counter would no longer be synchronized with the iterations.

Iterating over lists

The for loop can be extended to iterate over lists as well as over integer intervals.
For example, the call:

{ForAll L proc {$ X} 〈stmt〉 end end }

is equivalent to:

for X in L do 〈stmt〉 end

Just as with ForAll , the list can be a stream of elements.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

192 Declarative Programming Techniques

Patterns

The for loop can be extended to contain patterns that implicitly declare vari-
ables. For example, if the elements of L are triplets of the form obj(name:N

price:P coordinates:C) , then we can loop over them as follows:

for obj(name:N price:P coordinates:C) in L do
if P<1000 then {Show N} end

end

This declares and binds the new variables N, P, and C for each iteration. Their
scope ranges over the loop body.

Collecting results

A useful extension of the for loop is to collect results. For example, let us make
a list of all integers from 1 to 1000 that are not multiples of either 2 or 3:

L=for I in 1..1000 collect:C do
if I mod 2 \= 0 andthen I mod 3 \= 0 then {C I} end

end

The for loop is an expression that returns a list. The “collect:C ” declaration
defines a collection procedure C that can be used anywhere in the loop body.
The collection procedure uses an accumulator to collect the elements. The above
example is equivalent to:

{ForAcc 1 1000 1
proc {$?L1 I L2}

if I mod 2 \= 0 andthen I mod 3 \= 0 then L1=I|L2
else L1=L2 end

end
L nil}

In general, the for loop is more expressive than this, since the collection proce-
dure can be called deep inside nested loops and other procedures without having
to thread the accumulator explicitly. Here is an example with two nested loops:

L=for I in 1..1000 collect:C do
if I mod 2 \= 0 andthen I mod 3 \= 0 then

for J in 2..10 do
if I mod J == 0 then {C I#J} end

end
end

end

How does the for loop achieve this without threading the accumulator? It uses
explicit state, as we will see in Chapter 6.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 193

Other useful extensions

The above examples give some of the most-used looping idioms in a declarative
loop syntax. Many more looping idioms are possible. For example: immediately
exiting the loop (break), immediately exiting and returning an explicit result
(return), immediately continuing with the next iteration (continue), multiple
iterators that advance in lockstep, and other collection procedures (e.g., append

and prepend for lists and sum and maximize for integers). For other example
designs of declarative loops we recommend studying the loop macro of Common
Lisp [181] and the state threads package of SICStus Prolog [96].

3.6.4 Data-driven techniques

A common task is to do some operation over a big data structure, traversing the
data structure and calculating some other data structure based on this traversal.
This idea is used most often with lists and trees.

List-based techniques

Higher-order programming is often used together with lists. Some of the loop
abstractions can be seen in this way, e.g., FoldL and FoldR . Let us look at some
other list-based techniques.

A common list operation is Map, which calculates a new list from an old list
by applying a function to each element. For example, {Map [1 2 3] fun {$

I} I*I end } returns [1 4 9] . It is defined as follows:

fun {Map Xs F}
case Xs
of nil then nil
[] X|Xr then {F X}|{Map Xr F}
end

end

Its type is 〈fun {$ 〈List T〉 〈fun {$ T}: U〉}: 〈List U〉〉. Map can be defined
with FoldR . The output list is constructed using FoldR ’s accumulator:

fun {Map Xs F}
{FoldR Xs fun {$ I A} {F I}|A end nil}

end

What would happen if we would use FoldL instead of FoldR ? Another common
list operation is Filter , which applies a boolean function to each list element
and outputs the list of all elements that give true . For example, {Filter [1 2

3 4] fun {$ A B} A<3 end } returns [1 2] . It is defined as follows:

fun {Filter Xs F}
case Xs
of nil then nil
[] X|Xr andthen {F X} then X|{Filter Xr F}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

194 Declarative Programming Techniques

[] X|Xr then {Filter Xr F}
end

end

Its type is 〈fun {$ 〈List T〉 〈fun {$ T T}: 〈bool〉〉}: 〈List T〉〉. Filter can
also be defined with FoldR :

fun {Filter Xs F}
{FoldR Xs fun {$ I A} if {F I} then I|A else A end end nil}

end

It seems that FoldR is a surprisingly versatile function. This should not be a
surprise, since FoldR is simply a for-loop with an accumulator! FoldR itself can
be implemented in terms of the generic iterator Iterate of Section 3.2:

fun {FoldR Xs F U}
{Iterate

{Reverse Xs}#U
fun {$ S} Xr#A=S in Xr==nil end
fun {$ S} Xr#A=S in Xr.2#{F Xr.1 A} end }.2

end

Since Iterate is a while-loop with accumulator, it is the most versatile loop
abstraction of them all. All other loop abstractions can be programmed in terms
of Iterate . For example, to program FoldR we only have to encode the state
in the right way with the right termination function. Here we encode the state
as a pair Xr#A , where Xr is the not-yet-used part of the input list and A is the
accumulated result of the FoldR . Watch out for the details: the initial Reverse

call and the .2 at the end to get the final accumulated result.

Tree-based techniques

As we saw in Section 3.4.6 and elsewhere, a common operation on a tree is to
visit all its nodes in some particular order and do certain operations while visiting
the nodes. For example, the code generator mentioned in Section 3.4.8 has to
traverse the nodes of the abstract syntax tree to generate machine code. The tree
drawing program of Section 3.4.7, after it calculates the node’s positions, has to
traverse the nodes in order to draw them. Higher-order techniques can be used
to help in these traversals.

Let us consider n-ary trees, which are more general than the binary trees we
looked at so far. An n-ary tree can be defined as follows:

〈Tree T〉 ::= tree(node: T sons: 〈List 〈Tree T〉〉)

In this tree, each node can have any number of sons. Depth-first traversal of this
tree is just as simple as for binary trees:

proc {DFS Tree}
tree(sons:Sons ...)=Tree

in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.6 Higher-order programming 195

for T in Sons do {DFS T} end
end

We can “decorate” this routine to do something at each node it visits. For exam-
ple, let us call {P T} at each node T. This gives the following generic procedure:

proc {VisitNodes Tree P}
tree(sons:Sons ...)=Tree

in
{P Tree}
for T in Sons do {VisitNodes T P} end

end

An slightly more involved traversal is to call {P Tree T} for each father-son link
between a father node Tree and one of its sons T:

proc {VisitLinks Tree P}
tree(sons:Sons ...)=Tree

in
for T in Sons do {P Tree T} {VisitLinks T P} end

end

These two generic procedures were used to draw the trees of Section 3.4.7 after
the node positions were calculated. VisitLinks drew the lines between nodes
and VisitNodes drew the nodes themselves.

Following the development of Section 3.4.6, we extend these traversals with
an accumulator. There are as many ways to accumulate as there are possible
traversals. Accumulation techniques can be top-down (the result is calculated by
propagating from a father to its sons), bottom-up (from the sons to the father),
or use some other order (e.g., across the breadth of the tree, for a breadth-first
traversal). Comparing with lists, top-down is like FoldL and bottom-up is like
FoldR . Let us do a bottom-up accumulation. We first calculate a folded value for
each node. Then the folded value for a father is a function of the father’s node
and the values for the sons. There are two functions: LF to fold together all sons
of a given father, and TF to fold their result together with the father. This gives
the following generic function with accumulator:

local
fun {FoldTreeR Sons TF LF U}

case Sons
of nil then U
[] S|Sons2 then

{LF {FoldTree S TF LF U} {FoldTreeR Sons2 TF LF U}}
end

end
in

fun {FoldTree Tree TF LF U}
tree(node:N sons:Sons ...)=Tree

in
{TF N {FoldTreeR Sons TF LF U}}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

196 Declarative Programming Techniques

end
end

Here is an example call:

fun {Add A B} A+B end
T=tree(node:1

[tree(node:2 sons:nil)
tree(node:3 sons:[tree(node:4 sons:nil)])])

{Browse {FoldTree T Add Add 0}}

This displays 10, the sum of the values at all nodes.

3.6.5 Explicit lazy evaluation

Modern functional languages have a built-in execution strategy called lazy eval-
uation or lazy execution. Here we show how to program lazy execution explicitly
with higher-order programming. Section 4.5 shows how to make lazy execution
implicit, i.e., where the mechanics of triggering the execution are handled by the
system. As we shall see in Chapter 4, implicit lazy execution is closely connected
to concurrency.

In lazy execution, a data structure (such as a list) is constructed incrementally.
The consumer of the list structure asks for new list elements when they are needed.
This is an example of demand-driven execution. It is very different from the usual,
supply-driven evaluation, where the list is completely calculated independent of
whether the elements are needed or not.

To implement lazy execution, the consumer should have a mechanism to ask
for new elements. We call such a mechanism a trigger. There are two natural ways
to express triggers in the declarative model: as a dataflow variable or with higher-
order programming. Section 4.3.3 explains how with a dataflow variable. Here
we explain how with higher-order programming. The consumer has a function
that it calls when it needs a new list element. The function call returns a pair:
the list element and a new function. The new function is the new trigger: calling
it returns the next data item and another new function. And so forth.

3.6.6 Currying

Currying is a technique that can simplify programs that heavily use higher-order
programming. The idea is to write functions of n arguments as n nested functions
of one argument. For example, the maximum function:

fun {Max X Y}
if X>=Y then X else Y end

end

is rewritten as follows:

fun {Max X}
fun {$ Y}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 197

if X>=Y then X else Y end
end

end

This keeps the same function body. It is called as {{Max 10} 20} , giving 20 .
The advantage of using currying is that the intermediate functions can be useful
in themselves. For example, the function {Max 10} returns a result that is never
less than 10 . It is called a partially-applied function. We can give it the name
LowerBound10 :

LowerBound10={Max 10}

In many functional programming languages, in particular, Standard ML and
Haskell, all functions are implicitly curried. To use currying to maximum ad-
vantage, these languages give it a simple syntax and an efficient implementation.
They define the syntax so that curried functions can be defined without nesting
any keywords and called without parentheses. If the function call max 10 20

is possible, then max 10 is also possible. The implementation makes currying
as cheap as possible. It costs nothing when not used and the construction of
partially-applied functions is avoided whenever possible.

The declarative computation model of this chapter does not have any special
support for currying. Neither does the Mozart system have any syntactic or im-
plementation support for it. Most uses of currying in Mozart are simple ones.
However, intensive use of higher-order programming as is done in functional lan-
guages may justify currying support for them. In Mozart, the partially-applied
functions have to be defined explicitly. For example, the max 10 function can be
defined as:

fun {LowerBound10 Y}
{Max 10 Y}

end

The original function definition does not change, which is efficient in the declara-
tive model. Only the partially-applied functions themselves become more expen-
sive.

3.7 Abstract data types

A data type, or simply type, is a set of values together with a set of operations
on these values. The declarative model comes with a predefined set of types,
called the basic types (see Section 2.3). In addition to these, the user is free to
define new types. We say a type is abstract if it is completely defined by its set
of operations, regardless of the implementation. This is abbreviated as ADT.
This means that it is possible to change the implementation of the type without
changing its use. Let us investigate how the user can define new abstract types.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

198 Declarative Programming Techniques

3.7.1 A declarative stack

To start this section, let us give a simple example of an abstract data type, a stack
〈Stack T〉 whose elements are of type T. Assume the stack has four operations,
with the following types:

〈fun {NewStack}: 〈Stack T〉〉
〈fun {Push 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {Pop 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {IsEmpty 〈Stack T〉}: 〈Bool〉〉

This set of operations and their types defines the interface of the abstract data
type. These operations satisfy certain laws:

• {IsEmpty {NewStack}} =true . A new stack is always empty.

• For any E and S0, S1={Push S0 E} and S0={Pop S1 E} hold. Pushing
an element and then popping gives the same element back.

• {Pop {EmptyStack}} raises an error. No elements can be popped off an
empty stack.

These laws are independent of any particular implementation, or said differently,
all implementations have to satisfy these laws. Here is an implementation of the
stack that satisfies the laws:

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E=X S1 end end
fun {IsEmpty S} S==nil end

Here is another implementation that satisfies the laws:

fun {NewStack} stackEmpty end
fun {Push S E} stack(E S) end
fun {Pop S E} case S of stack(X S1) then E=X S1 end end
fun {IsEmpty S} S==stackEmpty end

A program that uses the stack will work with either implementation. This is
what we mean by saying that stack is an abstract data type.

A functional programming look

Attentive readers will notice an unusual aspect of these two definitions: Pop is
written using a functional syntax, but one of its arguments is an output! We
could have written Pop as follows:

fun {Pop S} case S of X|S1 then X#S1 end end

which returns the two outputs as a pair, but we chose not to. Writing {Pop S E}

is an example of programming with a functional look, which uses functional syntax
for operations that are not necessarily mathematical functions. We consider that

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 199

fun {NewDictionary} nil end
fun {Put Ds Key Value}

case Ds
of nil then [Key#Value]
[] (K#V)|Dr andthen Key==K then

(Key#Value) | Dr
[] (K#V)|Dr andthen K>Key then

(Key#Value)|(K#V)|Dr
[] (K#V)|Dr andthen K<Key then

(K#V)|{Put Dr Key Value}
end

end
fun {CondGet Ds Key Default}

case Ds
of nil then Default
[] (K#V)|Dr andthen Key==K then

V
[] (K#V)|Dr andthen K>Key then

Default
[] (K#V)|Dr andthen K<Key then

{CondGet Dr Key Default}
end

end
fun {Domain Ds}

{Map Ds fun {$ K#_} K end }
end

Figure 3.27: Declarative dictionary (with linear list)

this is justified for programs that have a clear directionality in the flow of data.
It can be interesting to highlight this directionality even if the program is not
functional. In some cases this can make the program more concise and more
readable. The functional look should be used sparingly, though, and only in
cases where it is clear that the operation is not a mathematical function. We
will use the functional look occasionally throughout the book, when we judge it
appropriate.

For the stack, the functional look lets us highlight the symmetry between
Push and Pop. It makes it clear syntactically that both operations take a stack
and return a stack. Then, for example, the output of Pop can be immediately
passed as input to a Push , without needing an intermediate case statement.

3.7.2 A declarative dictionary

Let us give another example, an extremely useful abstract data type called a
dictionary. A dictionary is a finite mapping from a set of simple constants to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

200 Declarative Programming Techniques

a set of language entities. Each constant maps to one language entity. The
constants are called keys because they unlock the path to the entity, in some
intuitive sense. We will use atoms or integers as constants. We would like to
be able to create the mapping dynamically, i.e., by adding new keys during the
execution. This gives the following set of basic functions on the new type 〈Dict〉:

• 〈fun {NewDictionary}: 〈Dict〉〉 returns a new empty dictionary.

• 〈fun {Put 〈Dict〉 〈Feature〉 〈Value〉}: 〈Dict〉〉 takes a dictionary and returns
a new dictionary that adds the mapping 〈Feature〉→〈Value〉. If 〈Feature〉 al-
ready exists, then the new dictionary replaces it with 〈Value〉.

• 〈fun {Get 〈Dict〉 〈Feature〉}: 〈Value〉〉 returns the value corresponding to
〈Feature〉. If there is none, an exception is raised.

• 〈fun {Domain 〈Dict〉}: 〈List 〈Feature〉〉〉 returns a list of the keys in 〈Dict〉.

For this example we define the 〈Feature〉 type as 〈Atom〉 | 〈Int〉.

List-based implementation

Figure 3.27 shows an implementation in which the dictionary is represented as a
list of pairs Key#Value that are sorted on the key. Instead of Get , we define a
slightly more general access operation, CondGet :

• 〈fun {CondGet 〈Dict〉 〈Feature〉 〈Value〉1}: 〈Value〉2〉 returns the value cor-
responding to 〈Feature〉. If 〈Feature〉 is not present, then it returns 〈Value〉1.

CondGet is almost as easy to implement as Get and is very useful, as we will see
in the next example.

This implementation is extremely slow for large dictionaries. Given a uniform
distribution of keys, Put needs on average to look at half the list. CondGet needs
on average to look at half the list, whether the element is present or not. We see
that the number of operations is O(n) for dictionaries with n keys. We say that
the implementation does a linear search.

Tree-based implementation

A more efficient implementation of dictionaries is possible by using an ordered
binary tree, as defined in Section 3.4.6. Put is simply Insert and CondGet

is very similar to Lookup . This gives the definitions of Figure 3.28. In this
implementation, the Put and CondGet operations take O(log n) time and space
for a tree with n nodes, given that the tree is “reasonably balanced”. That is, for
each node, the sizes of the left and right subtrees should not be “too different”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 201

fun {NewDictionary} leaf end
fun {Put Ds Key Value}

% ... similar to Insert
end
fun {CondGet Ds Key Default}

% ... similar to Lookup
end
fun {Domain Ds}

proc {DomainD Ds ?S1 Sn}
case Ds
of leaf then

S1=Sn
[] tree(K _ L R) then S2 S3 in

{DomainD L S1 S2}
S2=K|S3
{DomainD R S3 Sn}

end
end D

in
{DomainD Ds D nil} D

end

Figure 3.28: Declarative dictionary (with ordered binary tree)

State-based implementation

We can do even better than the tree-based implementation by leaving the declara-
tive model behind and using explicit state (see Section 6.5.1). This gives a stateful
dictionary, which is a slightly different type than the declarative dictionary. But
it gives the same functionality. Using state is an advantage because it reduces
the execution time of Put and CondGet operations to amortized constant time.

3.7.3 A word frequency application

To compare our four dictionary implementations, let us use them in a simple
application. Let us write a program to count word frequencies in a string. Later
on, we will see how to use this to count words in a file. Figure 3.29 defines the
function WordFreq , which is given a list of characters Cs and returns a list of
pairs W#N, where Wis a word (a maximal sequence of letters and digits) and N is
the number of times the word occurs in Cs. The function WordFreq is defined in
terms of the following functions:

• {WordChar C} returns true iff C is a letter or digit.

• {WordToAtom PW} converts a reversed list of word characters into an atom
containing those characters. The function StringToAtom is used to create
the atom.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

202 Declarative Programming Techniques

fun {WordChar C}
(&a=<C andthen C=<&z) orelse
(&A=<C andthen C=<&Z) orelse (&0=<C andthen C=<&9)

end

fun {WordToAtom PW}
{StringToAtom {Reverse PW}}

end

fun {IncWord D W}
{Put D W {CondGet D W 0}+1}

end

fun {CharsToWords PW Cs}
case Cs
of nil andthen PW==nil then

nil
[] nil then

[{WordToAtom PW}]
[] C|Cr andthen {WordChar C} then

{CharsToWords {Char.toLower C}|PW Cr}
[] C|Cr andthen PW==nil then

{CharsToWords nil Cr}
[] C|Cr then

{WordToAtom PW}|{CharsToWords nil Cr}
end

end

fun {CountWords D Ws}
case Ws
of W|Wr then {CountWords {IncWord D W} Wr}
[] nil then D
end

end

fun {WordFreq Cs}
{CountWords {NewDictionary} {CharsToWords nil Cs}}

end

Figure 3.29: Word frequencies (with declarative dictionary)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 203

Figure 3.30: Internal structure of binary tree dictionary in WordFreq (in part)

• {IncWord D W} takes a dictionary D and an atom W. Returns a new dic-
tionary in which the Wfield is incremented by 1. Remark how easy this is
to write with CondGet , which takes care of the case when Wis not yet in
the dictionary.

• {CharsToWords nil Cs} takes a list of characters Cs and returns a list
of atoms, where the characters in each atom’s print name form a word in
Cs. The function Char.toLower is used to convert uppercase letters to
lowercase, so that “The” and “the” are considered the same word.

• {CountWords D Ws} takes an empty dictionary and the output of CharsToWords .
It returns a dictionary in which each key maps to the number of times the
word occurs.

Here is a sample execution. The following input:

declare
T="Oh my darling, oh my darling, oh my darling Clementine.

She is lost and gone forever, oh my darling Clementine."
{Browse {WordFreq T}}

displays this word frequency count:

[she#1 is#1 clementine#2 lost#1 my#4 darling#4 gone#1 and#1
oh#4 forever#1]

We have run WordFreq on a more substantial text, namely an early draft of
this book. The text contains 712626 characters, giving a total of 110457 words
of which 5561 are different. We have run WordFreq with three implementa-
tions of dictionaries: using lists (see previous example), using binary trees (see
Section 3.7.2), and using state (the built-in implementation of dictionaries; see
Section 6.8.2). Figure 3.30 shows part of the internal structure of the binary tree

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

204 Declarative Programming Techniques

dictionary, drawn with the algorithm of Section 3.4.7. The code we measured is
in Section 3.8.1. Running it gives the following times (accurate to 10%):16

Dictionary implementation Execution time Time complexity
Using lists 620 seconds O(n)
Using ordered binary trees 8 seconds O(log n)
Using state 2 seconds O(1)

The time is the wall-clock time to do everything, i.e., read the text file, run
WordFreq , and write a file containing the word counts. The difference between
the three times is due completely to the different dictionary implementations.
Comparing the times gives a good example of the practical effect of using different
implementations of an important data type. The complexity shows how the time
to insert or look up one item depends on the size of the dictionary.

3.7.4 Secure abstract data types

In both the stack and dictionary data types, the internal representation of values
is visible to users of the type. If the users are disciplined programmers then this
might not be a problem. But this is not always the case. A user can be tempted
to look at a representation or even to construct new values of the representation.

For example, a user of the stack type can use Length to see how many ele-
ments are on the stack, if the stack is implemented as a list. The temptation to
do this can be very strong if there is no other way to find out what the size of the
stack is. Another temptation is to fiddle with the stack contents. Since any list
is also a legal stack value, the user can build new stack values, e.g., by removing
or adding elements.

In short, any user can add new stack operations anywhere in the program.
This means that the stack’s implementation is potentially spread out over the
whole program instead of being limited to a small part. This is a disastrous state
of affairs, for two reasons:

• The program is much harder to maintain. For example, say we want to
improve the efficiency of a dictionary by replacing the list-based implemen-
tation by a tree-based implementation. We would have to scour the whole
program to find out which parts depend on the list-based implementation.
There is also a problem of error confinement: if the program has bugs in
one part then this can spill over into the abstract data types, making them
buggy as well, which then contaminates other parts of the program.

• The program is susceptible to malicious interference. This is a more subtle
problem that has to do with security. It does not occur with programs writ-
ten by people who trust each other. It occurs rather with open programs.

16Using Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell Latitude CPx notebook
computer with Pentium III processor at 500 MHz.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 205

An open program is one that can interact with other programs that are only
known at run-time. What if the other program is malicious and wants to
disrupt the execution of the open program? Because of the evolution of the
Internet, the proportion of open programs is increasing.

How do we solve these problems? The basic idea is to protect the internal repre-
sentation of the abstract datatype’s values, e.g., the stack values, from unautho-
rized interference. The value to be protected is put inside a protection boundary.
There are two ways to use this boundary:

• Stationary value. The value never leaves the boundary. A well-defined set
of operations can enter the boundary to calculate with the value. The result
of the calculation stays inside the boundary.

• Mobile value. The value can leave and reenter the boundary. When it is
outside, operations can be done on it. Operations with proper authorization
can take the value out of the boundary and calculate with it. The result is
put back inside the boundary.

With either of these solutions, reasoning about the type’s implementation is much
simplified. Instead of looking at the whole program, we need only look at how
the type’s operations are implemented.

The first solution is like computerized banking. Each client has an account
with some amount of money. A client can do a transaction that transfers money
from his or her account to another account. But since clients never actually go
to the bank, the money never actually leaves the bank. The second solution is
like a safe. It stores money and can be opened by clients who have the key. Each
client can take money out of the safe or put money in. Once out, the client can
give the money to another client. But when the money is in the safe, it is safe.

In the next section we build a secure ADT using the second solution. This
way is the easiest to understand for the declarative model. The authorization we
need to enter the protection boundary is a kind of “key”. We add it as a new
concept to the declarative model, called name. Section 3.7.7 then explains that a
key is an example of a very general security idea, called a capability. In Chapter 6,
Section 6.4 completes the story on secure ADTs by showing how to implement
the first solution and by explaining the effect of explicit state on security.

3.7.5 The declarative model with secure types

The declarative model defined so far does not let us construct a protection bound-
ary. To do it, we need to extend the model. We need two extensions, one to
protect values and one to protect unbound variables. Table 3.6 shows the re-
sulting kernel language with its two new operations. We now explain these two
operations.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

206 Declarative Programming Techniques

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view

Table 3.6: The declarative kernel language with secure types

Protecting values

One way to make values secure is by adding a “wrapping” operation with a
“key”. That is, the internal representation is put inside a data structure that is
inaccessible except to those that know a special value, the key. Knowing the key
allows to create new wrappings and to look inside existing wrappings made with
the same key.

We implement this with a new basic type called a name. A name is a constant
like an atom except that it has a much more restricted set of operations. In
particular, names do not have a textual representation: they cannot be printed
or typed in at the keyboard. Unlike for atoms, it is not possible to convert
between names and strings. The only way to know a name is by being passed a
reference to it within a program. The name type comes with just two operations:

Operation Description
{NewName} Return a fresh name
N1==N2 Compare names N1 and N2

A fresh name is one that is guaranteed to be different from all other names in the
system. Alert readers will notice that NewNameis not declarative because calling
it twice returns different results. In fact, the creation of fresh names is a stateful
operation. The guarantee of uniqueness means that NewNamehas some internal
memory. However, if we use NewNamejust for making declarative ADTs secure
then this is not a problem. The resulting secure ADT is still declarative.

To make a data type secure, it suffices to put it inside a function that has an
external reference to the name. For example, take the value S:

S=[a b c]

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 207

This value is an internal state of the stack type we defined before. We can make
it secure as follows:

Key={NewName}
SS=fun {$ K} if K==Key then S end end

This first creates a new name in Key. Then it makes a function that can return
S, but only if the correct argument is given. We say that this “wraps” the value
S inside SS. If one knows Key, then accessing S from SS is easy:

S={SS Key}

We say this “unwraps” the value S from SS. If one does not know Key, unwrapping
is impossible. There is no way to know Key except for being passed it explicitly in
the program. Calling SS with a wrong argument will simply raise an exception.

A wrapper

We can define an abstract data type to do the wrapping and unwrapping. The
type defines two operations, Wrap and Unwrap . Wrap takes any value and returns
a protected value. Unwrap takes any protected value and returns the original
value. The Wrap and Unwrap operations come in pairs. The only way to unwrap
a wrapped value is by using the corresponding unwrap operation. With names
we can define a procedure NewWrapper that returns new Wrap/Unwrap pairs:

proc {NewWrapper ?Wrap ?Unwrap}
Key={NewName}

in
fun {Wrap X}

fun {$ K} if K==Key then X end end
end
fun {Unwrap W}

{W Key}
end

end

For maximum protection, each abstract data type can use its own Wrap/Unwrap

pair. Then they are protected from each other as well as from the main program.
Given the value S as before:

S=[a b c]

we protect it as follows:

SS={Wrap S}

We can get the original value back as follows:

S={Unwrap SS}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

208 Declarative Programming Techniques

[a b c]

[a b c]

[b c]

Pop X=a

Secure stack implementation
S

S1

Wrap with

Unwrap with

[b c]

Protected value

Figure 3.31: Doing S1={Pop S X} with a secure stack

A secure stack

Now we can make the stack secure. The idea is to unwrap incoming values
and wrap outgoing values. To perform a legal operation on a secure type value,
the routine unwraps the secure value, performs the intended operation to get a
new value, and then wraps the new value to guarantee security. This gives the
following implementation:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|{Unwrap S}} end
fun {Pop S E}

case {Unwrap S} of X|S1 then E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end

end

Figure 3.31 illustrates the Pop operation. The box with keyhole represents a
protected value. The key represents the name, which is used internally by Wrap

and Unwrap to lock and unlock a box. Lexical scoping guarantees that wrapping
and unwrapping are only possible inside the stack implementation. Namely, the
identifiers Wrap and Unwrap are only visible inside the local statement. Outside
this scope, they are hidden. Because Unwrap is hidden, there is absolutely no
way to see inside a stack value. Because Wrap is hidden, there is absolutely no
way to “forge” stack values.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 209

Protecting unbound variables

Sometimes it is useful for a data type to output an unbound variable. For exam-
ple, a stream is a list with an unbound tail. We would like anyone to be able to
read the stream but only the data type implementation to be able to extend it.
Using standard unbound variables this does not work, for example:

S=a|b|c|X

The variable X is not secure since anyone who knows S can bind X.
The problem is that anyone who has a reference to an unbound variable can

bind the variable. One solution is to have a restricted version of the variable that
can only be read, not bound. We call this a read-only view of a variable. We
extend the declarative model with one function:

Operation Description
!!X Return a read-only view of X

Any attempt to bind a read-only view will block. Any binding of X will be
transferred to the read-only view. To protect a stream, its tail should be a read-
only view.

In the abstract machine, read-only views sit in a new store called the read-
only store. We modify the bind operation so that before binding a variable to
a determined value, it checks whether the variable is in the read-only store. If
so, the bind suspends. When the variable becomes determined, then the bind
operation can continue.

Creating fresh names

To conclude this section, let us see how to create fresh names in the implemen-
tation of the declarative model. How can we guarantee that a name is globally
unique? This is easy for programs running in one process: names can be im-
plemented as successive integers. But this approach fails miserably for open
programs. For them, globally potentially means among all running programs in
all the world’s computers. There are basically two approaches to create names
that are globally unique:

• The centralized approach. There is a name factory somewhere in the world.
To get a fresh name, you need to send a message to this factory and the reply
contains a fresh name. The name factory does not have to be physically
in one place; it can be spread out over many computers. For example,
the IP protocol supposes a unique IP address for every computer in the
world that is connected to the Internet. IP addresses can change over time,
though, e.g., if network address translation is done or dynamic allocation of
IP addresses is done using the DHCP protocol. We therefore complement
the IP address with a high-resolution timestamp giving the creation time
of NewName. This gives a unique constant that can be used to implement a
local name factory on each computer.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

210 Declarative Programming Techniques

• The decentralized approach. A fresh name is just a vector of random bits.
The random bits are generated by an algorithm that depends on enough
external information so that different computers will not generate the same
vector. If the vector is long enough, then the that names are not unique
will be arbitrarily small. Theoretically, the probability is always nonzero,
but in practice this technique works well.

Now that we have a unique name, how do we make sure that it is unforge-
able? This requires cryptographic techniques that are beyond the scope of this
book [166].

3.7.6 A secure declarative dictionary

Now let us see how to make the declarative dictionary secure. It is quite easy.
We can use the same technique as for the stack, namely by using a wrapper and
an unwrapper. Here is the new definition:

local
Wrap Unwrap
{NewWrapper Wrap Unwrap}
% Previous definitions:
fun {NewDictionary2} ... end
fun {Put2 Ds K Value} ... end
fun {CondGet2 Ds K Default} ... end
fun {Domain2 Ds} ... end

in
fun {NewDictionary}

{Wrap {NewDictionary2}}
end
fun {Put Ds K Value}

{Wrap {Put2 {Unwrap Ds} K Value}}
end
fun {CondGet Ds K Default}

{CondGet2 {Unwrap Ds} K Default}
end
fun {Domain Ds}

{Domain2 {Unwrap Ds}}
end

end

Because Wrap and Unwrap are only known inside the scope of the local , the
wrapped dictionary cannot be unwrapped by anyone outside of this scope. This
technique works for both the list and tree implementations of dictionaries.

3.7.7 Capabilities and security

We say a computation is secure if it has well-defined and controllable proper-
ties, independent of the existence of other (possibly malicious) entities (either

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.7 Abstract data types 211

computations or humans) in the system [4]. We call these entities “adversaries”.
Security allows to protect both from malicious computations and innocent (but
buggy) computations. The property of being secure is global; “cracks” in a system
can occur at any level, from the hardware to software to the human organiza-
tion housing the system. Making a computer system secure involves not only
computer science but also many aspects of human society [5].

A short, precise, and concrete description of how the system will ensure its
security is called its security policy. Designing, implementing, and verifying se-
curity policies is crucial for building secure systems, but is outside the scope of
this book.

In this section, we consider only a small part of the vast discipline of security,
namely the programming language viewpoint. To implement a security policy, a
system uses security mechanisms. Throughout this book, we will discuss security
mechanisms that are part of a programming language, such as lexical scoping
and names. We will ask ourselves what properties a language must possess in
order to build secure programs, that is, programs that can resist attacks by
adversaries that stay within the language.17 We call such a language a secure
language. Having a secure language is an important requirement for building
secure computer programs. Designing and implementing a secure language is an
important topic in programming language research. It involves both semantic
properties and properties of the implementation.

Capabilities

The protection techniques we have introduced to make secure abstract data types
are special cases of a security concept called a capability. Capabilities are at the
heart of modern research on secure languages. For example the secure language
E hardens references to language entities so that they behave as capabilities [123,
183]. The Wrap/Unwrap pairs we introduced previously are called sealer/unsealer
pairs in E. Instead of using external references to protect values, sealer/unsealer
pairs encrypt and decrypt the values. In this view, the name is used as an
encryption and decryption key.

The capability concept was invented in the 1960’s, in the context of operating
system design. Operating systems have always had to protect users from each
other while still allowing them do their work. Since this early work, it has become
clear that the concept belongs in the programming language and is generally use-
ful for building secure programs [124]. Capabilities can be defined in many ways,
but the following definition is reasonable for a programming language. A capa-
bility is an unforgeable language entity that gives its owner the right to perform
a given set of actions. The set of actions is defined inside the capability and
may change over time. By unforgeable we mean that it is not possible for any
implementation, even one that is intimately connected to the hardware architec-

17Staying withing the language can be guaranteed by always running programs within a
virtual machine that accepts only binaries of legal programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

212 Declarative Programming Techniques

ture such as one in assembly language, to create a capability. In the E literature
this property is summarized by the phrase “connectivity begets connectivity”:
the only way to get a new capability is by being passed it explicitly through an
existing capability [125].

All values of data types are capabilities in this sense, since they give their
owners the ability to do all operations of that type, but no more. An owner
of a language entity is any program fragment that references that entity. For
example, a record R gives its owner the ability to do many operations including
field selection R.F and arity {Arity R} . A procedure P gives its owner the
ability to call P. A name gives its owner the ability to compare its value with
other values. An unbound variable gives its owner the ability to bind it and to
read its value. A read-only variable gives its owner the ability to read its value,
but not to bind it.

New capabilities can be defined during a program’s execution as instances of
ADTs. For the models of this book, the simplest way is to use procedure values.
A reference to a procedure value gives its owner the right to call the procedure,
i.e., to do whatever action the procedure was designed to do. Furthermore, a
procedure reference cannot be forged. In a program, the only way to know the
reference is if it is passed explicitly. The procedure can hide all its sensitive infor-
mation in its external references. For this to work, the language must guarantee
that knowing a procedure does not automatically give one the right to examine
the procedure’s external references!

Principle of least privilege

An important design principle for secure systems is the principle of least privilege:
each entity should be given the least authority (or “privilege”) that is necessary
for it to get its job done. This is also called the principle of least authority (POLA)
or the “need to know” principle. Determining exactly what the least authority is
in all cases is an undecidable problem: there cannot exist an algorithm to solve
it in all cases. This is because the authority depends on what the entity does
during its execution. If we would have an algorithm, it would be powerful enough
to solve the Halting Problem, which has been proved not to have a solution.

In practice, we do not need to know the exact least authority. Sufficient
security can be achieved with approximations to it. The programming language
should make it easy to do these approximations. Capabilities, as we defined
them above, have this ability. With them, it is easy to make the approximation
as precise as is needed. For example, an entity can be given the authority to
create a file with a given name and maximum size in a given directory. For files,
coarser granularities are usually enough, such as the authority to create a file in
a given directory. Capabilities can handle both the fine and coarse-grained cases
easily.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.8 Nondeclarative needs 213

Capabilities and explicit state

Declarative capabilities, i.e., capabilities written in a declarative computation
model, lack one crucial property to make them useful in practice. The set of
actions they authorize cannot be changed over time. In particular, none of their
actions can be revoked. To make a capability revocable, the computation model
needs an additional concept, namely explicit state. This is explained in Sec-
tion 6.4.3.

3.8 Nondeclarative needs

Declarative programming, because of its “pure functional” view of programming,
is somewhat detached from the real world, in which entities have memories (state)
and can evolve independently and proactively (concurrency). To connect a declar-
ative program to the real world, some nondeclarative operations are needed. This
section talks about two classes of such operations: file I/O (input/output) and
graphical user interfaces. A third class of operations, standalone compilation, is
given in Section 3.9.

Later on we will see that the nondeclarative operations of this section fit into
more general computation models than the declarative one, in particular stateful
and concurrent models. In a general sense, this section ties in with the discussion
on the limits of declarative programming in Section 4.7. Some of the operations
manipulate state that is external to the program; this is just a special case of the
system decomposition principle explained in Section 6.7.2.

The new operations introduced by this section are collected in modules. A
module is simply a record that groups together related operations. For exam-
ple, the module List groups many list operations, such as List.append and
List.member (which can also be referenced as Append and Member). This sec-
tion introduces the three modules File (for file I/O of text), QTk (for graphical
user interfaces), and Pickle (for file I/O of any values). Some of these modules
(like Pickle) are immediately known by Mozart when it starts up. The other
modules can be loaded by calling Module.link . In what follows, we show how
to do this for File and QTk. More information about modules and how to use
them is given later, in Section 3.9.

3.8.1 Text input/output with a file

A simple way to interface declarative programming with the real world is by
using files. A file is a sequence of values that is stored external to the program
on a permanent storage medium such as a hard disk. A text file is a sequence
of characters. In this section, we show how to read and write text files. This is
enough for using declarative programs in a practical way. The basic pattern of
access is simple:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

214 Declarative Programming Techniques

Input file
read−→ compute function

write−→ output file

We use the module File , which can be found on the book’s Web site. Later on
we will do more sophisticated file operations, but this is enough for now.

Loading the module File

The first step is to load the module File into the system, as explained in Ap-
pendix A.1.2. We assume that you have a compiled version of the module File ,
in the file File.ozf. Then execute the following:

declare [File]={Module.link [´ File.ozf ´]}

This calls Module.link with a list of paths to compiled modules. Here there is
just one. The module is loaded, linked it into the system, initialized, and bound
to File .18 Now we are ready to do file operations.

Reading a file

The operation File.readList reads the whole content of the file into a string:

L={File.readList "foo.txt"}

This example reads the file foo.txt into L. We can also write this as:

L={File.readList ´ foo.txt ´ }

Remember that "foo.txt" is a string (a list of character codes) and ´ foo.txt ´

is an atom (a constant with a print representation). The file name can be rep-
resented in both ways. There is a third way to represent file names: as virtual
strings. A virtual string is a tuple with label ´ #´ that represents a string. We
could therefore just as well have entered the following:

L={File.readList foo# ´ . ´ #txt}

The tuple foo# ´ . ´ #txt , which we can also write as ´ #´ (foo ´ . ´ txt) , repre-
sents the string "foo.txt" . Using virtual strings avoids the need to do explicit
string concatenations. All Mozart built-in operations that expect strings will
work also with virtual strings. All three ways of loading foo.txt have the same
effect. They bind L to a list of the character codes in the file foo.txt.

Files can also be referred to by URL. A URL gives a convenient global address
for files since it is widely supported through the World-Wide Web infrastructure.
It is just as easy to read a file through its URL as through its file name:

L={File.readList ´ http://www.mozart-oz.org/features.html ´ }

That’s all there is to it. URLs can only be used to read files, but not to write
files. This is because URLs are handled by Web servers, which are usually set up
to allow only reading.

18To be precise, the module is loaded lazily: it will only actually be loaded the first time that
we use it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.8 Nondeclarative needs 215

Mozart has other operations that allow to read a file either incrementally or
lazily, instead of all at once. This is important for very large files that do not fit
into the memory space of the Mozart process. To keep things simple for now, we
recommend that you read files all at once. Later on we will see how to read a file
incrementally.

Writing a file

Writing a file is usually done incrementally, by appending one string at a time
to the file. The module File provides three operations: File.writeOpen to
open the file, which must be done first, File.write to append a string to the
file, and File.writeClose to close the file, which must be done last. Here is an
example:

{File.writeOpen ´ foo.txt ´ }
{File.write ´ This comes in the file.\n ´ }
{File.write ´ The result of 43*43 is ´ #43*43# ´ .\n ´ }
{File.write "Strings are ok too.\n"}
{File.writeClose}

After these operations, the file ’foo.txt’ has three lines of text, as follows:

This comes in the file.

The result of 43*43 is 1849.

Strings are ok too.

Example execution

In Section 3.7.3 we defined the function WordFreq that calculates the word fre-
quencies in a string. We can use this function to calculate word frequencies and
store them in a file:

% 1. Read input file
L={File.readList ´ book.raw ´ }
% 2. Compute function
D={WordFreq L}
% 3. Write output file
{File.writeOpen ´ word.freq ´ }
for X in {Domain D} do

{File.write {Get D X}# ´ occurrences of word ´ #X#´ \n ´ }
end
{File.writeClose}

Section 3.7.3 gives some timing figures of this code using different dictionary
implementations.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

216 Declarative Programming Techniques

3.8.2 Text input/output with a graphical user interface

The most direct way to interface programs with a human user is through a graph-
ical user interface. This section shows a simple yet powerful way to define graphi-
cal user interfaces, namely by means of concise, mostly declarative specifications.
This is an excellent example of a descriptive declarative language, as explained
in Section 3.1. The descriptive language is recognized by the QTk module of the
Mozart system. The user interface is specified as a nested record, supplemented
with objects and procedures. (Objects are introduced in Chapter 7. For now,
you can consider them as procedures with internal state, like the examples of
Chapter 1.)

This section shows how to build user interfaces to input and output textual
data to a window. This is enough for many declarative programs. We give a brief
overview of the QTk module, just enough to build these user interfaces. Later
on we will build more sophisticated graphical user interfaces. Chapter 10 gives a
fuller discussion of declarative user interface programming in general and of its
realization in QTk.

Declarative specification of widgets

A window on the screen consists of a set of widgets. A widget is a rectangular
area in the window that has a particular interactive behavior. For example, some
widgets can display text or graphic information, and other widgets can accept
user interaction such as keyboard input and mouse clicks. We specify each widget
declaratively with a record whose label and features define the widget type and
initial state. We specify the window declaratively as a nested record (i.e., a tree)
that defines the logical structure of the widgets in the window. Here are the five
widgets we will use for now:

• The label widget can display a text. The widget is specified by the record:

label(text:VS)

where VS is a virtual string.

• The text widget is used to display and enter large quantities of text. It can
use scrollbars to display more text than can fit on screen. With a vertical
(i.e., top-down) scrollbar, the widget is specified by the record:

text(handle:H tdscrollbar: true)

When the window is created, the variable H will be bound to an object used
to control the widget. We call such an object a handler. You can consider
the object as a one-argument procedure: {H set(VS)} displays a text and
{H get(VS)} reads the text.

• The button widget specifies a button and an action to execute when the
button is pressed. The widget is specified by the record:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.8 Nondeclarative needs 217

Figure 3.32: A simple graphical I/O interface for text

button(text:VS action:P)

where VS is a virtual string and P is a zero-argument procedure. {P} is
called whenever the button is pressed.19 For each window, all its actions
are executed sequentially.

• The td (top-down) and lr (left-right) widgets specify an arrangement of
other widgets in top-down or left-right order:

lr(W1 W2 ... Wn)
td(W1 W2 ... Wn)

where W1, W2, ..., Wnare other widget specifications.

Declarative specification of resize behavior

When a window is resized, the widgets inside should behave properly, i.e., either
changing size or staying the same size, depending on what the interface should do.
We specify each widget’s resize behavior declaratively, by means of an optional
glue feature in the widget’s record. The glue feature indicates whether the
widget’s borders should or should not be “glued” to its enclosing widget. The
glue feature’s argument is an atom consisting of any combination of the four
characters n (north), s (south), w (west), e (east), indicating for each direction
whether the border should be glued or not. Here are some examples:

• No glue. The widget keeps its natural size and is centered in the space
allotted to it, both horizontally and vertically.

• glue:nswe glues to all four borders, stretching to fit both horizontally and
vertically.

• glue:we glues horizontally left and right, stretching to fit. Vertically, the
widget is not stretched but centered in the space allotted to it.

19To be precise, whenever the left mouse button is both clicked and released while the mouse
is over the button. This allows the user to correct any mistaken click on the button.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

218 Declarative Programming Techniques

• glue:w glues to the left edge and does not stretch.

• glue:wns glues vertically top and bottom, stretching to fit vertically, and
glues to the left edge, not stretching horizontally.

Loading the module QTk

The first step is to load the QTk module into the system. Since QTk is part of the
Mozart Standard Library, it suffices to give the right path name:

declare [QTk]={Module.link [´ x-oz://system/wp/QTk.ozf ´]}

Now that QTk is loaded, we can use it to build interfaces according to the speci-
fications of the previous section.

Building the interface

The QTk module has a function QTk.build that takes an interface specification,
which is just a nested record of widgets, and builds a window containing these
widgets. Let us build a simple interface with one button that displays ouch in
the browser whenever the button is clicked:

D=td(button(text:"Press me"
action: proc {$} {Browse ouch} end))

W={QTk.build D}
{W show}

The record D always has to start with td or lr , even if the window has just one
widget. QTk.build returns an object Wthat represents the window. The window
starts out being hidden. It can be displayed or hidden again by calling {W show}

or {W hide} . Here is a bigger example that implements a complete text I/O
interface:

declare
In Out
A1=proc {$} X in {In get(X)} {Out set(X)} end
A2=proc {$} {W close} end
D=td(title:"Simple text I/O interface"

lr(label(text:"Input:")
text(handle:In tdscrollbar: true glue:nswe)
glue:nswe)

lr(label(text:"Output:")
text(handle:Out tdscrollbar: true glue:nswe)
glue:nswe)

lr(button(text:"Do It" action:A1 glue:nswe)
button(text:"Quit" action:A2 glue:nswe)
glue:we))

W={QTk.build D}
{W show}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.8 Nondeclarative needs 219

At first glance, this may seem complicated, but look again: there are six widgets
(two label , two text , two button) arranged with td and lr widgets. The
QTk.build function takes the description D. It builds the window of Figure 3.32
and creates the handler objects In and Out . Compare the record D with Fig-
ure 3.32 to see how they correspond.

There are two action procedures, A1 and A2, one for each button. The action
A1 is attached to the “Do It” button. Clicking on the button calls A1, which
transfers text from the first text widget to the second text widget. This works as
follows. The call {In get(X)} gets the text of the first text widget and binds
it to X. Then {Out set(X)} sets the text in the second text widget to X. The
action A2 is attached to the “Quit” button. It calls {W close} , which closes the
window permanently.

Putting nswe glue almost everywhere allows the window to behavior properly
when resized. The lr widget with the two buttons has we glue only, so that the
buttons do not expand vertically. The label widgets have no glue, so they have
fixed sizes. The td widget at the top level needs no glue since we assume it is
always glued to its window.

3.8.3 Stateless data I/O with files

Input/output of a string is simple, since a string consists of characters that can
be stored directly in a file. What about other values? It would be a great help to
the programmer if it would be possible to save any value to a file and to load it
back later. The System module Pickle provides exactly this ability. It can save
and load any complete value:

{Pickle.save X FN} % Save X in file FN
{Pickle.load FNURL ?X} % Load X from file (or URL) FNURL

All data structures used in declarative programming can be saved and loaded ex-
cept for those containing unbound variables. For example, consider this program
fragment:

declare
fun {Fact N}

if N==0 then 1 else N*{Fact N-1} end
end
F100={Fact 100}
F100Gen1= fun {$} F100 end
F100Gen2= fun {$} {Fact 100} end
FNGen1=fun {$ N} F={Fact N} in fun {$} F end end
FNGen2=fun {$ N} fun {$} {Fact N} end end

F100 is a (rather big) integer; the four other entities are functions. The following
operation saves the four functions to a file:

{Pickle.save [F100Gen1 F100Gen2 FNGen1 FNGen2] ´ factfile ´ }

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

220 Declarative Programming Techniques

To be precise, this saves a value consisting of list of four elements in the file
factfile. In this example, all elements are functions. The functions have been
chosen to illustrate various degrees of delayed calculation. The first two return
the result of calculating 100!. The first, F100Gen1, knows the integer and returns
it directly, and the second, F100Gen2, calculates the value each time it is called.
The third and fourth, when called with an integer argument n, return a function
that when itself called, returns n!. The third, FNGen1, calculates n! when called,
so the returned function just returns a known integer. The fourth, FNGen2, does
no calculation but lets the returned function calculate n! when called.

To use the contents of factfile, it must first be loaded:

declare
[F1 F2 F3 F4]={Pickle.load ´ factfile ´ }

in
{Browse {F1}}
{Browse {F2}}
{Browse {{F3 100}}}
{Browse {{F4 100}}}

This displays 100! four times. Of course, the following is also possible:

declare F1 F2 F3 F4 in
{Browse {F1}}
{Browse {F2}}
{Browse {{F3 100}}}
{Browse {{F4 100}}}
[F1 F2 F3 F4]={Pickle.load ´ factfile ´ }

After the file is loaded, this displays exactly the same as before. This illustrates
yet again how dataflow makes it possible to use a variable before binding it.

We emphasize that the loaded value is exactly the same as the one that was
saved. There is no difference at all between them. This is true for all possible
values: numbers, records, procedures, names, atoms, lists, and so on, including
other values that we will see later on in the book. Executing this on one process:

... % First statement (defines X)
{Pickle.save X ´ myfile ´ }

and then this on a second process:

X={Pickle.load ´ myfile ´ }
... % Second statement (uses X)

is rigorously identical to executing the following on a third process:

... % First statement (defines X)
{Pickle.save X ´ myfile ´ }
_={Pickle.load ´ myfile ´ }
... % Second statement (uses X)

If the calls to Pickle are removed, like this:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 221

... % First statement (defines X)

... % Second statement (uses X)

then there are two minor differences:

• The first case creates and reads the file ´ myfile ´ . The second case does
not.

• The first case raises an exception if there was a problem in creating or
reading the file.

3.9 Program design in the small

Now that we have seen many programming techniques, the next logical step is
to use them to solve problems. This step is called program design. It starts
from a problem we want to solve (usually explained in words, sometimes not very
precisely) gives the high-level structure of the program, i.e., what programming
techniques we need to use and how they are connected together, and ends up
with a complete program that solves the problem.

For program design, there is an important distinction between “programming
in the small” and “programming in the large”. We will call the resulting pro-
grams “small programs” and “large programs”. The distinction has nothing to
do with the program’s size, but rather with how many people were involved in its
development. Small programs are written by one person over a short period of
time. Large programs are written by more than one person or over a long period
of time. The same person now and one year from now should be considered as
two people, since the person will forget many details over a year. This section
gives an introduction to programming in the small; we leave programming in the
large to Section 6.7.

3.9.1 Design methodology

Assume we have a problem that can be solved by writing a small program. Let us
see how to design the program. We recommend the following design methodology,
which is a mixture of creativity and rigorous thinking:

• Informal specification. We start by writing down as precisely as we can
what the program should do: what it’s inputs and outputs are and how
the outputs relate to the inputs. This description is called an informal
specification. Even though it is precise, we call it “informal” because it is
written in English. “Formal” specifications are written in a mathematical
notation.

• Examples. To make the specification perfectly clear, it is always a good
idea to imagine examples of what the program does in particular cases. The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

222 Declarative Programming Techniques

examples should “stress” the program: use it in boundary conditions and
in the most unexpected ways we can imagine.

• Exploration. To find out what programming techniques we will need, a
good way is to use the interactive interface to experiment with program
fragments. The idea is to write small operations that we think might be
needed for the program. We use the operations that the system already
provides as a basis. This step gives us a clearer view of what the program’s
structure should be.

• Structure and coding. Now we can lay out the program’s structure. We
make a rough outline of the operations needed to calculate the outputs from
the inputs and how they fit together. We then fill in the blanks by writing
the actual program code. The operations should be simple: each operation
should do just one thing. To improve the structure we can group related
operations in modules.

• Testing and reasoning. Finally, we have to verify that our program
does the right thing. We try it on a series of test cases, including the
examples we came up with before. We correct errors until the program
works well. We can also reason about the program and its complexity, using
the formal semantics for parts that are not clear. Testing and reasoning are
complementary: it is important to do both to get a high-quality program.

These steps are not meant to be obligatory, but rather to serve as inspiration.
Feel free to adapt them to your own circumstances. For example, when imagining
examples it can be clear that the specification has to be changed. However, take
care never to forget the most important step, which is testing.

3.9.2 Example of program design

To illustrate these steps, let us retrace the development of the word frequency
application of Section 3.7.3. Here is a first attempt at an informal specification:

Given a file name, the application opens a window and displays a list
of pairs, where each pair consists of a word and an integer giving the
number of times the word occurs in the file.

Is this specification precise enough? What about a file containing a word that is
not valid English or a file containing non-Ascii characters? Our specification is
not precise enough: it does not define what a “word” is. To make it more precise
we have to know the purpose of the application. Say that we just want to get a
general idea of word frequencies, independent of any particular language. Then
we can define a word simply as:

A “word” is a maximal contiguous sequence of letters and digits.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 223

This means that words are separated by at least one character that is not a letter
or a digit. This accepts a word that is not valid English but does not accept words
containing non-Ascii characters. Is this good enough? What about words with a
hyphen (such as “true-blue”) or idiomatic expressions that act as units (such as
“trial and error”)? In the interest of simplicity, let us reject these for now. But
we may have to change the specification later to accept them, depending on how
we use the word frequency application.

Now we have arrived at our specification. Note the essential role played by
examples. They are important signposts on the way to a precise specification.
The examples were expressly designed to test the limits of the specification.

The next step is to design the program’s structure. The appropriate struc-
ture seems to be a pipeline: first read the file into a list of characters and then
convert the list of characters into a list of words, where a word is represented as
a character string. To count the words we need a data structure that is indexed
by words. The declarative dictionary of Section 3.7.2 would be ideal, but it is
indexed by atoms. Luckily, there is an operation to convert character strings to
atoms: StringToAtom (see Appendix B). With this we can write our program.
Figure 3.29 gives the heart: a function WordFreq that takes a list of characters
and returns a dictionary. We can test this code on various examples, and espe-
cially on the examples we used to write the specification. To this we will add the
code to read the file and display the output in a window; for this we use the file
operations and graphical user interface operations of Section 3.8. It is important
to package the application cleanly, as a software component. This is explained in
the next two sections.

3.9.3 Software components

What is a good way to organize a program? One could write the program as
one big monolithic whole, but this can be confusing. A better way is to partition
the program into logical units, each of which implements a set of operations that
are related in some way. Each logical unit has two parts, an interface and an
implementation. Only the interface is visible from outside the logical unit. A
logical unit may use others as part of its implementation.

A program is then simply a directed graph of logical units, where an edge
between two logical units means that the first needs the second for its imple-
mentation. Popular usage calls these logical units “modules” or “components”,
without defining precisely what these words mean. This section introduces the
basic concepts, defines them precisely, and shows how they can be used to help
design small declarative programs. Section 6.7 explains how these ideas can be
used to help design large programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

224 Declarative Programming Techniques

〈statement〉 ::= functor 〈variable〉
[import { 〈variable〉 [at 〈atom〉]

| 〈variable〉 ´ (´ { (〈atom〉 | 〈int〉) [´ : ´ 〈variable〉] }+ ´) ´

}+]
[export { [(〈atom〉 | 〈int〉) ´ : ´] 〈variable〉 }+]
define { 〈declarationPart〉 }+ [in 〈statement〉] end

| ...

Table 3.7: Functor syntax

Modules and functors

We call module a part of a program that groups together related operations into
an entity that has an interface and an implementation. In this book, we will
implement modules in a simple way:

• The module’s interface is a record that groups together related language en-
tities (usually procedures, but anything is allowed including classes, objects,
etc.).

• The module’s implementation is a set of language entities that are accessible
by the interface operations but hidden from the outside. The implementa-
tion is hidden using lexical scoping.

We will consider module specifications as entities separate from modules. A
module specification is a kind of template that creates a module each time it is
instantiated. A module specification is sometimes called a software component.
Unfortunately, the term “software component” is widely used with many different
meanings [187]. To avoid any confusion in this book, we will call our module
specifications functors. A functor is a function whose arguments are the modules
it needs and whose result is a new module. (To be precise, the functor takes
module interfaces as arguments, creates a new module, and returns that module’s
interface!) Because of the functor’s role in structuring programs, we provide it
as a linguistic abstraction. A functor has three parts: an import part, which
specifies what other modules it needs, an export part, which specifies the module
interface, and a define parts, which gives the module implementation including
its initialization code. The syntax for functor declarations allows to use them as
either statements or expressions, like the syntax for procedures. Table 3.7 gives
the syntax of functor declarations as statements.

In the terminology of software engineering, a software component is a unit of
independent deployment, a unit of third-party development, and has no persistent
state (following the definition given in [187]). Functors satisfy this definition and
are therefore a kind of software component. With this terminology, a module is a
component instance; it is the result of installing a functor in a particular module

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 225

environment. The module environment consists of a set of modules, each of which
may have an execution state.

Functors in the Mozart system are compilation units. That is, the system has
support for handling functors in files, both as source code (i.e., human-readable
text) and object code (i.e., compiled form). Source code can be compiled, or
translated, into object code. This makes it easy to use functors to exchange
software between developers. For example, the Mozart system has a library, called
MOGUL (for Mozart Global User Library), in which third-party developers can
put any kind of information. Usually, they put in functors and applications.

An application is standalone if it can be run without the interactive interface.
It consists of a main functor, which is evaluated when the program starts. It
imports the modules it needs, which causes other functors to be evaluated. The
main functor is used for its effect of starting the application and not for its
resulting module, which is silently ignored. Evaluating, or “installing”, a functor
creates a new module in three steps. First, the modules it needs are identified.
Second, the initialization code is executed. Third, the module is loaded the first
time it is needed during execution. This technique is called dynamic linking,
as opposed to static linking, in which the modules are loaded when execution
starts. At any time, the set of currently installed modules is called the module
environment.

Implementing modules and functors

Let us see how to construct software components in steps. First we give an
example module. Then we show how to convert this module into a software
component. Finally, we turn it into a linguistic abstraction.

Example module In general a module is a record, and its interface is accessed
through the record’s fields. We construct a module called MyList that provides
interface procedures for appending, sorting, and testing membership of lists. This
can be written as follows:

declare MyList in
local

proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

in
MyList= ´ export ´ (append: Append

sort: Sort
member: Member
...)

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

226 Declarative Programming Techniques

The procedure MergeSort is inaccessible outside of the local statement. The
other procedures cannot be accessed directly, but only through the fields of
the MyList module, which is a record. For example, Append is accessible as
MyList.append . Most of the library modules of Mozart, i.e., the Base and
System modules, follow this structure.

A software component Using procedural abstraction, we can turn this mod-
ule into a software component. The software component is a function that returns
a module:

fun {MyListFunctor}
proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

in
´ export ´ (append: Append

sort: Sort
member: Member
...)

end

Each time MyListFunctor is called, it creates and returns another MyList mod-
ule. In general, MyListFunctor could have arguments, which are the other
modules needed for MyList .

From this definition, it is clear that functors are just values in the language.
They share the following properties with procedure values:

• A functor definition can be evaluated at run time, giving a functor.

• A functor can have external references to other language entities. For ex-
ample, it is easy to make a functor that contains data calculated at run
time. This is useful, for example, to include large tables or image data in
source form.

• A functor can be stored in a file by using the Pickle module. This file can
be read by any Mozart process. This makes it easy to create libraries of
third-party functors, such as MOGUL.

• A functor is lightweight; it can be used to encapsulate a single entity such
as one object or class, in order to make explicit the modules needed by the
entity.

Because functors are values, it is possible to manipulate them in sophisticated
ways within the language. For example, a software component can be built
that implements component-based programming, in which components determine
at run time which components they need and when to link them. Even more
flexibility is possible when dynamic typing is used. A component can link an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 227

arbitrary component at run time, by installing any functors and calling them
according to their needs.

Linguistic support This software component abstraction is a reasonable one
to organize large programs. To make it easier to use, to ensure that it is not
used incorrectly, and to make clear the intention of the programmer (avoiding
confusion with other higher-order programming techniques), we turn it into a
linguistic abstraction. The function MyListFunctor corresponds to the following
functor syntax:

functor
export

append:Append
sort:Sort
member:Member
...

define
proc {Append ... } ... end
proc {MergeSort ...} ... end
proc {Sort ... } ... {MergeSort ...} ... end
proc {Member ...} ... end

end

Note that the statement between define and end does implicit variable decla-
ration, exactly like the statement between local and in .

Assume that this functor has been compiled and stored in the file MyList.ozf

(we will see below how to compile a functor). Then the module can be created
as follows in the interactive interface:

declare [MyList]={Module.link [´ MyList.ozf ´]}

The function Module.link is defined in the System module Module . It takes
a list of functors, loads them from the file system, links them together (i.e.,
evaluates them together, so that each module sees its imported modules), and
returns a corresponding list of modules. The Module module allows doing many
other operations on functors and modules.

Importing modules Software components can depend on other software com-
ponents. To be precise, instantiating a software component creates a module.
The instantiation might need other modules. In the new syntax, we declare this
with import declarations. To import a library module it is enough to give the
name of its functor. On the other hand, to import a user-defined module requires
stating the file name or URL of the file where the functor is stored.20 This is
reasonable, since the system knows where the library modules are stored, but

20Other naming schemes are possible, in which functors have some logical name in a compo-
nent management system.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

228 Declarative Programming Techniques

Figure 3.33: Screen shot of the word frequency application

does not know where you have stored your own functors. Consider the following
functor:

functor
import

Browser
FO at ´ file:///home/mydir/FileOps.ozf ´

define
{Browser.browse {FO.countLines ´ /etc/passwd ´ }}

end

The import declaration imports the System module Browser and the user-
defined module FOspecified by the functor stored in the file /home/mydir/FileOps.ozf.
When this functor is linked, the statement between define ... end is execut-
ed. This calls the function FO.countLines , which counts the number of lines in
a given file, and then calls the procedure Browser.browse to display the result.
This particular functor is defined for its effect, not for the module that it creates.
It therefore does not export any interface.

3.9.4 Example of a standalone program

Now let us package the word frequency application using components and make
it into a standalone program. Figure 3.33 gives a screenshot of the program’s
execution. The program consists of two components, Dict and WordApp, which
are functors whose source code is in the files Dict.oz and WordApp.oz. The
components implement the declarative dictionary and the word frequency appli-
cation. In addition to importing Dict , the WordApp component also imports the
modules File and QTk. It uses these modules to read from the file and create an
output window.

The complete source code of the Dict and WordApp components is given in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 229

functor
export new:NewDict put:Put condGet:CondGet entries:Entries
define

fun {NewDict} leaf end

fun {Put Ds Key Value}
case Ds
of leaf then tree(Key Value leaf leaf)
[] tree(K _ L R) andthen Key==K then

tree(K Value L R)
[] tree(K V L R) andthen K>Key then

tree(K V {Put L Key Value} R)
[] tree(K V L R) andthen K<Key then

tree(K V L {Put R Key Value})
end

end

fun {CondGet Ds Key Default}
case Ds
of leaf then Default
[] tree(K V _ _) andthen Key==K then V
[] tree(K _ L _) andthen K>Key then

{CondGet L Key Default}
[] tree(K _ _ R) andthen K<Key then

{CondGet R Key Default}
end

end

fun {Entries Ds}
proc {EntriesD Ds S1 ?Sn}

case Ds
of leaf then

S1=Sn
[] tree(K V L R) then S2 S3 in

{EntriesD L S1 S2}
S2=K#V|S3
{EntriesD R S3 Sn}

end
end

in {EntriesD Ds $ nil} end
end

Figure 3.34: Standalone dictionary library (file Dict.oz)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

230 Declarative Programming Techniques

functor
import

Dict File
QTk at ´ x-oz://system/wp/QTk.ozf ´

define
fun {WordChar C}

(&a=<C andthen C=<&z) orelse
(&A=<C andthen C=<&Z) orelse (&0=<C andthen C=<&9) end

fun {WordToAtom PW} {StringToAtom {Reverse PW}} end

fun {IncWord D W} {Dict.put D W {Dict.condGet D W 0}+1} end

fun {CharsToWords PW Cs}
case Cs
of nil andthen PW==nil then

nil
[] nil then

[{WordToAtom PW}]
[] C|Cr andthen {WordChar C} then

{CharsToWords {Char.toLower C}|PW Cr}
[] _|Cr andthen PW==nil then

{CharsToWords nil Cr}
[] _|Cr then

{WordToAtom PW}|{CharsToWords nil Cr}
end

end

fun {CountWords D Ws}
case Ws of W|Wr then {CountWords {IncWord D W} Wr}
[] nil then D end

end

fun {WordFreq Cs}
{CountWords {Dict.new} {CharsToWords nil Cs}} end

L={File.readList stdin}
E={Dict.entries {WordFreq L}}
S={Sort E fun {$ A B} A.2>B.2 end }

H Des=td(title: ´ Word frequency count ´
text(handle:H tdscrollbar: true glue:nswe))

W={QTk.build Des} {W show}
for X#Y in S do {H insert(´ end ´ X#´ : ´ #Y#´ times\n ´)} end

end

Figure 3.35: Standalone word frequency application (file WordApp.oz)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.9 Program design in the small 231

(Supplements)

A B A imports B

File

WordApp

Open Finalize

(Figure)

(System)

(System)

(System)

QTkDict

(Figure)

Figure 3.36: Component dependencies for the word frequency application

Figures 3.34 and 3.35. The principal difference between these components and the
code of Sections 3.7.3 and 3.7.2 is that the components are enclosed in functor

... end with the right import and export clauses. Figure 3.36 shows the
dependencies. The Open and Finalize modules are Mozart System modules.
The File component can be found on the book’s Web site. The QTk component
is in the Mozart system’s standard library. The Dict component differs slightly
from the declarative dictionary of Section 3.7.2: it replaces Domain by Entries ,
which gives a list of pairs Key#Value instead of just a list of keys.

This application can easily be extended in many ways. For example, the
window display code in WordApp.oz could be replaced by the following:

H1 H2 Des=td(title:"Word frequency count"
text(handle:H1 tdscrollbar: true glue:nswe)
text(handle:H2 tdscrollbar: true glue:nswe))

W={QTk.build Des} {W show}

E={Dict.entries {WordFreq L}}
SE1={Sort E fun {$ A B} A.1<B.1 end }
SE2={Sort E fun {$ A B} A.2>B.2 end }
for X#Y in SE1 do

{H1 insert(´ end ´ X#´ : ´ #Y#´ times\n ´)}
end
for X#Y in SE2 do

{H2 insert(´ end ´ X#´ : ´ #Y#´ times\n ´)}
end

This displays two frames, one in alphabetic order and the other in order of de-
creasing word frequency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

232 Declarative Programming Techniques

Standalone compilation and execution

Let us now compile the word frequency application as a standalone program. A
functor can be used in two ways: as a compiled functor (which is importable by
other functors) or as a standalone program (which can be directly executed from
the command line). Any functor can be compiled to make a standalone program.
In that case, no export part is necessary and the initialization part defines the
program’s effect. Given the file Dict.oz defining a functor, the compiled functor
Dict.ozf is created with the command ozc from a shell interface:

ozc -c Dict.oz

Given the file WordApp.oz defining a functor to be used as a standalone program,
the standalone executable WordApp is created with the following command:

ozc -x WordApp.oz

This can be executed as follows:

WordApp < book.raw

where book.raw is a file containing a text. The text is passed to the program’s
standard input, which is seen inside the program as a file with name stdin. This
will dynamically link Dict.ozf when dictionaries are first accessed. It is also
possible to statically link Dict.ozf in the compiled code of the WordApp appli-
cation, so that no dynamic linking is needed. These possibilities are documented
in the Mozart system.

Library modules

The word frequency application uses the QTk module, which is part of the Mozart
system. Any programming language, to be practically useful, must be accompa-
nied by a large set of useful abstractions. These are organized into libraries. A
library is a coherent collection of one or more related abstractions that are useful
in a particular problem domain. Depending on the language and the library,
the library can be considered as part of the language or as being outside of the
language. The dividing line can be quite vague: in almost all cases, many of a
language’s basic operations are in fact implemented in libraries. For example,
higher functions on real numbers (sine, cosine, logarithm, etc.) are usually im-
plemented in libraries. Since the number of libraries can be very great, it is a
good idea to organize libraries as modules.

The importance of libraries has become increasingly important. It is fueled
on the one side by the increasing speed and memory capacity of computers and
on the other side by the increasing demands of users. A new language that does
not come with a significant set of libraries, e.g., for network operations, graphic
operations, database operations, etc., is either a toy, unsuited for real application
development, or only useful in a narrow problem domain. Implementing libraries

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.10 Exercises 233

is a major effort. To alleviate this problem, new languages almost always come
with an external language interface. This lets them communicate with programs
written in other languages.

Library modules in Mozart The library modules available in the Mozart sys-
tem consist of Base modules and System modules. The Base modules are available
immediately upon startup. They are part of the language definition, providing
basic operations on the language data types. The number, list, and record op-
erations given in this chapter are in the Base modules. The System modules
are not available immediately upon startup but can be imported in functors.
They provide additional functionality such as file I/O, graphical user interfaces,
distributed programming, logic and constraint programming, operating system
access, and so forth.

The Mozart interactive interface can give a full list of the library modules in
Mozart. In the interactive Oz menu, open the Compiler Panel and click on the
Environment tab. This shows all the defined variables in the global environment
including the modules.

3.10 Exercises

1. Absolute value of real numbers. We would like to define a function Abs

that calculates the absolute value of a real number. The following definition
does not work:

fun {Abs X} if X<0 then ˜X else X end end

Why not? How would you correct it? Hint: the problem is trivial.

2. Cube roots. This chapter uses Newton’s method to calculate square roots.
The method can be extended to calculate roots of any degree. For example,
the following method calculates cube roots. Given a guess g for the cube
root of x, an improved guess is given by (x/g2 + 2g)/3. Write a declarative
program to calculate cube roots using Newton’s method.

3. The half-interval method.21 The half-interval method is a simple but
powerful technique for finding roots of the equation f(x) = 0, where f is a
continuous real function. The idea is that, if we are given points a and b
such that f(a) < 0 < f(b), then f must have at least one root between a
and b. To locate a root, let x = (a + b)/2 and compute f(x). If f(x) > 0
then f must have a root between a and x. If f(x) < 0 then f must have a
root between x and b. Repeating this process will define smaller and smaller
intervals that converge on a root. Write a declarative program to solve this
problem using the techniques of iterative computation.

21This example is taken from Abelson & Sussman [1].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

234 Declarative Programming Techniques

4. Iterative factorial. This chapter gives a definition of factorial whose
maximum stack depth is proportional to the input argument. Give another
definition of factorial which results in an iterative computation. Use the
technique of state transformations from an initial state, as shown in the
IterLength example.

5. An iterative SumList . Rewrite the function SumList of Section 3.4.2 to
be iterative using the techniques developed for Length .

6. State invariants. Write down a state invariant for the IterReverse

function.

7. Checking if something is a list. Section 3.4.3 defines a function LengthL

that calculates the number of elements in a nested list. To see whether X is
a list or not, LengthL uses the function Leaf defined in this way:

fun {Leaf X} case X of _|_ then false else true end end

What happens if we replace this by the following definition:

fun {Leaf X} X\=(_|_) end

What goes wrong if we use this version of Leaf ?

8. Another append function. Section 3.4.2 defines the Append function
by doing recursion on the first argument. What happens if we try to do
recursion on the second argument? Here is a possible solution:

fun {Append Ls Ms}
case Ms
of nil then Ls
[] X|Mr then {Append {Append Ls [X]} Mr}
end

end

Is this program correct? Does it terminate? Why or why not?

9. An iterative append. This exercises explores the expressive power of
dataflow variables. In the declarative model, the following definition of
append is iterative:

fun {Append Xs Ys}
case Xs
of nil then Ys
[] X|Xr then X|{Append Xr Ys}
end

end

We can see this by looking at the expansion:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

3.10 Exercises 235

proc {Append Xs Ys ?Zs}
case Xs
of nil then Zs=Ys
[] X|Xr then Zr in

Zs=X|Zr
{Append Xr Ys Zr}

end
end

This can do a last call optimization because the unbound variable Zr can
be put in the list Zs and bound later. Now let us restrict the computation
model to calculate with values only. How can we write an iterative append?
One approach is to define two functions: (1) an iterative list reversal and
(2) an iterative function that appends the reverse of a list to another. Write
an iterative append using this approach.

10. Iterative computations and dataflow variables. The previous exercise
shows that using dataflow variables sometimes makes it simpler to write
iterative list operations. This leads to the following question. For any
iterative operation defined with dataflow variables, is it possible to give
another iterative definition of the same operation that does not use dataflow
variables?

11. Limitations of difference lists. What goes wrong when trying to append
the same difference list more than once?

12. Complexity of list flattening. Calculate the number of operations need-
ed by the two versions of the Flatten function given in Section 3.4.4. With
n elements and maximal nesting depth k, what is the worst-case complexity
of each version?

13. Matrix operations. Assume that we represent a matrix as a list of lists
of integers, where each internal list gives one row of the matrix. Define
functions to do standard matrix operations such as matrix transposition
and matrix multiplication.

14. FIFO queues. Consider the FIFO queue defined in Section 3.4.4. Answer
the following two questions:

(a) What happens if you delete an element from an empty queue?

(b) Why is it wrong to define IsEmpty as follows?

fun {IsEmpty q(N S E)} S==E end

15. Quicksort. The following is a possible algorithm for sorting lists. Its in-
ventor, C.A.R. Hoare, called it quicksort, because it was the fastest known
general-purpose sorting algorithm at the time it was invented. It uses a di-
vide and conquer strategy to give an average time complexity of O(n log n).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

236 Declarative Programming Techniques

Here is an informal description of the algorithm for the declarative model.
Given an input list L. Then do the following operations:

(a) Pick L’s first element, X, to use as a pivot.

(b) Partition L into two lists, L1 and L2 , such that all elements in L1 are
less than X and all elements in L2 are greater or equal than X.

(c) Use quicksort to sort L1 giving S1 and to sort L2 giving S2.

(d) Append the lists S1 and S2 to get the answer.

Write this program with difference lists to avoid the linear cost of append.

16. (advanced exercise) Tail-recursive convolution.22 For this exercise, write
a function that takes two lists [x1 x2 · · · xn] and [y1 y2 · · · yn] and returns
their symbolic convolution [x1#yn x2#yn−1 · · · xn#y1]. The function should
be tail recursive and do no more than n recursive calls. Hint: the function
can calculate the reverse of the second list and pass it as an argument to
itself. Because unification is order-independent, this works perfectly well.

17. (advanced exercise) Currying. The purpose of this exercise is to define a
linguistic abstraction to add currying to Oz. First define a scheme for trans-
lating function definitions and calls. Then use the gump parser-generator
tool to add the linguistic abstraction to Mozart.

22This exercise is due to Olivier Danvy.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 4

Declarative Concurrency

“Twenty years ago, parallel skiing was thought to be a skill attain-
able only after many years of training and practice. Today, it is
routinely achieved during the course of a single skiing season. [...]
All the goals of the parents are achieved by the children: [...] But
the movements they make in order to produce these results are quite
different.”
– Mindstorms: Children, Computers, and Powerful Ideas [141], Sey-
mour Papert (1980)

The declarative model of Chapter 2 lets us write many programs and use
powerful reasoning techniques on them. But, as Section 4.7 explains, there exist
useful programs that cannot be written easily or efficiently in it. For example,
some programs are best written as a set of activities that execute independently.
Such programs are called concurrent. Concurrency is essential for programs that
interact with their environment, e.g., for agents, GUI programming, OS interac-
tion, and so forth. Concurrency also lets a program be organized into parts that
execute independently and interact only when needed, i.e., client/server and pro-
ducer/consumer programs. This is an important software engineering property.

Concurrency can be simple

This chapter extends the declarative model of Chapter 2 with concurrency while
still being declarative. That is, all the programming and reasoning techniques for
declarative programming still apply. This is a remarkable property that deserves to
be more widely known. We will explore it throughout this chapter. The intuition
underlying it is quite simple. It is based on the fact that a dataflow variable can
be bound to only one value. This gives the following two consequences:

• What stays the same: The result of a program is the same whether or not it
is concurrent. Putting any part of the program in a thread does not change
the result.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

238 Declarative Concurrency

• What is new: The result of a program can be calculated incrementally. If
the input to a concurrent program is given incrementally, then the program
will calculate its output incrementally as well.

Let us give an example to fix this intuition. Consider the following sequential pro-
gram that calculates a list of successive squares by generating a list of successive
integers and then mapping each to its square:

fun {Gen L H}
{Delay 100}
if L>H then nil else L|{Gen L+1 H} end

end

Xs={Gen 1 10}
Ys={Map Xs fun {$ X} X*X end }
{Browse Ys}

(The {Delay 100} call waits for 100 milliseconds before continuing.) We can
make this concurrent by doing the generation and mapping in their own threads:

thread Xs={Gen 1 10} end
thread Ys={Map Xs fun {$ X} X*X end } end
{Browse Ys}

This uses the thread 〈s〉 end statement, which executes 〈s〉 concurrently. What
is the difference between the concurrent and the sequential versions? The result of
the calculation is the same in both cases, namely [1 4 9 16 ... 81 100] . In
the sequential version, Gen calculates the whole list before Map starts. The final
result is displayed all at once when the calculation is complete, after one second.
In the concurrent version, Gen and Map both execute simultaneously. Whenever
Gen adds an element to its list, Map will immediately calculate its square. The
result is displayed incrementally, as the elements are generated, one element each
tenth of a second.

We will see that the deep reason why this form of concurrency is so simple is
that programs have no observable nondeterminism. A program in the declarative
concurrent model always has this property, if the program does not try to bind the
same variable to incompatible values. This is explained in Section 4.1. Another
way to say it is that there are no race conditions in a declarative concurrent
program. A race condition is just an observable nondeterministic behavior.

Structure of the chapter

The chapter can be divided into six parts:

• Programming with threads. This part explains the first form of declar-
ative concurrency, namely data-driven concurrency, also known as supply-
driven concurrency. There are four sections. Section 4.1 defines the data-
driven concurrent model, which extends the declarative model with threads.
This section also explains what declarative concurrency means. Section 4.2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 239

gives the basics of programming with threads. Section 4.3 explains the
most popular technique, stream communication. Section 4.4 gives some
other techniques, namely order-determining concurrency, coroutines, and
concurrent composition.

• Lazy execution. This part explains the second form of declarative con-
currency, namely demand-driven concurrency, also known as lazy execution.
Section 4.5 introduces the lazy concurrent model and gives some of the most
important programming techniques, including lazy streams and list compre-
hensions.

• Soft real-time programming. Section 4.6 explains how to program with
time in the concurrent model.

• Limitations and extensions of declarative programming. How far
can declarative programming go? Section 4.7 explores the limitations of
declarative programming and how to overcome them. This section gives
the primary motivations for explicit state, which is the topic of the next
three chapters.

• The Haskell language. Section 4.8 gives an introduction to Haskell, a
purely functional programming language based on lazy evaluation.

• Advanced topics and history. Section 4.9 shows how to extend the
declarative concurrent model with exceptions. It also goes deeper into var-
ious topics including the different kinds of nondeterminism, lazy execution,
dataflow variables, and synchronization (both explicit and implicit). Final-
ly, Section 4.10 concludes by giving some historical notes on the roots of
declarative concurrency.

Concurrency is also a key part of three other chapters. Chapter 5 extends the
eager model of the present chapter with a simple kind of communication chan-
nel. Chapter 8 explains how to use concurrency together with state, e.g., for
concurrent object-oriented programming. Chapter 11 shows how to do distribut-
ed programming, i.e., programming a set of computers that are connected by a
network. All four chapters taken together give a comprehensive introduction to
practical concurrent programming.

4.1 The data-driven concurrent model

In Chapter 2 we presented the declarative computation model. This model is
sequential, i.e., there is just one statement that executes over a single-assignment
store. Let us extend the model in two steps, adding just one concept in each step:

• The first step is the most important. We add threads and the single in-
struction thread 〈s〉 end . A thread is simply an executing statement, i.e.,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

240 Declarative Concurrency

...ST1

Single-assignment store

Multiple semantic stacks
ST2 STn

(‘‘threads’’)

W=atom

Y=42

XZ=person(age: Y)

U

Figure 4.1: The declarative concurrent model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation

Table 4.1: The data-driven concurrent kernel language

a semantic stack. This is all we need to start programming with declara-
tive concurrency. As we will see, adding threads to the declarative model
keeps all the good properties of the model. We call the resulting model the
data-driven concurrent model.

• The second step extends the model with another execution order. We add
triggers and the single instruction {ByNeed P X} . This adds the possibility
to do demand-driven computation, which is also known as lazy execution.
This second extension also keeps the good properties of the declarative
model. We call the resulting model the demand-driven concurrent model
or the lazy concurrent model. We put off explaining lazy execution until
Section 4.5.

For most of this chapter, we leave out exceptions from the model. This is because
with exceptions the model is no longer declarative. Section 4.9.1 looks closer at
the interaction of concurrency and exceptions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 241

4.1.1 Basic concepts

Our approach to concurrency is a simple extension to the declarative model that
allows more than one executing statement to reference the store. Roughly, all
these statements are executing “at the same time”. This gives the model illus-
trated in Figure 4.1, whose kernel language is in Table 4.1. The kernel language
extends Figure 2.1 with just one new instruction, the thread statement.

Interleaving

Let us pause to consider precisely what “at the same time” means. There are
two ways to look at the issue, which we call the language viewpoint and the
implementation viewpoint:

• The language viewpoint is the semantics of the language, as seen by the
programmer. From this viewpoint, the simplest assumption is to let the
threads do an interleaving execution: in the actual execution, threads take
turns doing computation steps. Computation steps do not overlap, or in
other words, each computation step is atomic. This makes reasoning about
programs easier.

• The implementation viewpoint is how the multiple threads are actually
implemented on a real machine. If the system is implemented on a single
processor, then the implementation could also do interleaving. However,
the system might be implemented on multiple processors, so that threads
can do several computation steps simultaneously. This takes advantage of
parallelism to improve performance.

We will use the interleaving semantics throughout the book. Whatever the par-
allel execution is, there is always at least one interleaving that is observationally
equivalent to it. That is, if we observe the store during the execution, we can
always find an interleaving execution that makes the store evolve in the same
way.

Causal order

Another way to see the difference between sequential and concurrent execution
is in terms of an order defined among all execution states of a given program:

Causal order of computation steps

For a given program, all computation steps form a par-
tial order, called the causal order. A computation step
occurs before another step, if in all possible executions of
the program, it happens before the other. Similarly for a
computation step that occurs after another step. Some-
times a step is neither before nor after another step. In
that case, we say that the two steps are concurrent.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

242 Declarative Concurrency

Thread T1

T3

T2

T4

T5

order within a thread

order between threads

Concurrent execution

Sequential execution

(partial order)

(total order)

computation step

Figure 4.2: Causal orders of sequential and concurrent executions

2I

1I 2I

1I 2I

1I 2I

1IaI

aI

aI

aI

bI

bI

bI

bI cI

cI

cI

cI

T2

T11I

cI

I 2

bIaI

Some possible executionsCausal order

Figure 4.3: Relationship between causal order and interleaving executions

In a sequential program, all computation steps are totally ordered. There are
no concurrent steps. In a concurrent program, all computation steps of a given
thread are totally ordered. The computation steps of the whole program form
a partial order. Two steps in this partial order are causally ordered if the first
binds a dataflow variable X and the second needs the value of X.

Figure 4.2 shows the difference between sequential and concurrent execution.
Figure 4.3 gives an example that shows some of the possible executions corre-
sponding to a particular causal order. Here the causal order has two threads T1
and T2, where T1 has two operations (I1 and I2) and T2 has three operations
(Ia, Ib, and Ic). Four possible executions are shown. Each execution respects the
causal order, i.e., all instructions that are related in the causal order are related in
the same way in the execution. How many executions are possible in all? (Hint:
there are not so many in this example.)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 243

Nondeterminism

An execution is nondeterministic if there is an execution state in which there is a
choice of what to do next, i.e., a choice which thread to reduce. Nondeterminism
appears naturally when there are concurrent states. If there are several threads,
then in each execution state the system has to choose which thread to execute
next. For example, in Figure 4.3, after the first step, which always does Ia, there
is a choice of either I1 or Ib for the next step.

In a declarative concurrent model, the nondeterminism is not visible to the
programmer.1 There are two reasons for this. First, dataflow variables can be
bound to only one value. The nondeterminism affects only the exact moment
when each binding takes place; it does not affect the plain fact that the binding
does take place. Second, any operation that needs the value of a variable has no
choice but to wait until the variable is bound. If we allow operations that could
choose whether to wait or not then the nondeterminism would become visible.

As a consequence, a declarative concurrent model keeps the good properties
of the declarative model of Chapter 2. The concurrent model removes some but
not all of the limitations of the declarative model, as we will see in this chapter.

Scheduling

The choice of which thread to execute next is done by part of the system called
the scheduler. At each computation step, the scheduler picks one among all the
ready threads to execute next. We say a thread is ready, also called runnable, if
its statement has all the information it needs to execute at least one computation
step. Once a thread is ready, it stays ready indefinitely. We say that thread
reduction in the declarative concurrent model is monotonic. A ready thread can
be executed at any time.

A thread that is not ready is called suspended. Its first statement cannot
continue because it does not have all the information it needs. We say the first
statement is blocked. Blocking is an important concept that we will come across
again in the book.

We say the system is fair if it does not let any ready thread “starve”, i.e.,
all ready threads will eventually execute. This is an important property to make
program behavior predictable and to simplify reasoning about programs. It is
related to modularity: fairness implies that a thread’s execution does not depend
on that of any other thread, unless the dependency is programmed explicitly. In
the rest of the book, we will assume that threads are scheduled fairly.

4.1.2 Semantics of threads

We extend the abstract machine of Section 2.4 by letting it execute with several
semantic stacks instead of just one. Each semantic stack corresponds to the

1If there are no unification failures, i.e., attempts to bind the same variable to incompatible
partial values. Usually we consider a unification failure as a consequence of a programmer error.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

244 Declarative Concurrency

intuitive concept “thread”. All semantic stacks access the same store. Threads
communicate through this shared store.

Concepts

We keep the concepts of single-assignment store σ, environment E, semantic
statement (〈s〉, E), and semantic stack ST. We extend the concepts of execution
state and computation to take into account multiple semantic stacks:

• An execution state is a pair (MST, σ) where MST is a multiset of semantic
stacks and σ is a single-assignment store. A multiset is a set in which the
same element can occur more than once. MST has to be a multiset because
we might have two different semantic stacks with identical contents, e.g.,
two threads that execute the same statements.

• A computation is a sequence of execution states starting from an initial
state: (MST0, σ0)→ (MST1, σ1)→ (MST2, σ2)→

Program execution

As before, a program is simply a statement 〈s〉. Here is how to execute the
program:

• The initial execution state is:

({ [

statement︷ ︸︸ ︷
(〈s〉, φ)]︸ ︷︷ ︸
stack

}

︸ ︷︷ ︸
multiset

, φ)

That is, the initial store is empty (no variables, empty set φ) and the initial
execution state has one semantic stack that has just one semantic statement
(〈s〉, φ) on it. The only difference with Chapter 2 is that the semantic stack
is in a multiset.

• At each step, one runnable semantic stack ST is selected from MST, leaving
MST ′. We can say MST = {ST}]MST ′. (The operator] denotes multiset
union.) One computation step is then done in ST according to the semantics
of Chapter 2, giving:

(ST, σ)→ (ST ′, σ′)

The computation step of the full computation is then:

({ST}]MST ′, σ)→ ({ST ′}]MST ′, σ′)

We call this an interleaving semantics because there is one global sequence
of computation steps. The threads take turns each doing a little bit of work.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 245

(thread <s> end, E)
ST ST (<s>,E)

...
ST1 n 1 STn

...

single-assignment store single-assignment store

Figure 4.4: Execution of the thread statement

• The choice of which ST to select is done by the scheduler according to a
well-defined set of rules called the scheduling algorithm. This algorithm
is careful to make sure that good properties, e.g., fairness, hold of any
computation. A real scheduler has to take much more than just fairness
into account. Section 4.2.4 discusses many of these issues and explains how
the Mozart scheduler works.

• If there are no runnable semantic stacks in MST then the computation can
not continue:

– If all ST in MST are terminated, then we say the computation termi-
nates.

– If there exists at least one suspended ST in MST that cannot be re-
claimed (see below), then we say the computation blocks.

The thread statement

The semantics of the thread statement is defined in terms of how it alters the
multiset MST. A thread statement never blocks. If the selected ST is of the form
[(thread 〈s〉 end , E)]+ST ′, then the new multiset is {[(〈s〉, E)]}]{ST ′}]MST ′.
In other words, we add a new semantic stack [(〈s〉, E)] that corresponds to the
new thread. Figure 4.4 illustrates this. We can summarize this in the following
computation step:

({[(thread 〈s〉 end , E)] + ST ′}]MST ′, σ)→ ({[(〈s〉, E)]}] {ST ′}]MST ′, σ)

Memory management

Memory management is extended to the multiset as follows:

• A terminated semantic stack can be deallocated.

• A blocked semantic stack can be reclaimed if its activation condition de-
pends on an unreachable variable. In that case, the semantic stack would
never become runnable again, so removing it changes nothing during the
execution.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

246 Declarative Concurrency

This means that the simple intuition of Chapter 2, that “control structures are
deallocated and data structures are reclaimed”, is no longer completely true in
the concurrent model.

4.1.3 Example execution

The first example shows how threads are created and how they communicate
through dataflow synchronization. Consider the following statement:

local B in
thread B=true end
if B then {Browse yes} end

end

For simplicity, we will use the substitution-based abstract machine introduced in
Section 3.3.

• We skip the initial computation steps and go directly to the situation when
the thread and if statements are each on the semantic stack. This gives:

({[thread b=true end , if b then {Browse yes} end]},
{b} ∪ σ)

where b is a variable in the store. There is just one semantic stack, which
contains two statements.

• After executing the thread statement, we get:

({[b=true], [if b then {Browse yes} end]},
{b} ∪ σ)

There are now two semantic stacks (“threads”). The first, containing
b=true , is ready. The second, containing the if statement, is suspend-
ed because the activation condition (b determined) is false.

• The scheduler picks the ready thread. After executing one step, we get:

({[], [if b then {Browse yes} end]},
{b = true } ∪ σ)

The first thread has terminated (empty semantic stack). The second thread
is now ready, since b is determined.

• We remove the empty semantic stack and execute the if statement. This
gives:

({[{Browse yes}]},
{b = true } ∪ σ)

One ready thread remains. Further calculation will display yes .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 247

4.1.4 What is declarative concurrency?

Let us see why we can consider the data-driven concurrent model as a form of
declarative programming. The basic principle of declarative programming is that
the output of a declarative program should be a mathematical function of its
input. In functional programming, it is clear what this means: the program exe-
cutes with some input values and when it terminates, it has returned some output
values. The output values are functions of the input values. But what does this
mean in the data-driven concurrent model? There are two important differences
with functional programming. First, the inputs and outputs are not necessarily
values since they can contain unbound variables. And second, execution might
not terminate since the inputs can be streams that grow indefinitely! Let us look
at these two problems one at a time and then define what we mean by declarative
concurrency.2

Partial termination

As a first step, let us factor out the indefinite growth. We will present the
execution of a concurrent program as a series of stages, where each stage has a
natural ending. Here is a simple example:

fun {Double Xs}
case Xs of X|Xr then 2*X|{Double Xr} end

end

Ys={Double Xs}

The output stream Ys contains the elements of the input stream Xs multiplied
by 2. As long as Xs grows, then Ys grows too. The program never terminates.
However, if the input stream stops growing, then the program will eventually
stop executing too. This is an important insight. We say that the program does
a partial termination. It has not terminated completely yet, since further binding
the inputs would cause it to execute further (up to the next partial termination!).
But if the inputs do not change then the program will execute no further.

Logical equivalence

If the inputs are bound to some partial values, then the program will eventually
end up in partial termination, and the outputs will be bound to other partial
values. But in what sense are the outputs “functions” of the inputs? Both inputs
and outputs can contain unbound variables! For example, if Xs=1|2|3|Xr then
the Ys={Double Xs} call returns Ys=2|4|6|Yr , where Xr and Yr are unbound
variables. What does it mean that Ys is a function of Xs?

2Chapter 13 gives a formal definition of declarative concurrency that makes precise the ideas
of this section.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

248 Declarative Concurrency

To answer this question, we have to understand what it means for store con-
tents to be “the same”. Let us give a simple definition from first principles.
(Chapters 9 and 13 give a more formal definition based on mathematical logic.)
Before giving the definition, we look at two examples to get an understanding of
what is going on. The first example can bind X and Y in two different ways:

X=1 Y=X % First case
Y=X X=1 % Second case

In the first case, the store ends up with X=1 and Y=X. In the second case, the
store ends up with X=1 and Y=1. In both cases, X and Y end up being bound to
1. This means that the store contents are the same for both cases. (We assume
that the identifiers denote the same store variables in both cases.) Let us give a
second example, this time with some unbound variables:

X=foo(Y W) Y=Z % First case
X=foo(Z W) Y=Z % Second case

In both cases, X is bound to the same record, except that the first argument can
be different, Y or Z. Since Y=Z (Y and Z are in the same equivalence set), we again
expect the store contents to be the same for both cases.

Now let us define what logical equivalence means. We will define logical
equivalence in terms of store variables. The above examples used identifiers, but
that was just so that we could execute them. A set of store bindings, like each
of the four cases given above, is called a constraint. For each variable x and
constraint c, we define values(x, c) to be the set of all possible values x can have,
given that c holds. Then we define:

Two constraints c1 and c2 are logically equivalent if: (1) they con-
tain the same variables, and (2) for each variable x, values(x, c1) =
values(x, c2).

For example, the constraint x = foo(y w) ∧ y = z (where x, y, z, and w are
store variables) is logically equivalent to the constraint x = foo(z w) ∧ y = z.
This is because y = z forces y and z to have the same set of possible values, so
that foo(y w) defines the same set of values as foo(z w) . Note that variables
in an equivalence set (like {y, z}) always have the same set of possible values.

Declarative concurrency

Now we can define what it means for a concurrent program to be declarative. In
general, a concurrent program can have many possible executions. The thread
example given above has at least two, depending on the order in which the bind-
ings X=1 and Y=X are done.3 The key insight is that all these executions have to
end up with the same result. But “the same” does not mean that each variable

3In fact, there are more than two, because the binding X=1 can be done either before or
after the second thread is created.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.1 The data-driven concurrent model 249

has to be bound to the same thing. It just means logical equivalence. This leads
to the following definition:

A concurrent program is declarative if the following holds for all pos-
sible inputs. All executions with a given set of inputs have one of
two results: (1) they all do not terminate or (2) they all eventually
reach partial termination and give results that are logically equiva-
lent. (Different executions may introduce new variables; we assume
that the new variables in corresponding positions are equal.)

Another way to say this is that there is no observable nondeterminism. This
definition is valid for eager as well as lazy execution. What’s more, when we
introduce non-declarative models (e.g., with exceptions or explicit state), we will
use this definition as a criterium: if part of a non-declarative program obeys the
definition, we can consider it as declarative for the rest of the program.

We can prove that the data-driven concurrent model is declarative according
to this definition. But even more general declarative models exist. The demand-
driven concurrent model of Section 4.5 is also declarative. This model is quite
general: it has threads and can do both eager and lazy execution. The fact that
it is declarative is astonishing.

Failure

A failure is an abnormal termination of a declarative program that occurs when
we attempt to put conflicting information in the store. For example, if we would
bind X both to 1 and to 2. The declarative program cannot continue because
there is no correct value for X.

Failure is an all-or-nothing property: if a declarative concurrent program re-
sults in failure for a given set of inputs, then all possible executions with those
inputs will result in failure. This must be so, else the output would not be a
mathematical function of the input (some executions would lead to failure and
others would not). Take the following example:

thread X=1 end
thread Y=2 end
thread X=Y end

We see that all executions will eventually reach a conflicting binding and subse-
quently terminate.

Most failures are due to programmer errors. It is rather drastic to terminate
the whole program because of a single programmer error. Often we would like to
continue execution instead of terminating, perhaps to repair the error or simply
to report it. A natural way to do this is by using exceptions. At the point where
a failure would occur, we raise an exception instead of terminating. The program
can catch the exception and continue executing. The store contents are what
they were just before the failure.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

250 Declarative Concurrency

However, it is important to realize that execution after raising the exception
is no longer declarative! This is because the store contents are not always the
same in all executions. In the above example, just before failure occurs there
are three possibilities for the values of X & Y: 1 & 1, 2 & 2, and 1 & 2. If
the program continues execution then we can observe these values. This is an
observable nondeterminism. We say that we have left the declarative model. From
the instant when the exception is raised, the execution is no longer part of a
declarative model, but is part of a more general (non-declarative) model.

Failure confinement

If we want execution to become declarative again after a failure, then we have to
hide the nondeterminism. This is the responsibility of the programmer. For the
reader who is curious as to how to do this, let us get ahead of ourselves a little
and show how to repair the previous example. Assume that X and Y are visible
to the rest of the program. If there is an exception, we arrange for X and Y to be
bound to default values. If there is no exception, then they are bound as before.

declare X Y
local X1 Y1 S1 S2 S3 in

thread
try X1=1 S1=ok catch _ then S1=error end

end
thread

try Y1=2 S2=ok catch _ then S2=error end
end
thread

try X1=Y1 S3=ok catch _ then S3=error end
end
if S1==error orelse S2==error orelse S3==error then

X=1 % Default for X
Y=1 % Default for Y

else X=X1 Y=Y1 end
end

Two things have to be repaired. First, we catch the failure exceptions with the
try statements, so that execution will not stop with an error. (See Section 4.9.1
for more on the declarative concurrent model with exceptions.) A try statement
is needed for each binding since each binding could fail. Second, we do the bind-
ings in local variables X1 and Y1, which are invisible to the rest of the program.
We make the bindings global only when we are sure that there is no failure.4

4This assumes that X=X1 and Y=Y1 will not fail.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.2 Basic thread programming techniques 251

4.2 Basic thread programming techniques

There are many new programming techniques that become possible in the con-
current model with respect to the sequential model. This section examines the
simplest ones, which are based on a simple use of the dataflow property of thread
execution. We also look at the scheduler and see what operations are possible on
threads. Later sections explain more sophisticated techniques, including stream
communication, order-determining concurrency, and others.

4.2.1 Creating threads

The thread statement creates a new thread:

thread
proc {Count N} if N>0 then {Count N-1} end end

in
{Count 1000000}

end

This creates a new thread that runs concurrently with the main thread. The
thread ... end notation can also be used as an expression:

declare X in
X = thread 10*10 end + 100*100
{Browse X}

This is just syntactic sugar for:

declare X in
local Y in

thread Y=10*10 end
X=Y+100*100

end

A new dataflow variable, Y, is created to communicate between the main thread
and the new thread. The addition blocks until the calculation 10*10 is finished.

When a thread has no more statements to execute then it terminates. Each
nonterminated thread that is not suspended will eventually be run. We say that
threads are scheduled fairly. Thread execution is implemented with preemptive
scheduling. That is, if more than one thread is ready to execute, then each thread
will get processor time in discrete intervals called time slices. It is not possible
for one thread to take over all the processor time.

4.2.2 Threads and the browser

The browser is a good example of a program that works well in a concurrent
environment. For example:

thread {Browse 111} end
{Browse 222}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

252 Declarative Concurrency

In what order are the values 111 and 222 displayed? The answer is, either order
is possible! Is it possible that something like 112122 will be displayed, or worse,
that the browser will behave erroneously? At first glance, it might seem so, since
the browser has to execute many statements to display each value 111 and 222 .
If no special precautions are taken, then these statements can indeed be executed
in almost any order. But the browser is designed for a concurrent environment.
It will never display strange interleavings. Each browser call is given its own
part of the browser window to display its argument. If the argument contains an
unbound variable that is bound later, then the display will be updated when the
variable is bound. In this way, the browser will correctly display even multiple
streams that grow concurrently, for example:

declare X1 X2 Y1 Y2 in
thread {Browse X1} end
thread {Browse Y1} end
thread X1=all|roads|X2 end
thread Y1=all|roams|Y2 end
thread X2=lead|to|rome|_ end
thread Y2=lead|to|rhodes|_ end

This correctly displays the two streams

all|roads|lead|to|rome|_
all|roams|lead|to|rhodes|_

in separate parts of the browser window. In this chapter and later chapters we
will see how to write concurrent programs that behave correctly, like the browser.

4.2.3 Dataflow computation with threads

Let us see what we can do by adding threads to simple programs. It is important
to remember that each thread is a dataflow thread, i.e., it suspends on availability
of data.

Simple dataflow behavior

We start by observing dataflow behavior in a simple calculation. Consider the
following program:

declare X0 X1 X2 X3 in
thread
Y0 Y1 Y2 Y3 in

{Browse [Y0 Y1 Y2 Y3]}
Y0=X0+1
Y1=X1+Y0
Y2=X2+Y1
Y3=X3+Y2
{Browse completed}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.2 Basic thread programming techniques 253

{Browse [X0 X1 X2 X3]}

If you feed this program then the browser will display all the variables as being
unbound. Observe what happens when you input the following statements one
at a time:

X0=0
X1=1
X2=2
X3=3

With each statement, the thread resumes, executes one addition, and then sus-
pends again. That is, when X0 is bound the thread can execute Y0=X0+1. It
suspends again because it needs the value of X1 while executing Y1=X1+Y0, and
so on.

Using a declarative program in a concurrent setting

Let us take a program from Chapter 3 and see how it behaves when used in a
concurrent setting. Consider the ForAll loop, which is defined as follows:

proc {ForAll L P}
case L of nil then skip
[] X|L2 then {P X} {ForAll L2 P} end

end

What happens when we execute it in a thread:

declare L in
thread {ForAll L Browse} end

If L is unbound, then this will immediately suspend. We can bind L in other
threads:

declare L1 L2 in
thread L=1|L1 end
thread L1=2|3|L2 end
thread L2=4|nil end

What is the output? Is the result any different from the result of the sequential
call {ForAll [1 2 3 4] Browse} ? What is the effect of using ForAll in a
concurrent setting?

A concurrent map function

Here is a concurrent version of the Map function defined in Section 3.4.3:

fun {Map Xs F}
case Xs of nil then nil
[] X|Xr then thread {F X} end |{Map Xr F} end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

254 Declarative Concurrency

F6 F4

F5

F2

F1F3

F2

F2

F2

F1F3

F4

F2

F1F3

Synchronize on result

Running thread

Create new thread

Figure 4.5: Thread creations for the call {Fib 6}

The thread statement is used here as an expression. Let us explore the behavior
of this program. If we enter the following statements:

declare F Xs Ys Zs
{Browse thread {Map Xs F} end }

then a new thread executing {Map Xs F} is created. It will suspend immediately
in the case statement because Xs is unbound. If we enter the following statements
(without a declare !):

Xs=1|2|Ys
fun {F X} X*X end

then the main thread will traverse the list, creating two threads for the first two
arguments of the list, thread {F 1} end and thread {F 2} end , and then it
will suspend again on the tail of the list Y. Finally, doing

Ys=3|Zs
Zs=nil

will create a third thread with thread {F 3} end and terminate the computa-
tion of the main thread. The three threads will also terminate, resulting in the
final list [1 4 9] . Remark that the result is the same as the sequential map
function, only it can be obtained incrementally if the input is given incremental-
ly. The sequential map function executes as a “batch”: the calculation gives no
result until the complete input is given, and then it gives the complete result.

A concurrent Fibonacci function

Here is a concurrent divide-and-conquer program to calculate the Fibonacci func-
tion:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.2 Basic thread programming techniques 255

Figure 4.6: The Oz Panel showing thread creation in {Fib 26 X}

fun {Fib X}
if X=<2 then 1
else thread {Fib X-1} end + {Fib X-2} end

end

This program is based on the sequential recursive Fibonacci function; the only
difference is that the first recursive call is done in its own thread. This program
creates an exponential number of threads! Figure 4.5 shows all the thread cre-
ations and synchronizations for the call {Fib 6} . A total of eight threads are
involved in this calculation. You can use this program to test how many threads
your Mozart installation can create. For example, feed:

{Browse {Fib 25}}

while observing the Oz Panel to see how many threads are running. If {Fib

25} completes too quickly, try a larger argument. The Oz Panel, shown in
Figure 4.6, is a Mozart tool that gives information on system behavior (runtime,
memory usage, threads, etc.). To start the Oz Panel, select the Oz Panel entry
of the Oz menu in the interactive interface.

Dataflow and rubber bands

By now, it is clear that any declarative program of Chapter 3 can be made con-
current by putting thread ... end around some of its statements and expressions.
Because each dataflow variable will be bound to the same value as before, the
final result of the concurrent version will be exactly the same as the original
sequential version.

One way to see this intuitively is by means of rubber bands. Each dataflow
variable has its own rubber band. One end of the rubber band is attached to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

256 Declarative Concurrency

F = F1 + F2

rubber band stretches

F1 = {Fib X-1}

rigid rubber band

Concurrent modelSequential model

F1 = {Fib X-1} endthread

F1 + F2F =

Figure 4.7: Dataflow and rubber bands

where the variable is bound and the other end to where the variable is used.
Figure 4.7 shows what happens in the sequential and concurrent models. In the
sequential model, binding and using are usually close to each other, so the rubber
bands do not stretch much. In the concurrent model, binding and using can be
done in different threads, so the rubber band is stretched. But it never breaks:
the user always sees the right value.

Cheap concurrency and program structure

By using threads, it is often possible to improve the structure of a program, e.g.,
to make it more modular. Most large programs have many places in which threads
could be used for this. Ideally, the programming system should support this with
threads that use few computational resources. In this respect the Mozart system
is excellent. Threads are so cheap that one can afford to create them in large
numbers. For example, entry-level personal computers of the year 2000 have at
least 64 MB of active memory, with which they can support more than 100000
simultaneous active threads.

If using concurrency lets your program have a simpler structure, then use
it without hesitation. But keep in mind that even though threads are cheap,
sequential programs are even cheaper. Sequential programs are always faster
than concurrent programs having the same structure. The Fib program in Sec-
tion 4.2.3 is faster if the thread statement is removed. You should create threads
only when the program needs them. On the other hand, you should not hesitate
to create a thread if it improves program structure.

4.2.4 Thread scheduling

We have seen that the scheduler should be fair, i.e., every ready thread will
eventually execute. A real scheduler has to do much more than just guarantee
fairness. Let us see what other issues arise and how the scheduler takes care of
them.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.2 Basic thread programming techniques 257

Time slices

The scheduler puts all ready threads in a queue. At each step, it takes the first
thread out of the queue, lets it execute some number of steps, and then puts
it back in the queue. This is called round-robin scheduling. It guarantees that
processor time is spread out equitably over the ready threads.

It would be inefficient to let each thread execute only one computation step
before putting it back in the queue. The overhead of queue management (taking
threads out and putting them in) relative to the actual computation would be
quite high. Therefore, the scheduler lets each thread execute for many computa-
tion steps before putting it back in the queue. Each thread has a maximum time
that it is allowed to run before the scheduler stops it. This time interval is called
its time slice or quantum. After a thread’s time slice has run out, the scheduler
stops its execution and puts it back in the queue. Stopping a running thread is
called preemption.

To make sure that each thread gets roughly the same fraction of the processor
time, a thread scheduler has two approaches. The first way is to count compu-
tation steps and give the same number to each thread. The second way is to use
a hardware timer that gives the same time to each thread. Both approaches are
practical. Let us compare the two:

• The counting approach has the advantage that scheduler execution is de-
terministic, i.e., running the same program twice will preempt threads at
exactly the same instants. A deterministic scheduler is often used for hard
real-time applications, where guarantees must be given on timings.

• The timer approach is more efficient, because the timer is supported by
hardware. However, the scheduler is no longer deterministic. Any event
in the operating system, e.g., a disk or network operation, will change the
exact instants when preemption occurs.

The Mozart system uses a hardware timer.

Priority levels

For many applications, more control is needed over how processor time is shared
between threads. For example, during the course of a computation, an event may
happen that requires urgent treatment, bypassing the “normal” computation.
On the other hand, it should not be possible for urgent computations to starve
normal computations, i.e., to cause them to slow down inordinately.

A compromise that seems to work well in practice is to have priority levels for
threads. Each priority level is given a minimum percentage of the processor time.
Within each priority level, threads share the processor time fairly as before. The
Mozart system uses this technique. It has three priority levels, high, medium, and
low. There are three queues, one for each priority level. By default, processor
time is divided among the priorities in the ratios 100 : 10 : 1 for high : medium

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

258 Declarative Concurrency

: low priorities. This is implemented in a very simple way: every tenth time slice
of a high priority thread, a medium priority thread is given one slice. Similarly,
every tenth time slice of a medium priority thread, a low priority thread is given
one slice. This means that high priority threads, if there are any, divide at
least 100/111 (about 90%) of the processor time amongst themselves. Similarly,
medium priority threads, if there are any, divide at least 10/111 (about 9%) of
the processor time amongst themselves. And last of all, low priority threads, if
there are any, divide at least 1/111 (about 1%) of the processor time amongst
themselves. These percentages are guaranteed lower bounds. If there are fewer
threads, then they might be higher. For example, if there are no high priority
threads, then a medium priority thread can get up to 10/11 of the processor time.
In Mozart, the ratios high : medium and medium : low are both 10 by default.
They can be changed with the Property module.

Priority inheritance

When a thread creates a child thread, then the child is given the same priority
as the parent. This is particularly important for high priority threads. In an
application, these threads are used for “urgency management”, i.e., to do work
that must be handled in advance of the normal work. The part of the application
doing urgency management can be concurrent. If the child of a high priority
thread would have, say, medium priority, then there is a short “window” of time
during which the child thread is medium priority, until the parent or child can
change the thread’s priority. The existence of this window would be enough to
keep the child thread from being scheduled for many time slices, because the
thread is put in the queue of medium priority. This could result in hard-to-trace
timing bugs. Therefore a child thread should never get a lower priority than its
parent.

Time slice duration

What is the effect of the time slice’s duration? A short slice gives very “fine-
grained” concurrency: threads react quickly to external events. But if the slice
is too short, then the overhead of switching between threads becomes significant.
Another question is how to implement preemption: does the thread itself keep
track of how long it has run, or is it done externally? Both solutions are viable, but
the second is much easier to implement. Modern multitasking operating systems,
such as Unix, Windows 2000, or Mac OS X, have timer interrupts that can be
used to trigger preemption. These interrupts arrive at a fairly low frequency, 60
or 100 per second. The Mozart system uses this technique.

A time slice of 10 ms may seem short enough, but for some applications it is
too long. For example, assume the application has 100000 active threads. Then
each thread gets one time slice every 1000 seconds. This may be too long a wait.
In practice, we find that this is not a problem. In applications with many threads,
such as large constraint programs (see Chapter 12), the threads usually depend

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.2 Basic thread programming techniques 259

(competitive concurrency)
Processes

(cooperative concurrency)
Threads

Figure 4.8: Cooperative and competitive concurrency

strongly on each other and not on the external world. Each thread only uses a
small part of its time slice before yielding to another thread.

On the other hand, it is possible to imagine an application with many threads,
each of which interacts with the external world independently of the other threads.
For such an application, it is clear that Mozart as well as recent Unix, Windows, or
Mac OS X operating systems are unsatisfactory. The hardware itself of a personal
computer is unsatisfactory. What is needed is a hard real-time computing system,
which uses a special kind of hardware together with a special kind of operating
system. Hard real-time is outside the scope of the book.

4.2.5 Cooperative and competitive concurrency

Threads are intended for cooperative concurrency, not for competitive concur-
rency. Cooperative concurrency is for entities that are working together on some
global goal. Threads support this, e.g., any thread can change the time ratios
between the three priorities, as we will see. Threads are intended for applications
that run in an environment where all parts trust one another.

On the other hand, competitive concurrency is for entities that have a local
goal, i.e., they are working just for themselves. They are interested only in their
own performance, not in the global performance. Competitive concurrency is
usually managed by the operating system in terms of a concept called a process.

This means that computations often have a two-level structure, as shown in
Figure 4.8. At the highest level, there is a set of operating system processes
interacting with each other, doing competitive concurrency. Processes are usu-
ally owned by different applications, with different, perhaps conflicting goals.
Within each process, there is a set of threads interacting with each other, doing
cooperative concurrency. Threads in one process are usually owned by the same

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

260 Declarative Concurrency

Operation Description
{Thread.this} Return the current thread’s name
{Thread.state T} Return the current state of T

{Thread.suspend T} Suspend T (stop its execution)
{Thread.resume T} Resume T (undo suspension)
{Thread.preempt T} Preempt T

{Thread.terminate T} Terminate T immediately
{Thread.injectException T E} Raise exception E in T

{Thread.setPriority T P} Set T’s priority to P

{Thread.setThisPriority P} Set current thread’s priority to P

{Property.get priorities} Return the system priority ratios
{Property.put Set the system priority ratios

priorities p(high:X medium:Y)}

Figure 4.9: Operations on threads

application.

Competitive concurrency is supported in Mozart by its distributed computa-
tion model and by the Remote module. The Remote module creates a separate
operating system process with its own computational resources. A competitive
computation can then be put in this process. This is relatively easy to program
because the distributed model is network transparent: the same program can run
with different distribution structures, i.e., on different sets of processes, and it
will always give the same result.5

4.2.6 Thread operations

The modules Thread and Property provide a number of operations pertinent
to threads. Some of these operations are summarized in Figure 4.9. The priority
P can have three values, the atoms low , medium, and high . Each thread has a
unique name, which refers to the thread when doing operations on it. The thread
name is a value of Name type. The only way to get a thread’s name is for the
thread itself to call Thread.this . It is not possible for another thread to get
the name without cooperation from the original thread. This makes it possible
to rigorously control access to thread names. The system procedure:

{Property.put priorities p(high:X medium:Y)}

sets the processor time ratio to X:1 between high priority and medium priority
and to Y:1 between medium priority and low-priority. X and Y are integers. If
we execute:

{Property.put priorities p(high:10 medium:10)}

5This is true as long as no process fails. See Chapter 11 for examples and more information.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 261

Xs={Generate 0 150000} S={Sum Xs 0}

ConsumerProducer
Xs = 0 | 1 | 2 | 3 | 4 | 5 | ...

Figure 4.10: Producer-consumer stream communication

then for each 10 time slices allocated to runnable high priority threads, the system
will allocate one time slice to medium priority threads, and similarly between
medium and low priority threads. This is the default. Within the same priority
level, scheduling is fair and round-robin.

4.3 Streams

The most useful technique for concurrent programming in the declarative con-
current model is using streams to communicate between threads. A stream is a
potentially unbounded list of messages, i.e., it is a list whose tail is an unbound
dataflow variable. Sending a message is done by extending the stream by one
element: bind the tail to a list pair containing the message and a new unbound
tail. Receiving a message is reading a stream element. A thread communicating
through streams is a kind of “active object” that we will call a stream object. No
locking or mutual exclusion is necessary since each variable is bound by only one
thread.

Stream programming is a quite general approach that can be applied in many
domains. It is the concept underlying Unix pipes. Morrison uses it to good effect
in business applications, in an approach he calls “flow-based programming” [127].
This chapter looks at a special case of stream programming, namely deterministic
stream programming, in which each stream object always knows for each input
where the next message will come from. This case is interesting because it is
declarative. Yet it is already quite useful. We put off looking at nondeterministic
stream programming until Chapter 5.

4.3.1 Basic producer/consumer

This section explains how streams work and shows how to program an asyn-
chronous producer/consumer with streams. In the declarative concurrent model,
a stream is represented by a list whose tail is an unbound variable:

declare Xs Xs2 in
Xs=0|1|2|3|4|Xs2

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

262 Declarative Concurrency

A stream is created incrementally by binding the tail to a new list pair and a new
tail:

declare Xs3 in
Xs2=5|6|7|Xs3

One thread, called the producer, creates the stream in this way, and other threads,
called the consumers, read the stream. Because the stream’s tail is a dataflow
variable, the consumers will read the stream as it is created. The following
program asynchronously generates a stream of integers and sums them:

fun {Generate N Limit}
if N<Limit then

N|{Generate N+1 Limit}
else nil end

end

fun {Sum Xs A}
case Xs
of X|Xr then {Sum Xr A+X}
[] nil then A
end

end

local Xs S in
thread Xs={Generate 0 150000} end % Producer thread
thread S={Sum Xs 0} end % Consumer thread
{Browse S}

end

Figure 4.10 gives a particularly nice way to define this pattern, using a precise
graphic notation. Each rectangle denotes a recursive function inside a thread,
the solid arrow denotes a stream, and the arrow’s direction is from producer to
consumer. After the calculation is finished, this displays 11249925000 . The
producer, Generate , and the consumer, Sum, run in their own threads. They
communicate through the shared variable Xs, which is bound to a stream of inte-
gers. The case statement in Sumblocks when Xs is unbound (no more elements),
and resumes when Xs is bound (new elements arrive).

In the consumer, dataflow behavior of the case statement blocks execution
until the arrival of the next stream element. This synchronizes the consumer
thread with the producer thread. Waiting on for a dataflow variable to be bound
is the basic mechanism for synchronization and communication in the declarative
concurrent model.

Using a higher-order iterator

The recursive call to Sumhas an argument A that is the sum of all elements seen
so far. This argument and the function’s output together make an accumulator,
as we saw in Chapter 3. We can get rid of the accumulator by using a loop
abstraction:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 263

local Xs S in
thread Xs={Generate 0 150000} end
thread S={FoldL Xs fun {$ X Y} X+Y end 0} end
{Browse S}

end

Because of dataflow variables, the FoldL function has no problems working in a
concurrent setting. Getting rid of an accumulator by using a higher-order iterator
is a general technique. The accumulator is not really gone, it is just hidden inside
the iterator. But writing the program is simpler since the programmer no longer
has to reason in terms of state. The List module has many loop abstractions
and other higher-order operations that can be used to help implement recursive
functions.

Multiple readers

We can introduce multiple consumers without changing the program in any way.
For example, here are three consumers, reading the same stream:

local Xs S1 S2 S3 in
thread Xs={Generate 0 150000} end
thread S1={Sum Xs 0} end
thread S2={Sum Xs 0} end
thread S3={Sum Xs 0} end

end

Each consumer thread will receive stream elements independently of the others.
The consumers do not interfere with each other because they do not actually
“consume” the stream; they just read it.

4.3.2 Transducers and pipelines

We can put a third stream object in between the producer and consumer. This
stream object reads the producer’s stream and creates another stream which
is read by the consumer. We call it a transducer. In general, a sequence of
stream objects each of which feeds the next is called a pipeline. The producer is
sometimes called the source and the consumer is sometimes called the sink. Let
us look at some pipelines with different kinds of transducers.

Filtering a stream

One of the simplest transducers is the filter, which outputs only those elements
of the input stream that satisfy a given condition. A simple way to make a filter
is to put a call to the function Filter , which we saw in Chapter 3, inside its own
thread. For example, we can pass only those elements that are odd integers:

local Xs Ys S in
thread Xs={Generate 0 150000} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

264 Declarative Concurrency

S={Sum Ys 0}Ys={Filter Xs IsOdd}Xs={Generate 0 150000}

IsOdd

Producer Filter Consumer
Xs = 0 | 1 | 2 | 3 | ... Ys = 1 | 3 | 5 | ...

Figure 4.11: Filtering a stream

Xs

Xr

X

Ys

Zs
SieveFilter

Sieve

X | Zs

Figure 4.12: A prime-number sieve with streams

thread Ys={Filter Xs IsOdd} end
thread S={Sum Ys 0} end
{Browse S}

end

where IsOdd is a one-argument boolean function that is true only for odd integers:

fun {IsOdd X} X mod 2 \= 0 end

Figure 4.11 shows this pattern. This figure introduces another bit of graphic
notation, the dotted arrow, which denotes a single value (a non-stream argument
to the function).

Sieve of Eratosthenes

As a bigger example, let us define a pipeline that implements the prime-number
sieve of Eratosthenes. The output of the sieve is a stream containing only prime
numbers. This program is called a “sieve” since it works by successively filtering
out nonprimes from streams, until only primes remain. The filters are created
dynamically when they are first needed. The producer generates a stream of
consecutive integers starting from 2. The sieve peels off an element and creates
a filter to remove multiples of that element. It then calls itself recursively on the
stream of remaining elements. Filter 4.12 gives a picture. This introduces yet
another bit of graphic notation, the triangle, which denotes either peeling off the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 265

first element of a stream or prefixing a new first element to a stream. Here is the
sieve definition:

fun {Sieve Xs}
case Xs
of nil then nil
[] X|Xr then Ys in

thread Ys={Filter Xr fun {$ Y} Y mod X \= 0 end } end
X|{Sieve Ys}

end
end

This definition is quite simple, considering that it is dynamically setting up a
pipeline of concurrent activities. Let us call the sieve:

local Xs Ys in
thread Xs={Generate 2 100000} end
thread Ys={Sieve Xs} end
{Browse Ys}

end

This displays prime numbers up to 100000. This program is a bit simplistic
because it creates too many threads, namely one per prime number. Such a large
number of threads is not necessary since it is easy to see that generating prime
numbers up to n requires filtering multiples only up to

√
n. 6 We can modify the

program to create filters only up to this limit:

fun {Sieve Xs M}
case Xs
of nil then nil
[] X|Xr then Ys in

if X=<M then
thread Ys={Filter Xr fun {$ Y} Y mod X \= 0 end } end

else Ys=Xr end
X|{Sieve Ys M}

end
end

With a list of 100000 elements, we can call this as {Sieve Xs 316} (since
316 = b

√
100000c). This dynamically creates the pipeline of filters shown in

Figure 4.13. Since small factors are more common than large factors, most of the
actual filtering is done in the early filters.

4.3.3 Managing resources and improving throughput

What happens if the producer generates elements faster than the consumer can
consume them? If this goes on long enough, then unconsumed elements will pile
up and monopolize system resources. The examples we saw so far do nothing

6If the factor f is greater than
√

n, then there is another factor n/f that is less than
√

n.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

266 Declarative Concurrency

... FilterFilter

31373 52

{Sieve Xs 316}Xs
Filter Filter Filter

Figure 4.13: Pipeline of filters generated by {Sieve Xs 316}

to prevent this. One way to solve this problem is to limit the rate at which the
producer generates new elements, so that some global condition (like a maximum
resource usage) is satisfied. This is called flow control. It requires that some
information be sent back from the consumer to the producer. Let us see how to
implement it.

Flow control with demand-driven concurrency

The simplest flow control is called demand-driven concurrency, or lazy execution.
In this technique, the producer only generates elements when the consumer ex-
plicitly demands them. (The previous technique, where the producer generates an
element whenever it likes, is called supply-driven execution, or eager execution.)
Lazy execution requires a mechanism for the consumer to signal the producer
whenever it needs a new element. The simplest way to do this is to use dataflow.
For example, the consumer can extend its input stream whenever it needs a new
element. That is, the consumer binds the stream’s end to a list pair X|Xr , where
X is unbound. The producer waits for this list pair and then binds X to the next
element. Here is how to program it:

proc {DGenerate N Xs}
case Xs of X|Xr then

X=N
{DGenerate N+1 Xr}

end
end

fun {DSum ?Xs A Limit}
if Limit>0 then

X|Xr=Xs
in

{DSum Xr A+X Limit-1}
else A end

end

local Xs S in
thread {DGenerate 0 Xs} end % Producer thread
thread S={DSum Xs 0 150000} end % Consumer thread
{Browse S}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 267

S={Sum Ys 0}{Buffer 4 Xs Ys}

Buffer Consumer
Ys = 0 | _

Producer
Xs = 0 | 1 | 2 | 3 | 4 | _

4

Xs={Generate 0 150000}

Figure 4.14: Bounded buffer

proc {Buffer N ?Xs Ys}
fun {Startup N ?Xs}

if N==0 then Xs
else Xr in Xs=_|Xr {Startup N-1 Xr} end

end

proc {AskLoop Ys ?Xs ?End}
case Ys of Y|Yr then Xr End2 in

Xs=Y|Xr % Get element from buffer
End=_|End2 % Replenish the buffer
{AskLoop Yr Xr End2}

end
end

End={Startup N Xs}
in

{AskLoop Ys Xs End}
end

Figure 4.15: Bounded buffer (data-driven concurrent version)

It is now the consumer that controls how many elements are needed (150000
is an argument of DSum, not DGenerate). This implements lazy execution by
programming it explicitly.7

Flow control with a bounded buffer

Up to now we have seen two techniques for managing stream communication,
namely eager and lazy execution. In eager execution, the producer is completely
free: there are no restrictions on how far it can get ahead of the consumer. In
lazy execution, the producer is completely constrained: it can generate nothing
without an explicit request from the consumer. Both techniques have problems.

7There is another way to implement lazy execution, namely by extending the computation
model with a new concept, called “trigger”. This is explained in Section 4.5. We will see that
the trigger approach is easier to program with than explicit laziness.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

268 Declarative Concurrency

We have seen that eager execution leads to an explosion in resource usage. But
lazy execution also has a serious problem. It leads to a strong reduction in
throughput. By throughput we mean the number of messages that can be sent per
unit of time. (Throughput is usually contrasted with latency, which is defined as
the time taken from the send to the arrival of a single message.) If the consumer
requests a message, then the producer has to calculate it, and meanwhile the
consumer waits. If the producer were allowed to get ahead of the consumer, then
the consumer would not have to wait.

Is there a way we can get the best of both worlds, i.e., both avoid the resource
problem and not reduce throughput? Yes, this is indeed possible. It can be
done with a combination of eager and lazy execution called a bounded buffer. A
bounded buffer is a transducer that stores elements up to a maximum number, say
n. The producer is allowed to get ahead of the consumer, but only until the buffer
is full. This limits the extra resource usage to n elements. The consumer can take
elements from the buffer immediately without waiting. This keeps throughput
high. When the buffer has less than n elements, the producer is allowed to
produce more elements, until the buffer is full.

Figure 4.15 shows how to program the bounded buffer. Figure 4.14 gives a
picture. This picture introduces a further bit of graphic notation, small inverse
arrows on a stream, which denote requests for new stream elements (i.e., the
stream is lazy). To understand how the buffer works, remember that both Xs

and Ys are lazy streams. The buffer executes in two phases:

• The first phase is the initialization. It calls Startup to ask for n elements
from the producer. In other words, it extends Xs with n elements that are
unbound. The producer detects this and can generate these n elements.

• The second phase is the buffer management. It calls AskLoop to satisfy
requests from the consumer and initiate requests to the producer. Whenever
the consumer asks for an element, AskLoop does two things: it gives the
consumer an element from the buffer and it asks the producer for another
element to replenish the buffer.

Here is a sample execution:

local Xs Ys S in
thread {DGenerate 0 Xs} end % Producer thread
thread {Buffer 4 Xs Ys} end % Buffer thread
thread S={DSum Ys 0 150000} end % Consumer thread
{Browse Xs} {Browse Ys}
{Browse S}

end

One way to see for yourself how this works is to slow down its execution to a
human scale. This can be done by adding a {Delay 1000} call inside Sum. This
way, you can see the buffer: Xs always has four more elements than Ys.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 269

The bounded buffer program is a bit tricky to understand and write. This
is because a lot of bookkeeping is needed to implement the lazy execution. This
bookkeeping is there for technical reasons only; it has no effect on how the pro-
ducer and consumer are written. This is a good indication that extending the
computation model might be a good alternative way to implement laziness. This
is indeed the case, as we will see in Section 4.5. The implicit laziness introduced
there is much easier to program with than the explicit laziness we use here.

There is one defect of the bounded buffer we give here. It takes up O(n)
memory space even if nothing is stored in it (e.g., when the producer is slow).
This extra memory space is small: it consists of n unbound list elements, which
are the n requests to the producer. Yet, as sticklers for program frugality, we ask
if it is possible to avoid this extra memory space. A simple way to avoid it is by
using explicit state, as defined in Chapter 6. This allows us to define an abstract
data type that represents a bounded buffer and that has two operations, Put and
Get . Internally, the ADT can save space by using an integer to count producer
requests instead of list elements.

As a final remark, we can see that eager and lazy execution are just extreme
cases of a bounded buffer. Eager execution is what happens when the buffer has
infinite size. Lazy execution is what happens when the buffer has zero size. When
the buffer has a finite nonzero size, then the behavior is somewhere between these
two extremes.

Flow control with thread priorities

Using a bounded buffer is the best way to implement flow control, because it works
for all relative producer/consumer speeds without twiddling with any “magic
numbers”. A different and inferior way to do flow control is to change the relative
priorities between producer and consumer threads, so that consumers consume
faster than producers can produce. It is inferior because it is fragile: its success
depends on the amount of work needed for an element to be produced wp and
consumed wc. It succeeds only if the speed ratio sc/sw between the consumer
thread and the producer thread is greater than wc/wp. The latter depends not
only on thread priorities but also on how many other threads exist.

That said, let us show how to implement it anyway. Let us give the producer
low priority and the consumer high priority. We also set both priority ratios
high:medium and medium:low to 10:1 and 10:1 . We use the original, data-
driven versions of Generate and Sum:

{Property.put priorities p(high:10 medium:10)}
local Xs S in

thread
{Thread.setThisPriority low}
Xs={Generate 0 150000}

end
thread

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

270 Declarative Concurrency

{Thread.setThisPriority high}
S={Sum Xs 0}

end
{Browse S}

end

This works in our case since the time to consume an element is not 100 times
greater than the time to produce an element. But it might no longer work for a
modified producer or consumer which might take more or less time. The general
lesson is that changing thread priorities should never be used to get a program to
work correctly. The program should work correctly, no matter what the priorities
are. Changing thread priorities is then a performance optimization; it can be used
to improve the throughput of a program that is already working.

4.3.4 Stream objects

Let us now step back and reflect on what stream programming is really doing.
We have written concurrent programs as networks of threads that communicate
through streams. This introduces a new concept which we can call a stream ob-
ject: a recursive procedure that executes in its own thread and communicates
with other stream objects through input and output streams. The stream ob-
ject can maintain an internal state in the arguments of its procedure, which are
accumulators.

We call a stream object an object because it has an internal state that is
accessed in a controlled way (by messages on streams). Throughout the book,
we will use the term “object” for several such entities, including port objects,
passive objects, and active objects. These entities differ in how the internal state
is stored and how the controlled access is defined. The stream object is the first
and simplest of these entities.

Here is a general way to create stream objects:

proc {StreamObject S1 X1 ?T1}
case S1
of M|S2 then N X2 T2 in

{NextState M X1 N X2}
T1=N|T2
{StreamObject S2 X2 T2}

else skip end
end
declare S0 X0 T0 in
thread

{StreamObject S0 X0 T0}
end

StreamObject is a kind of “template” for creating a stream object. Its behavior
is defined by NextState , which takes an input message M and a state X1, and
calculates an output message N and a new state X2. Executing StreamObject in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 271

a new thread creates a new stream object with input stream S0, output stream
T0, and initial state X0. The stream object reads messages from the input stream,
does internal calculations, and sends messages on the output stream. In general,
an object can have any fixed number of input and output streams.

Stream objects can be linked together in a graph, where each object receives
messages from one or more other objects and sends messages to one or more other
objects. For example, here is a pipeline of three stream objects:

declare S0 T0 U0 V0 in
thread {StreamObject S0 0 T0} end
thread {StreamObject T0 0 U0} end
thread {StreamObject U0 0 V0} end

The first object receives from S0 and sends on T0, which is received by the second
object, and so forth.

4.3.5 Digital logic simulation

Programming with a directed graph of stream objects is called synchronous pro-
gramming. This is because a stream object can only perform a calculation after
it reads one element from each input stream. This implies that all the stream
objects in the graph are synchronized with each other. It is possible for a stream
object to get ahead of its successors in the graph, but it cannot get ahead of its
predecessors. (In Chapter 8 we will see how to build active objects which can run
completely independently of each other.)

All the examples of stream communication we have seen so far are very simple
kinds of graphs, namely linear chains. Let us now look at an example where
the graph is not a linear chain. We will build a digital logic simulator, i.e., a
program that faithfully models the execution of electronic circuits consisting of
interconnected logic gates. The gates communicate through time-varying signals
that can only take discrete values, such as 0 and 1. In synchronous digital logic
the whole circuit executes in lock step. At each step, each logic gate reads its
input wires, calculates the result, and puts it on the output wires. The steps are
cadenced by a circuit called a clock. Most current digital electronic technology is
synchronous. Our simulator will be synchronous as well.

How do we model signals on a wire and circuits that read these signals? In a
synchronous circuit, a signal varies only in discrete time steps. So we can model
a signal as a stream of 0’s and 1’s. A logic gate is then simply a stream object:
a recursive procedure, running in its own thread, that reads input streams and
calculates output streams. A clock is a recursive procedure that produces an
initial stream at a fixed rate.

Combinational logic

Let us first see how to build simple logic gates. Figure 4.16 shows some typical
gates with their standard pictorial symbols and the boolean functions that define

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

272 Declarative Concurrency

00
0

0
1

1
1

1

x

x
y

y

x
y

z

z

z

x Not

Or

And

Xorz

x Not And Or Xor

z

1

0

0 1 1
0 0 1 1

1 1 0

0 0 0

y

1

Figure 4.16: Digital logic gates

them. The exclusive-or gate is usually called Xor . Each gate has one or more
inputs and an output. The simplest is the Not gate, whose output is simply the
negation of the input. In terms of streams, we define it as follows:

fun {NotGate Xs}
case Xs of X|Xr then (1-X)|{NotGate Xr} end

end

This gate works instantaneously, i.e., the first element of the output stream is
calculated from the first element of the input stream. This is a reasonable way
to model a real gate if the clock period is much longer than the gate delay. It
allows us to model combinational logic, i.e., logic circuits that have no internal
memory. Their outputs are boolean functions of their inputs, and they are totally
dependent on the inputs.

How do we connect several gates together? Connecting streams is easy: the
output stream of one gate can be directly connected to the input stream of an-
other. Because all gates can execute simultaneously, each gate needs to execute
inside its own thread. This gives the final definition of NotG:

local
fun {NotLoop Xs}

case Xs of X|Xr then (1-X)|{NotLoop Xr} end
end

in
fun {NotG Xs}

thread {NotLoop Xs} end
end

end

Calling NotG creates a new Not gate in its own thread. We see that a working
logic gate is much more than just a boolean function; it is actually a concurrent
entity that communicates with other concurrent entities. Let us build other kinds
of gates. Here is a generic function that can build any kind of two-input gate:

fun {GateMaker F}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 273

x

y

z c

s

Figure 4.17: A full adder

fun {$ Xs Ys}
fun {GateLoop Xs Ys}

case Xs#Ys of (X|Xr)#(Y|Yr) then
{F X Y}|{GateLoop Xr Yr}

end
end

in
thread {GateLoop Xs Ys} end

end
end

This function is a good example of higher-order programming: it combines gener-
icity with instantiation. With it we can build many gates:

AndG ={GateMaker fun {$ X Y} X*Y end }
OrG ={GateMaker fun {$ X Y} X+Y-X*Y end }
NandG={GateMaker fun {$ X Y} 1-X*Y end }
NorG ={GateMaker fun {$ X Y} 1-X-Y+X*Y end }
XorG ={GateMaker fun {$ X Y} X+Y-2*X*Y end }

Each of these functions creates a gate whenever it is called. The logical operations
are implemented as arithmetic operations on the integers 0 and 1.

Now we can build combinational circuits. A typical circuit is a full adder,
which adds three one-bit numbers, giving a two-bit result. Full adders can be
chained together to make adders of any number of bits. A full adder has three
inputs, x, y, z, and two outputs c and s. It satisfies the equation x+y+z = (cs)2.
For example, if x = 1, y = 1, and z = 0, then the result is c = 1 and s = 0,
which is (10)2 in binary, namely two. Figure 4.17 defines the circuit. Let us see
how it works. c is 1 if at least two inputs are 1. There are three ways that this
can happen, each of which is covered by an AndG call. s is 1 if the number of
1 inputs is odd, which is exactly the definition of exclusive-or. Here is the same

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

274 Declarative Concurrency

circuit defined in our simulation framework:

proc {FullAdder X Y Z ?C ?S}
K L M

in
K={AndG X Y}
L={AndG Y Z}
M={AndG X Z}
C={OrG K {OrG L M}}
S={XorG Z {XorG X Y}}

end

We use procedural notation for FullAdder because it has two outputs. Here is
an example of using the full adder:

declare
X=1|1|0|_
Y=0|1|0|_
Z=1|1|1|_ C S in
{FullAdder X Y Z C S}
{Browse inp(X Y Z)#sum(C S)}

This adds three sets of input bits.

Sequential logic

Combinational circuits are limited because they cannot store information. Let
us be more ambitious in the kinds of circuits we wish to model. Let us model
sequential circuits, i.e., circuits whose behavior depends on their own past output.
This means simply that some outputs are fed back as inputs. Using this idea, we
can build bistable circuits, i.e., circuits with two stable states. A bistable circuit
is a memory cell that can store one bit of information. Bistable circuits are often
called flip flops.

We cannot model sequential circuits with the approach of the previous section.
What happens if we try? Let us connect an output to an input. To produce an
output, the circuit has to read an input. But there is no input, so no output
is produced either. In fact, this is a deadlock situation since there is a cyclic
dependency: output waits for input and input waits for output.

To correctly model sequential circuits, we have to introduce some kind of time
delay between the inputs and the outputs. Then the circuit will take its input
from the previous output. There is no longer a deadlock. We can model the time
delay by a delay gate, which simply adds one or more elements to the head of the
stream:

fun {DelayG Xs}
0|Xs

end

For an input a| b| c| d|... , DelayG outputs 0| a| b| c| d|... , which is just a
delayed version of the input. With DelayG we can model sequential circuits. Let

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.3 Streams 275

Delay

id

do

c

f

Figure 4.18: A latch

us build a latch, which is a simple kind of bistable circuit that can memorize its
input. Figure 4.18 defines a simple latch. Here is the program:

fun {Latch C DI}
DO X Y Z F

in
F={DelayG DO}
X={AndG F C}
Z={NotG C}
Y={AndG Z DI}
DO={OrG X Y}
DO

end

The latch has two inputs, C and DI , and one output, DO. If C is 0, then the output
tracks DI , i.e., it always has the same value as DI . If C is 1, then the output is
frozen at the last value of DI . The latch is bistable since DOcan be either 0 or 1.
The latch works because of the delayed feedback from DOto F.

Clocking

Assume we have modeled a complex circuit. To simulate its execution, we have
to create an initial input stream of values that are discretized over time. One
way to do it is by defining a clock, which is a timed source of periodic signals.
Here is a simple clock:

fun {Clock}
fun {Loop B}

B|{Loop B}
end

in
thread {Loop 1} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

276 Declarative Concurrency

proc {Gate X1 X2 ... Xn Y1 Y2 ... Ym}
proc {P S1 S2 ... Sn U1 U2 ... Um}

case S1#S2#...#Sn
of (X1|T1)#(X2|T2)#...#(Xn|Tn) then

Y1 Y2 ... Ym
V1 V2 ... Vm

in
{GateStep X1 X2 ... Xn Y1 Y2 ... Ym}
U1=Y1|V1
U2=Y2|V2
...
Um=Ym|Vm
{P T1 T2 ... Tn V1 V2 ... Vm}

end
end

in
thread {P X1 X2 ... Xn Y1 Y2 ... Ym} end

end

Figure 4.19: A linguistic abstraction for logic gates

end

Calling {Clock} creates a stream that grows very quickly, which makes the sim-
ulation go at the maximum rate of the Mozart implementation. We can slow
down the simulation to a human time scale by adding a delay to the clock:

fun {Clock}
fun {Loop B}

{Delay 1000} B|{Loop B}
end

in
thread {Loop 1} end

end

The call {Delay N} causes its thread to suspend for N milliseconds and then to
become running again.

A linguistic abstraction for logic gates

In most of the above examples, logic gates are programmed with a construction
that always has the same shape. The construction defines a procedure with
stream arguments and at its heart there is a procedure with boolean arguments.
Figure 4.19 shows how to make this construction systematic. Given a procedure
GateStep , it defines another procedure Gate . The arguments of GateStep are
booleans (or integers) and the arguments of Gate are streams. We distinguish
the gate’s inputs and outputs. The arguments X1, X2, ..., Xn are the gate’s
inputs. The arguments Y1, Y2, ..., Ymare the gate’s outputs. GateStep defines

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.4 Using the declarative concurrent model directly 277

the instantaneous behavior of the gate, i.e., it calculates the boolean outputs of
the gate from its boolean inputs at a given instant. Gate defines the behavior
in terms of streams. We can say that the construction lifts a calculation with
booleans to become a calculation with streams. We could define an abstraction
that implements this construction. This gives the function GateMaker we defined
before. But we can go further and define a linguistic abstraction, the gate

statement:

gate input 〈x〉1 · · · 〈x〉n output 〈y〉1 · · · 〈y〉m then 〈s〉 end

This statement translates into the construction of Figure 4.19. The body 〈s〉
corresponds to the definition of GateStep : it does a boolean calculation with
inputs 〈x〉1 · · · 〈x〉n and outputs 〈y〉1 · · · 〈y〉m. With the gate statement, we can
define an And gate as follows:

proc {AndG X1 X2 ?X3}
gate input X1 X2 output X3 then X3=X1*X2 end

end

The identifiers X1, X2, and X3 refer to different variables inside and outside the
statement. Inside they refer to booleans and outside to streams. We can embed
gate statements in procedures and use them to build large circuits.

We could implement the gate statement using Mozart’s parser-generator tool
gump. Many symbolic languages, notably Haskell and Prolog, have the ability
to extend their syntax, which makes this kind of addition easy. This is often
convenient for special-purpose applications.

4.4 Using the declarative concurrent model di-

rectly

Stream communication is not the only way to program in the declarative con-
current model. This section explores some other techniques. These techniques
use the declarative concurrent model directly, without taking advantage of an
abstraction such as stream objects.

4.4.1 Order-determining concurrency

“In whichever order these twenty-four cards are laid side by side, the result
will be a perfectly harmonious landscape.”
– From “The Endless Landscape”: 24-piece Myriorama, Leipzig (1830s).

A simple use of concurrency in a declarative program is to find the order of
calculations. That is, we know which calculations have to be done, but because
of data dependencies, we do not know their order. What’s more, the order may
depend on the values of the data, i.e., there is no one static order that is always
right. In this case, we can use dataflow concurrency to find the order automati-
cally.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

278 Declarative Concurrency

proc {DepthFirst Tree Level LeftLim ?RootX ?RightLim}
case Tree
of tree(x:X y:Y left:leaf right:leaf ...) then

X=LeftLim
RootX=X
RightLim=X
thread Y=Scale*Level end

[] tree(x:X y:Y left:L right:leaf ...) then
X=RootX
thread Y=Scale*Level end
{DepthFirst L Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:leaf right:R ...) then
X=RootX
thread Y=Scale*Level end
{DepthFirst R Level+1 LeftLim RootX RightLim}

[] tree(x:X y:Y left:L right:R ...) then
LRootX LRightLim RRootX RLeftLim

in
RootX=X
thread X=(LRootX+RRootX) div 2 end
thread Y=Scale*Level end
thread RLeftLim=LRightLim+Scale end
{DepthFirst L Level+1 LeftLim LRootX LRightLim}
{DepthFirst R Level+1 RLeftLim RRootX RightLim}

end
end

Figure 4.20: Tree drawing algorithm with order-determining concurrency

We give an example of order-determining concurrency using the tree drawing
algorithm of Chapter 3. This algorithm is given a tree and calculates the positions
of all the tree’s nodes so that the tree can be drawn in an aesthetically pleasing
way. The algorithm traverses the tree in two directions: first from the root to
the leaves and then from the leaves back up to the root. During the traversals,
all the node positions are calculated. One of the tricky details in this algorithm
is the order in which the node positions are calculated. Consider the algorithm
definition given in Section 3.4.7. In this definition, Level and LeftLim are inputs
(they propagate down towards the leaves), RootX and RightLim are outputs
(they propagate up towards the root), and the calculations have to be done in
the correct order to avoid deadlock. There are two ways to find the correct order:

• The first way is for the programmer to deduce the order and to program
accordingly. This is what Section 3.4.7 does. This gives the most efficient
code, but if the programmer makes an error then the program blocks with-
out giving a result.

• The second way is for the system to deduce the order dynamically. The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.4 Using the declarative concurrent model directly 279

simplest way to do this is to put each calculation in a different thread.
Dataflow execution then finds the correct order at run time.

Figure 4.20 gives a version of the tree drawing algorithm that uses order-determining
concurrency to find the correct calculation order at run time. Each calculation
that might block is done in a thread of its own.8 The algorithm’s result is the
same as before. This is true because the concurrency is used only to change the
calculation order, not to change which calculations are done. This is an example
of how to use concurrency in declarative programming and remain declarative.
In the above code, the threads are created before the recursive calls. In fact, the
threads can be created at any time and the algorithm will still work.

Constraint programming

Compared to the sequential algorithm of Section 3.4.7, the algorithm of this
section is simpler to design because it moves part of the design burden from the
programmer to the system. There is an even simpler way: by using constraint
programming. This approach is explained in Chapter 12.

Constraint programming lightens the design burden of the programmer even
more, at the cost of needing fairly sophisticated constraint solving algorithms
that might need large execution times. Order-determining concurrency does local
propagation, where simple local conditions (e.g., dataflow dependencies) deter-
mine when constraints run. Constraint programming is a natural step beyond
this: it extends local propagation by also doing search, which looks at candidate
solutions until it finds one that is a complete solution.

4.4.2 Coroutines

A coroutine is a nonpreemptive thread. To explain this precisely, let us use the
term locus of control, which is defined as an executing sequence of instructions.
Figure 4.21 compares coroutines with procedure calls and threads. A procedure
call transfers control once to the procedure body (the call), and then back (the
return). There is only one locus of control in the program. A coroutine is called
explicitly like a procedure, but each coroutine has its has its own locus of control,
like a thread. The difference with a thread is that the latter is controlled implic-
itly: the system automatically switches execution between threads without any
programmer intervention.

Coroutines have two operations, Spawn and Resume. The CId={Spawn P}

function creates a new coroutine and returns its identity CId . This is a bit like
creating a new thread. The new coroutine is initially suspended but will execute
the zero-argument procedure P when it is resumed. The {Resume CId} operation
transfers control from the current coroutine to the coroutine with identity CId .

8Binding operations are not put in their own threads because they never block. What would
be the difference if each binding were put in its own thread?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

280 Declarative Concurrency

Explicit transfer by program

(return)

{Resume C1} {Resume C1}

Procedures

Coroutines

Threads

One locus of control

X=unit

thread {P} end {Wait X}

{Resume C2}{Resume C2}C2={Spawn P}

{P}

New locus of control

Implicit transfer by system
New locus of control

(preemptive scheduling)

Explicit transfer by program

Executing locus of control

Suspended locus of control

Synchronization between loci of control

(nonpreemptive scheduling)

Figure 4.21: Procedures, coroutines, and threads

Each coroutine has the responsibility to transfer control often enough so that the
others have a chance to execute. If this is not done correctly, then a coroutine
might never have a chance to execute. This is called starvation and is usually
due to programmer error. (Starvation is not possible with threads if they are
scheduled fairly.)

Since coroutines do not introduce nondeterminism in the model, programs
using them are still declarative. However, coroutines themselves cannot be imple-
mented in the declarative concurrent model because their implementation needs
explicit state. They can be implemented using the shared-state concurrent model
of Chapter 8. Section 8.2.2 explains how to implement simple versions of Spawn

and Resume using this model. Another way to implement them is by using the
Thread module.

Implementation using the Thread module

Thread scheduling is often made controllable in ways that resemble coroutines.
For example, we can introduce an operation similar to Resume that immediately
preempts a thread, i.e., switches execution to another runnable thread (if one
exists). This is called Thread.preempt in Mozart. We can also introduce op-
erations to control whether a thread is allowed to execute or not. In Mozart,
these operations are called Thread.suspend and Thread.resume . A thread
T can be suspended indefinitely by calling {Thread.suspend T} Here T is the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.4 Using the declarative concurrent model directly 281

fun {Spawn P}
PId in

thread
PId={Thread.this}
{Thread.suspend PId}
{P}

end
PId

end

proc {Resume Id}
{Thread.resume Id}
{Thread.suspend {Thread.this}}

end

Figure 4.22: Implementing coroutines using the Thread module

thread identity, which is obtained by calling T={Thread.this} . The thread
can be resumed by calling {Thread.resume T} . Figure 4.22 shows how to im-
plement Spawn and Resume in terms of Thread.this , Thread.suspend , and
Thread.resume .

4.4.3 Concurrent composition

We have seen how threads are forked using the thread statement. A natural
question that arises is how to join back a forked thread into the original thread
of control. That is, how can the original thread wait until the forked thread has
terminated? This is a special case of detecting termination of multiple threads,
and making another thread wait on that event. The general scheme is quite
easy when using dataflow execution. Assume that we have n statements 〈S1〉, ...,
〈Sn〉. Assume that the statements create no threads while executing.9 Then the
following code will execute each statement in a different thread and wait until
they have all completed:

local X1 X2 X3 ... Xn1 Xn in
thread 〈S〉1 X1=unit end
thread 〈S〉2 X2=X1 end
thread 〈S〉3 X3=X2 end
...
thread 〈S〉n Xn=Xn1 end
{Wait Xn}

end

9The general case in which threads can create new threads, and so forth recursively, is
handled in Section 5.5.3.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

282 Declarative Concurrency

proc {Barrier Ps}
fun {BarrierLoop Ps L}

case Ps of P|Pr then M in
thread {P} M=L end
{BarrierLoop Pr M}

[] nil then L
end

end
S={BarrierLoop Ps unit }

in
{Wait S}

end

Figure 4.23: Concurrent composition

This works by using the unification operation of dataflow variables (see Sec-
tion 2.7.2). When thread Ti terminates, it binds the variables Xi−1 and Xi. This
“short-circuits” the variables. When all threads have terminated then the vari-
ables X1, X2, ..., Xn will be unified (“merged together”) and bound to unit . The
operation {Wait Xn} blocks until Xn is bound.

There is a different way to detect termination with dataflow variables that
does not depend on binding variables to variables, but uses an auxiliary thread:

local X1 X2 X3 ... Xn1 Xn Done in
thread 〈S〉1 X1=unit end
thread 〈S〉2 X2=unit end
thread 〈S〉3 X3=unit end
...
thread 〈S〉n Xn=unit end
thread

{Wait X1} {Wait X2} {Wait X3} ... {Wait Xn}
Done=unit

end
{Wait Done}

end

Using explicit state gives another set of approaches to detect termination. For
example, Section 5.5.3 shows an algorithm that works even when threads can
themselves create new threads.

Control abstraction

Figure 4.23 defines the combinator Barrier that implements concurrent composi-
tion. A combinator is just a control abstraction. The term combinator emphasizes
that the operation is compositional, i.e., that combinators can be nested. This
is also true of control abstractions if they are based on lexically-scoped closures,
like the procedure values of this book.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 283

Barrier takes a list of zero-argument procedures, starts each procedure in its
own thread, and terminates after all these threads terminate. It does termination
detection using the unification scheme of the previous section. Barrier can be
the basis of a linguistic abstraction, the conc statement:

conc
〈S〉1 [] 〈S〉2 [] ... [] 〈S〉n

end

defined as:

{Barrier
[proc {$} 〈S〉1 end

proc {$} 〈S〉2 end
...
proc {$} 〈S〉n end]}

Barrier is more general than the conc statement since the number of statements
does not have to be known at compile time.

4.5 Lazy execution

“All things spring up without a word spoken,
and grow without a claim for their production.”
– Tao-te Ching, Lao-tzu (6th century BC)

“Necessity is the mother of invention.”
“But who is the father?”
“Laziness!”
– Freely adapted from a traditional proverb.

Up to now, we have always executed statements in order, from left to right.
In a statement sequence, we start by executing the first statement. When it is
finished we continue to the next.10 This fact may seem too obvious to require
mentioning. Why should it be any other way? But it is a healthy reflex to
question the obvious! Many significant discoveries have been made by people
questioning the obvious: it led Newton to discover the spectrum of light and
Einstein to discover the postulate of relativity. Let us therefore question the
obvious and see where it leads us.

Are there other execution strategies for declarative programs? It turns out
that there is a second execution strategy fundamentally different from the usual
left-to-right execution. We call this strategy lazy evaluation or demand-driven
evaluation. This in contrast to the usual strategy, which is called eager evaluation
or data-driven evaluation. In lazy evaluation, a statement is only executed when

10Statement order may be determined statically by textual sequence or dynamically by
dataflow synchronization.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

284 Declarative Concurrency

its result is needed somewhere else in the program. For example, take the following
program fragment:

fun lazy {F1 X} 1+X*(3+X*(3+X)) end
fun lazy {F2 X} Y=X*X in Y*Y end
fun lazy {F3 X} (X+1)*(X+1) end
A={F1 10}
B={F2 20}
C={F3 30}
D=A+B

The three functions F1, F2, and F3 are lazy functions. This is indicated with the
annotation “lazy ” in the syntax. Lazy functions are not executed when they are
called. They do not block either. What happens is that they create “stopped
executions” that will be continued only when their results are needed. In our
example, the function calls A={F1 10} , B={F2 20} , and C={F3 30} all create
stopped executions. When the addition D=A+B is invoked, then the values of A

and B are needed. This triggers the execution of the first two calls. After the
calls finish, the addition can continue. Since C is not needed, the third call is not
executed.

The importance of lazy evaluation

Lazy evaluation is a powerful concept that can simplify many programming tasks.
It was first discovered in functional programming, where it has a long and dis-
tinguished history [85]. Lazy evaluation was originally studied as an execution
strategy that is useful only for declarative programs. However, as we will see in
this book, laziness also has a role to play in more expressive computation models
that contain declarative models as subsets.

Lazy evaluation has a role both for programming in the large (for modulariza-
tion and resource management) and for programming in the small (for algorithm
design). For programming in the small, it can help in the design of declarative al-
gorithms that have good amortized or worst-case time bounds. This is explained
in detail by Chris Okasaki in his book on functional data structures [138]. Sec-
tion 4.5.8 gives the main ideas. For programming in the large, it can help mod-
ularize programs. This is explained in detail in the article by John Hughes [87].
For example, consider an application where a producer sends a stream of data to
a consumer. In an eager model, the producer decides when enough data has been
sent. With laziness, it is the consumer that decides. Sections 4.5.3-4.5.6 give this
example and others.

The lazy computation model of this book is slightly different from lazy eval-
uation as used in functional languages such as Haskell and Miranda. Since these
languages are sequential, lazy evaluation does coroutining between the lazy func-
tion and the function that needs the result. In this book, we study laziness in
the more general context of concurrent models. To avoid confusion with lazy
evaluation, which is sequential, we will use the term lazy execution to cover the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 285

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation

Table 4.2: The demand-driven concurrent kernel language

general case which can be concurrent.

Structure of the section

This section defines the concept of lazy execution and surveys the new program-
ming techniques that it makes possible. It has the following structure:

• The first two sections give the fundamentals of lazy execution and show
how it interacts with eager execution and concurrency. Section 4.5.1 defines
the demand-driven concurrent model and gives its semantics. This model
extends the data-driven concurrent model with laziness as a new concept.
It is an amazing fact that this model is declarative. Section 4.5.2 shows six
different declarative computation models that are possible with different
combinations of laziness, dataflow variables, and declarative concurrency.
All of these models are practical and some of them have been used as the
basis of functional programming languages.

• The next four sections, Sections 4.5.3–4.5.6, give programming techniques
using lazy streams. Streams are the most common use of laziness.

• The final three sections give more advanced uses of laziness. Section 4.5.7
introduces the subject by showing what happens when standard list func-
tions are made lazy. Section 4.5.8 shows how to use laziness to design
persistent data structures, with good amortized or worst-case complexities.
Section 4.5.9 explains list comprehensions, which are a higher level of ab-
straction in which to view to lazy streams.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

286 Declarative Concurrency

4.5.1 The demand-driven concurrent model

The demand-driven concurrent model extends the data-driven concurrent model
with just one new concept, the by-need trigger. The guiding principle in the
design of this concept was declarative concurrency. The resulting model satisfies
the definition of declarative concurrency given in Section 4.1.4. This section
defines the semantics of by-need triggers and shows how lazy functions can be
expressed with it.

How can both data-driven and demand-driven concurrency coexist in the same
computation model? The way we have chosen is to make data-driven concurrency
the default and to add an extra operation to introduce a demand-driven part. It is
reasonable to make data-driven concurrency the default because it is much easier
to reason about time and space complexity and to implement efficiently. We find
that often the best way to structure an application is to build it in data-driven
fashion around a demand-driven core.

By-need triggers

To do demand-driven concurrency, we add one instruction, ByNeed, to the ker-
nel language (see Table 4.2). Its operation is extremely simple. The statement
{ByNeed P Y} has the same effect as the statement thread {X Y} end . Both
statements call the procedure P in its own thread with argument Y. The difference
between the statements is when the procedure call is executed. For thread {P

Y} end , we know that {P Y} will always be executed eventually. For {ByNeed

P Y} , we know that {P Y} will be executed only if the value of Y is needed. If
the value of Y is never needed, then {P Y} will never be executed. Here is an
example:

{ByNeed proc {$ A} A=111*111 end Y}
{Browse Y}

This displays Y without calculating its value, since the browser does not need the
value of Y. Invoking an operation that needs the value of Y, for example, Z=Y+1

or {Wait Y} , will trigger the calculation of Y. This causes 12321 to be displayed.

Semantics of by-need triggers

We implement ByNeed in the computation model by adding just one concept,
the by-need trigger. In general, a trigger is a pair consisting of an activation
condition, which is a boolean expression, and an action, which is a procedure.
When the activation condition becomes true, then the action is executed once.
When this happens we say the trigger is activated. For a by-need trigger, the
activation condition is the need for the value of a variable.

We distinguish between programmed triggers, which are written explicitly by
the programmer, and internal triggers, which are part of the computation model.
Programmed triggers are illustrated in Section 4.3.3. A by-need trigger is a kind
of internal trigger.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 287

1. Y is neededThread T1

2. Remove trig(X,Y)

Triggered action

Trigger condition

3. Create T2

4. Evaluate {X Y}T2

Figure 4.24: The by-need protocol

We define the semantics of by-need triggers in three steps. We first add
a trigger store to the execution state. We then define two operations, trigger
creation and activation. Finally, we make precise what we mean by “needing” a
variable.

Extension of execution state A by-need trigger is a pair trig(x, y) of a
dataflow variable y and a one-argument procedure x. Next to the single-assignment
store σ, we add a new store τ called the trigger store. The trigger store contains
all the by-need triggers and is initially empty. The execution state becomes a
triple (MST, σ, τ).

Trigger creation The semantic statement is:

({ByNeed 〈x〉 〈y〉} , E)

Execution consists of the following actions:

• If E(〈y〉) is not determined, then add the trigger trig(E(〈x〉), E(〈y〉)) to the
trigger store.

• Otherwise, if E(〈y〉) is determined, then create a new thread with initial
semantic statement ({ 〈x〉 〈y〉} , E) (see Section 4.1 for thread semantics).

Trigger activation If the trigger store contains trig(x, y) and a need for y
is detected, i.e., there is either a thread that is suspended waiting for y to be
determined, or an attempt to bind y to make it determined, then do the following:

• Remove the trigger from the trigger store.

• Create a new thread with initial semantic statement ({ 〈x〉 〈y〉} , {〈x〉 →
x, 〈y〉 → y}) (see Section 4.1).

These actions can be done at any point in time after the need is detected, since
the need will not go away. The semantics of trigger activation is called the by-need
protocol. It is illustrated in Figure 4.24.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

288 Declarative Concurrency

Memory management There are two modifications to memory management:

• Extending the definition of reachability: A variable x is reachable if the
trigger store contains trig(x, y) and y is reachable.

• Reclaiming triggers: If a variable y becomes unreachable and the trigger
store contains trig(x, y), then remove the trigger.

Needing a variable

What does it mean for a variable to be needed? The definition of need is carefully
designed so that lazy execution is declarative, i.e., all executions lead to logically-
equivalent stores. A variable is needed by a suspended operation if the variable
must be determined for the operation to continue. Here is an example:

thread X={ByNeed fun {$} 3 end } end
thread Y={ByNeed fun {$} 4 end } end
thread Z=X+Y end

To keep the example simple, let us consider that each thread executes atomically.
This means there are six possible executions. For lazy execution to be declarative,
all of these executions must lead to equivalent stores. Is this true? Yes, it is true,
because the addition will wait until the other two triggers are created, and these
triggers will then be activated.

There is a second way a variable can be needed. A variable is needed if it
is determined. If this were not true, then the demand-driven concurrent model
would not be declarative. Here is an example:

thread X={ByNeed fun {$} 3 end } end
thread X=2 end
thread Z=X+4 end

The correct behavior is that all executions should fail. If X=2 executes last then
the trigger has already been activated, binding X to 3, so this is clear. But if X=2

is executed first then the trigger should also be activated.
Let us conclude by giving a more subtle example:

thread X={ByNeed fun {$} 3 end } end
thread X=Y end
thread if X==Y then Z=10 end end

Should the comparison X==Yactivate the trigger on X? According to our definition
the answer is no. If X is made determined then the comparison will still not
execute (since Y is unbound). It is only later on, if Y is made determined, that
the trigger on X should be activated.

Being needed is a monotonic property of a variable. Once a variable is needed,
it stays needed forever. Figure 4.25 shows the stages in a variable’s lifetime. Note
that a determined variable is always needed, just by the fact of being determined.
Monotonicity of the need property is essential to prove that the demand-driven
concurrent model is declarative.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 289

Unbound
needed

+
Determined

needed
+

Unbound

Figure 4.25: Stages in a variable’s lifetime

Using by-need triggers

By-need triggers can be used to implement other concepts that have some “lazy”
or “demand-driven” behavior. For example, they underlie lazy functions and
dynamic linking. Let us examine each in turn.

Implementing lazy functions with by-need A lazy function is evaluated
only when its result is needed. For example, the following function generates a
lazy list of integers:

fun lazy {Generate N} N|{Generate N+1} end

This is a linguistic abstraction that is defined in terms of ByNeed. It is called
like a regular function:

L={Generate 0}
{Browse L}

This will display nothing until L is needed. Let us ask for the third element of L:

{Browse L.2.2.1}

This will calculate the third element, 2, and then display it. The linguistic ab-
straction is translated into the following code that uses ByNeed:

fun {Generate N}
{ByNeed fun {$} N|{Generate N+1} end }

end

This uses procedural abstraction to delay the execution of the function body.
The body is packaged into a zero-argument function which is only called when
the value of {Generate N} is needed. It is easy to see that this works for all
lazy functions. Threads are cheap enough in Mozart that this definition of lazy
execution is practical.

Implementing dynamic linking with by-need We briefly explain what dy-
namic linking is all about and the role played by lazy execution. Dynamic link-
ing is used to implement a general approach to structuring applications called
component-based programming. This approach was introduced in Section 3.9

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

290 Declarative Concurrency

and is explained fully in Chapters 5 and 6. Briefly, an application’s source code
consists of a set of component specifications, called functors. A running applica-
tion consists of instantiated components, called modules. A module is represented
by a record that groups together the module’s operations. Each record field ref-
erences one operation. Components are linked when they are needed, i.e., their
functors are loaded into memory and instantiated. As long as the module is not
needed, then the component is not linked. When a program attempts to access
a module field, then the component is needed and by-need execution is used to
link the component.

4.5.2 Declarative computation models

At this point, we have defined a computation model with both laziness and con-
currency. It is important to realize that these are independent concepts. Concur-
rency can make batch computations incremental. Laziness can reduce the amount
of computation needed to get a result. A language can have neither, either, or
both of these concepts. For example, a language with laziness but no concurrency
does coroutining between a producer and a consumer.

Let us now give an overview of all the declarative computation models we
know. All together, we have added three concepts to strict functional program-
ming that preserve declarativeness while increasing expressiveness: dataflow vari-
ables, declarative concurrency, and laziness. Adding these concepts in various
combinations gives six different practical computation models, as summarized in
Figure 4.26.11 Dataflow variables are a prerequisite for declarative concurren-
cy, since they are the mechanism by which threads synchronize and communi-
cate. However, a sequential language, like the model of Chapter 2, can also have
dataflow variables and use them to good effect.

Since laziness and dataflow variables are independent concepts, this means
there are three special moments in a variable’s lifetime:

1. Creation of the variable as an entity in the language, such that it can be
placed inside data structures and passed to or from a function or proce-
dure. The variable is not yet bound to its value. We call such a variable a
“dataflow variable”.

2. Specification of the function or procedure call that will evaluate the value
of the variable (but the evaluation is not done yet).

3. Evaluation of the function. When the result is available, it is bound to the
variable. The evaluation might be done according to a trigger, which may
be implicit such as a “need” for the value. Lazy execution uses implicit
need.

11This diagram leaves out search, which leads to another kind of declarative programming
called relational programming. This is explained in Chapter 9.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 291

(1), (2), (3): Declaring, specifying, and evaluating are done separately

dataflow variables
with values and

(e.g., Scheme, ML)

(e.g., Haskell) dataflow variables
lazy FP with

sequential

dataflow variables
with values and

concurrent
sequential
with values

eager execution

(strictness)

lazy execution

(1)&(2)&(3)

(1)&(2), (3) (1), (2), (3)

(1), (2)&(3) (1), (2)&(3)

(1), (2), (3)

(2): Specify the function to calculate the variable’s value
(3): Evaluate the function and bind the variable

programming
strict functional

programming
lazy functional

data−driven
concurrent model
(e.g., Section 4.1)

demand−driven
concurrent model

(e.g., Section 4.5.1)

(1), (2)&(3): Declaring is done first; specifying and evaluating are done later and coincide

(1): Declare a variable in the store

(1)&(2), (3): Declaring and specifying coincide; evaluating is done later
(1)&(2)&(3): Declaring, specifying, and evaluating all coincide

declarative model
(e.g., Chapter 2,

Prolog)

Figure 4.26: Practical declarative computation models

These three moments can be done separately or at the same time. Different
languages enforce different possibilities. This gives four variant models in all.
Figure 4.26 lists these models, as well as the two additional models that result
when concurrency is added as well. For each of the variants, we show an example
with a variable X that will eventually be bound to the result of the computation
11*11 . Here are the models:

• In a strict functional language with values, such as Scheme or Standard
ML, moments (1) & (2) & (3) must always coincide. This is the model of
Section 2.7.1. For example:

declare X=11*11 % (1)+(2)+(3) together

• In a lazy functional language with values, such as Haskell, moments (1) &
(2) always coincide, but (3) may be separate. For example (defining first a
lazy function):

declare fun lazy {LazyMul A B} A*B end
declare X={LazyMul 11 11} % (1)+(2) together
{Wait X} % (3) separate

This can also be written as:

declare X={ fun lazy {$} 11*11 end } % (1)+(2) together
{Wait X} % (3) separate

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

292 Declarative Concurrency

• In a strict language with dataflow variables, moment (1) may be separate
and (2) & (3) always coincide. This is the declarative model, which is
defined in Chapter 2. This is also used in logic programming languages
such as Prolog. For example:

declare X % (1) separate
X=11*11 % (2)+(3) together

If concurrency is added, this gives the data-driven concurrent model de-
fined at the beginning of this chapter. This is used in concurrent logic
programming languages. For example:

declare X % (1) separate
thread X=11*11 end % (2)+(3) together
thread if X>100 then {Browse big} end end % Conditional

Because dataflow variables are single-assignment, the conditional always
gives the same result.

• In the demand-driven concurrent model of this chapter, moments (1), (2),
(3) may all be separate. For example:

declare X % (1) separate
X={ fun lazy {$} 11*11 end } % (2) separate
{Wait X} % (3) separate

When concurrency is used explicitly, this gives:

declare X % (1)
thread X={ fun lazy {$} 11*11 end } end % (2)
thread {Wait X} end % (3)

This is the most general variant model. The only connection between the
three moments is that they act on the same variable. The execution of (2)
and (3) is concurrent, with an implicit synchronization between (2) and (3):
(3) waits until (2) has defined the function.

In all these examples, X is eventually bound to 121 . Allowing the three moments
to be separate gives maximum expressiveness within a declarative framework. For
example, laziness allows to do declarative calculations with potentially infinite
lists. Laziness allows to implement many data structures as efficiently as with
explicit state, yet still declaratively (see, e.g., [138]). Dataflow variables allow to
write concurrent programs that are still declarative. Using both together allows to
write concurrent programs that consist of stream objects communicating through
potentially infinite streams.

One way to understand the added expressiveness is to realize that dataflow
variables and laziness each add a weak form of state to the model. In both cases,
restrictions on using the state ensure the model is still declarative.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 293

Why laziness with dataflow must be concurrent

In a functional language without dataflow variables, laziness can be sequential.
In other words, demand-driven arguments to a lazy function can be evaluated
sequentially (i.e., using coroutining). If dataflow variables are added, this is no
longer the case. A deadlock can occur if the arguments are evaluated sequentially.
To solve the problem, the arguments must be evaluated concurrently. Here is an
example:

local
Z
fun lazy {F1 X} X+Z end
fun lazy {F2 Y} Z=1 Y+Z end

in
{Browse {F1 1}+{F2 2}}

end

This defines F1 and F2 as lazy functions. Executing this fragment displays 5
(do you see why?). If {F1 1} and {F2 2} were executed sequentially instead
of concurrently, then this fragment would deadlock. This is because X+Z would
block and Z=1 would never be reached. A question for the astute reader: which
of the models in Figure 4.26 has this problem? The binding of Z done by F2 is
a kind of “declarative side effect”, since F2 changes its surroundings through a
means separate from its arguments. Declarative side effects are usually benign.

It is important to remember that a language with dataflow variables and
concurrent laziness is still declarative. There is no observable nondeterminism.
{F1 1}+{F2 2} always gives the same result.

4.5.3 Lazy streams

In the producer/consumer example of Section 4.3.1, it is the producer that decides
how many list elements to generate, i.e., execution is eager. This is a reasonable
technique if the total amount of work is finite and does not use many system
resources (e.g., memory or processor time). On the other hand, if the total work
potentially uses many resources, then it may be better to use lazy execution.
With lazy execution, the consumer decides how many list elements to generate.
If an extremely large or a potentially unbounded number of list elements are
needed, then lazy execution will use many fewer system resources at any given
point in time. Problems that are impractical with eager execution can become
practical with lazy execution. On the other hand, lazy execution may use many
more total resources, because of the cost of its implementation. The need for
laziness must take both of these factors into account.

Lazy execution can be implemented in two ways in the declarative concurrent
model: with programmed triggers or with internal triggers. Section 4.3.3 gives
an example with programmed triggers. Programmed triggers require explicit
communications from the consumer to the producer. A simpler way is to use

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

294 Declarative Concurrency

internal triggers, i.e., for the language to support laziness directly. In that case
the language semantics ensures that a function is evaluated only if its result is
needed. This makes the function definition simpler because it does not have to
do the “bookkeeping” of the trigger messages. In the demand-driven concurrent
model we give syntactic support to this technique: the function can be annotated
as “lazy ”. Here is how to do the previous example with a lazy function that
generates a potentially infinite list:

fun lazy {Generate N}
N|{Generate N+1}

end

fun {Sum Xs A Limit}
if Limit>0 then

case Xs of X|Xr then
{Sum Xr A+X Limit-1}

end
else A end

end

local Xs S in
Xs={Generate 0} % Producer
S={Sum Xs 0 150000} % Consumer
{Browse S}

end

As before, this displays 11249925000 . Note that the Generate call does not
need to be put in its own thread, in contrast to the eager version. This is because
Generate creates a by-need trigger and then completes.

In this example, it is the consumer that decides how many list elements should
be generated. With eager execution it was the producer that decided. In the con-
sumer, it is the case statement that needs a list pair, so it implicitly triggers the
generation of a new list element X. To see the difference in resource consumption
between this version and the preceding version, try both with 150000 and then
with 15000000 elements. With 150000 elements, there are no memory problems
(on a personal computer with 64MB memory) and the eager version is faster.
This is because of the overhead of the lazy version’s implicit triggering mecha-
nism. With 15000000 elements, the lazy version needs only a very small memory
space during execution, while the eager version needs a huge memory space. Lazy
execution is implemented with the ByNeed operation (see Section 4.5.1).

Declaring lazy functions

In lazy functional languages, all functions are lazy by default. In contrast to this,
the demand-driven concurrent model requires laziness to be declared explicitly,
with the lazy annotation. We find that this makes things simpler both for
the programmer and the compiler, in several ways. The first way has to do
with efficiency and compilation. Eager evaluation is several times more efficient

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 295

than lazy evaluation because there is no triggering mechanism. To get good
performance in a lazy functional language, this implies that the compiler has
to determine which functions can safely be implemented with eager evaluation.
This is called strictness analysis. The second way has to do with language design.
An eager language is much easier to extend with non-declarative concepts, e.g.,
exceptions and state, than a lazy language.

Multiple readers

The multiple reader example of Section 4.3.1 will also work with lazy execution.
For example, here are three lazy consumers using the Generate and Sumfunctions
defined in the previous section:

local Xs S1 S2 S3 in
Xs={Generate 0}
thread S1={Sum Xs 0 150000} end
thread S2={Sum Xs 0 100000} end
thread S3={Sum Xs 0 50000} end

end

Each consumer thread asks for stream elements independently of the others. If
one consumer is faster than the others, then the others may not have to ask for
the stream elements, if they have already been calculated.

4.5.4 Bounded buffer

In the previous section we built a bounded buffer for eager streams by explicitly
programming the laziness. Let us now build a bounded buffer using the laziness
of the computation model. Our bounded buffer will take a lazy input stream and
return a lazy output stream.

Defining a lazy bounded buffer is a good exercise in lazy programming be-
cause it shows how lazy execution and data-driven concurrency interact. Let us
do the design in stages. We first specify its behavior. When the buffer is first
called, it fills itself with n elements by asking the producer. Afterwards, when-
ever the consumer asks for an element, the buffer in its turn asks the producer
for another element. In this way, the buffer always contains up to n elements.
Figure 4.27 shows the resulting definition. The call {List.drop In N} skips
over N elements of the stream In , giving the stream End. This means that End

always “looks ahead” N elements with respect to In . The lazy function Loop is
iterated whenever a stream element is needed. It returns the next element I but
also asks the producer for one more element, by calling End.2 . In this way, the
buffer always contains up to N elements.

However, the buffer of Figure 4.27 is incorrect. The major problem is due to
the way lazy execution works: the calculation that needs the result will block
while the result is being calculated. This means that when the buffer is first

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

296 Declarative Concurrency

fun {Buffer1 In N}
End={List.drop In N}
fun lazy {Loop In End}

case In of I|In2 then
I|{Loop In2 End.2}

end
end

in
{Loop In End}

end

Figure 4.27: Bounded buffer (naive lazy version)

fun {Buffer2 In N}
End=thread {List.drop In N} end
fun lazy {Loop In End}

case In of I|In2 then
I|{Loop In2 thread End.2 end }

end
end

in
{Loop In End}

end

Figure 4.28: Bounded buffer (correct lazy version)

called, it cannot serve any consumer requests until the producer generates n el-
ements. Furthermore, whenever the buffer serves a consumer request, it cannot
give an answer until the producer has generated the next element. This is too
much synchronization: it links together the producer and consumer in lock step!
A usable buffer should on the contrary decouple the producer and consumer. Con-
sumer requests should be serviced whenever the buffer is nonempty, independent
of the producer.

It is not difficult to fix this problem. In the definition of Buffer1 , there are
two places where producer requests are generated: in the call to List.drop and
in the operation End.2 . Putting a thread ... end in both places solves the
problem. Figure 4.28 shows the fixed definition.

Example execution

Let us see how this buffer works. We define a producer that generates an infinite
list of successive integers, but only one integer per second:

fun lazy {Ints N}
{Delay 1000}
N|{Ints N+1}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 297

Now let us create this list and add a buffer of 5 elements:

declare
In={Ints 1}
Out={Buffer2 In 5}
{Browse Out}
{Browse Out.1}

The call Out.1 requests one element. Calculating this element takes one second.
Therefore, the browser first displays Out<Future> and one second later adds
the first element, which updates the display to 1|_<Future> . The notation
“_<Future> ” denotes a read-only variable. In the case of lazy execution, this
variable has an internal trigger attached to it. Now wait at least 5 seconds, to let
the buffer fill up. Then enter:

{Browse Out.2.2.2.2.2.2.2.2.2.2}

This requests 10 elements. Because the buffer only has 5 elements, it is immedi-
ately emptied, displaying:

1|2|3|4|5|6|_<Future>

One more element is added each second for four seconds. The final result is:

1|2|3|4|5|6|7|8|9|10|_<Future>

At this point, all consumer requests are satisfied and the buffer will start filling
up again at the rate of one element per second.

4.5.5 Reading a file lazily

The simplest way to read a file is as a list of characters. However, if the file is
very large, this uses an enormous amount of memory. This is why files are usually
read incrementally, a block at a time (where a block is a contiguous piece of the
file). The program is careful to keep in memory only the blocks that are needed.
This is memory-efficient, but is cumbersome to program.

Can we have the best of both worlds: to read the file as a list of characters
(which keeps programs simple), yet to read in only the parts we need (which
saves memory)? With lazy execution the answer is yes. Here is the function
ReadListLazy that solves the problem:

fun {ReadListLazy FN}
{File.readOpen FN}
fun lazy {ReadNext}
L T I in

{File.readBlock I L T}
if I==0 then T=nil {File.readClose} else T={ReadNext} end
L

end
in

{ReadNext}
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

298 Declarative Concurrency

Times 2

Times 3

Times 5

1

Merge

Figure 4.29: Lazy solution to the Hamming problem

It uses three operations in the File module (which is available on the book’s Web
site): {File.readOpen FN} , which opens file FN for reading, {File.readBlock

I L T} , which reads a block in the difference list L#T and returns its size in I ,
and {File.readClose} , which closes the file.

The ReadListLazy function reads a file lazily, a block at a time. Whenever
a block is exhausted then another block is read automatically. Reading blocks
is much more efficient than reading single characters since only one lazy call is
needed for a whole block. This means that ReadListLazy is practically speaking
just as efficient as the solution in which we read blocks explicitly. When the end
of file is reached then the tail of the list is bound to nil and the file is closed.

The ReadListLazy function is acceptable if the program reads all of the file,
but if it only reads part of the file, then it is not good enough. Do you see why
not? Think carefully before reading the answer in the footnote!12 Section 6.9.2
shows the right way to use laziness together with external resources such as files.

4.5.6 The Hamming problem

The Hamming problem, named after Richard Hamming, is a classic problem of
demand-driven concurrency. The problem is to generate the first n integers of
the form 2a3b5c with a, b, c ≥ 0. Hamming actually solved a more general version,
which considers products of the first k primes. We leave this one to an exercise!
The idea is to generate the integers in increasing order in a potentially infinite
stream. At all times, a finite part h of this stream is known. To generate the next
element of h, we take the least element x of h such that 2x is bigger than the last
element of h. We do the same for 3 and 5, giving y and z. Then the next element

12It is because the file stays open during the whole execution of the program–this consumes
valuable system resources including a file descriptor and a read buffer.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 299

of h is min(2x, 3y, 5z). We start the process by initializing h to have the single
element 1. Figure 4.29 gives a picture of the algorithm. The simplest way to
program this algorithm is with two lazy functions. The first function multiplies
all elements of a list by a constant:

fun lazy {Times N H}
case H of X|H2 then N*X|{Times N H2} end

end

The second function takes two lists of integers in increasing order and merges
them into a single list:

fun lazy {Merge Xs Ys}
case Xs#Ys of (X|Xr)#(Y|Yr) then

if X<Y then X|{Merge Xr Ys}
elseif X>Y then Y|{Merge Xs Yr}
else X|{Merge Xr Yr}
end

end
end

Each value should appear only once in the output. This means that when X==Y,
it is important to skip the value in both lists Xs and Ys. With these two functions,
it is easy to solve the Hamming problem:

H=1|{Merge {Times 2 H}
{Merge {Times 3 H}

{Times 5 H}}}
{Browse H}

This builds a three-argument merge function using two two-argument merge func-
tions. If we execute this as is, then it displays very little:

1|_<Future>

No elements are calculated. To get the first n elements of H, we need to ask that
they be calculated. For example, we can define the procedure Touch :

proc {Touch N H}
if N>0 then {Touch N-1 H.2} else skip end

end

This traverses N elements of H, which causes them to be calculated. Now we can
calculate 20 elements by calling Touch :

{Touch 20 H}

This displays:

1|2|3|4|5|6|8|9|10|12|15|16|18|20|24|25|27|30|32|36|_<Future>

4.5.7 Lazy list operations

All the list functions of Section 3.4 can be made lazy. It is insightful to see how
this changes their behavior.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

300 Declarative Concurrency

Lazy append

We start with a simple function: a lazy version of Append :

fun lazy {LAppend As Bs}
case As
of nil then Bs
[] A|Ar then A|{LAppend Ar Bs}
end

end

The only difference with the eager version is the “lazy ” annotation. The lazy
definition works because it is recursive: it calculates part of the answer and then
calls itself. Calling LAppend with two lists will append them lazily:

L={LAppend "foo" "bar"}
{Browse L}

We say this function is incremental: forcing its evaluation only does enough of the
calculation to generate one additional output element, and then creates another
suspension. If we “touch” successive elements of L this will successively show f ,
o, o, one character at a time. However, after we have exhausted "foo" , then
LAppend is finished, so it will show "bar" all at once. How do we make a list
append that returns a completely lazy list? One way is to give LAppend a lazy
list as second argument. First define a function that takes any list and returns a
lazy version:

fun lazy {MakeLazy Ls}
case Ls
of X|Lr then X|{MakeLazy Lr}
else nil end

end

MakeLazy works by iterating over its input list, i.e., like LAppend , it calculates
part of the answer and then calls itself. This only changes the control flow;
considered as a function between lists, MakeLazy is an identity. Now call LAppend

as follows:

L={LAppend "foo" {MakeLazy "bar"}}
{Browse L}

This will lazily enumerate both lists, i.e., it successively returns the characters f ,
o, o, b, a, and r .

Lazy mapping

We have seen Map in Section 3.6; it evaluates a function on all elements of a list.
It is easy to define a lazy version of this function:

fun lazy {LMap Xs F}
case Xs
of nil then nil

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 301

[] X|Xr then {F X}|{LMap Xr F}
end

end

This function takes any list or lazy list Xs and returns a lazy list. Is it incremental?

Lazy integer lists

We define the function {LFrom I J} that generates a lazy list of integers from
I to J :

fun {LFrom I J}
fun lazy {LFromLoop I}

if I>J then nil else I|{LFromLoop I+1} end
end
fun lazy {LFromInf I} I|{LFromInf I+1} end

in
if J==inf then {LFromInf I} else {LFromLoop I} end

end

Why is LFrom itself not annotated as lazy?13 This definition allows J=inf , in
which case an infinite lazy stream of integers is generated.

Lazy flatten

This definition shows that lazy difference lists are as easy to generate as lazy
lists. As with the other lazy functions, it suffices to annotate as lazy all recursive
functions that calculate part of the solution on each iteration.

fun {LFlatten Xs}
fun lazy {LFlattenD Xs E}

case Xs
of nil then E
[] X|Xr then

{LFlattenD X {LFlattenD Xr E}}
[] X then X|E
end

end
in

{LFlattenD Xs nil}
end

We remark that this definition has the same asymptotic efficiency as the eager
definition, i.e., it takes advantage of the constant-time append property of differ-
ence lists.

13Only recursive functions need to be controlled, since they would otherwise do a potentially
unbounded calculation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

302 Declarative Concurrency

Lazy reverse

Up to now, all the lazy list functions we introduced are incremental, i.e., they are
able to produce one element at a time efficiently. Sometimes this is not possible.
For some list functions, the work required to produce one element is enough to
produce them all. We call these functions monolithic. A typical example is list
reversal. Here is a lazy definition:

fun {LReverse S}
fun lazy {Rev S R}

case S
of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

Let us call this function:

L={LReverse [a b c]}
{Browse L}

What happens if we touch the first element of L? This will calculate and display
the whole reversed list! Why does this happen? Touching L activates the sus-
pension {Rev [a b c] nil} (remember that LReverse itself is not annotated
as lazy). This executes Rev and creates a new suspension for {Rev [b c] [a]}

(the recursive call), but no list pair. Therefore the new suspension is immedi-
ately activated. This does another iteration and creates a second suspension,
{Rev [c] [b a]} . Again, no list pair is available, so the second suspension is
immediately activated. This continues until Rev returns [c b a] . At this point,
there is a list pair so the evaluation completes. The need for one list pair has
caused the whole list reversal to be done. This is what we mean by a monolithic
function. For list reversal, another way to understand this behavior is to think
of what list reversal means: the first element of a reversed list is the last element
of the input list. We therefore have to traverse the whole input list, which lets
us construct the whole reversed list.

Lazy filter

To complete this section, we give another example of an incremental function,
namely filtering an input list according to a condition F:

fun lazy {LFilter L F}
case L
of nil then nil
[] X|L2 then

if {F X} then X|{LFilter L2 F} else {LFilter L2 F} end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 303

We give this function because we will need it for list comprehensions in Sec-
tion 4.5.9.

4.5.8 Persistent queues and algorithm design

In Section 3.4.5 we saw how to build queues with constant-time insert and delete
operations. Those queues only work in the ephemeral case, i.e., only one version
exists at a time. It turns out we can use laziness to build persistent queues with
the same time bounds. A persistent queue is one that supports multiple versions.
We first show how to make an amortized persistent queue with constant-time
insert and delete operations. We then show how to achieve worst-case constant-
time.

Amortized persistent queue

We first tackle the amortized case. The reason why the amortized queue of
Section 3.4.5 is not persistent is that Delete sometimes does a list reversal,
which is not constant time. Each time a Delete is done on the same version,
another list reversal is done. This breaks the amortized complexity if there are
multiple versions.

We can regain the amortized complexity by doing the reverse as part of a lazy
function call. Invoking the lazy function creates a suspension instead of doing the
reverse right away. Sometime later, when the result of the reverse is needed, the
lazy function does the reverse. With some cleverness, this can solve our problem:

• Between the creation of the suspension and the actual execution of the
reverse, we arrange that there are enough operations to pay back the costs
incurred by the reverse.

• But the reverse can be paid for only once. What if several versions want
to do the reverse? This is not a problem. Laziness guarantees that the
reverse is only done once, even if more than one version triggers it. The first
version that needs it will activate the trigger and save the result. Subsequent
versions will use the result without doing any calculation.

This sounds nice, but it depends on being able to create the suspension far enough
in advance of the actual reverse. Can we do it? In the case of a queue, we can.
Let us represent the queue as a 4-tuple:

q(LenF F LenR R)

F and Rare the front and rear lists, like in the ephemeral case. We add the integers
LenF and LenR, which give the lengths of F and R. We need these integers to test
when it is time to create the suspension. At some magic instant, we move the
elements of R to F. The queue then becomes:

q(LenF+LenR {LAppend F {Reverse R}} 0 nil)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

304 Declarative Concurrency

In Section 3.4.5 we did this (eagerly) when F became empty, so the Append did
not take any time. But this is too late to keep the amortized complexity, since
the reverse is not paid for (e.g., maybe R is a very big list). We remark that the
reverse gets evaluated in any case when the LAppend has finished, i.e., after |F|
elements are removed from the queue. Can we arrange that the elements of F

pay for the reverse? We can, if we create the suspension when |R| ≈ |F|. Then
removing each element of F pays for part of the reverse. By the time we have to
evaluate the reverse, it is completely paid for. Using the lazy append makes the
payment incremental. This gives the following implementation:

fun {NewQueue} q(0 nil 0 nil) end

fun {Check Q}
case Q of q(LenF F LenR R) then

if LenF>=LenR then Q
else q(LenF+LenR {LAppend F {Reverse R}} 0 nil) end

end
end

fun {Insert Q X}
case Q of q(LenF F LenR R) then

{Check q(LenF F LenR+1 X|R)}
end

end

fun {Delete Q X}
case Q of q(LenF F LenR R) then F1 in

F=X|F1 {Check q(LenF-1 F1 LenR R)}
end

end

Both Insert and Delete call the function Check , which chooses the moment to
do the lazy call. Since Insert increases |R| and Delete decreases |F|, eventually
|R| becomes as large as |F|. When |R| = |F|+1, Check does the lazy call {LAppend

F {Reverse R}} . The function LAppend is defined in Section 4.5.7.
Let us summarize this technique. We replace the original eager function call

by a lazy function call. The lazy call is partly incremental and partly monolithic.
The trick is that the lazy call starts off being incremental. By the time the
monolithic part is reached, there have been enough incremental steps so that the
monolithic part is paid for. It follows that the result is amortized constant-time.

For a deeper discussion of this technique including its application to other
data structures and a proof of correctness, we recommend [138].

Worst-case persistent queue

The reason the above definition is not worst-case constant-time is because Reverse

is monolithic. If we could rewrite it to be incremental, then we would have a so-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 305

lution with constant-time worst-case behavior. But list reversal cannot be made
incremental, so this does not work. Let us try another approach.

Let us look at the context of the call to Reverse . It is called together with a
lazy append:

{LAppend F {Reverse R}}

This first executes the append incrementally. When all elements of F have been
passed to the output, then the reverse is executed monolithically. The cost of the
reverse is amortized over the steps of the append.

Instead of amortizing the cost of the reverse, perhaps we can actually do the
reverse together with the steps of the append. When the append is finished, the
reverse will be finished as well. This is the heart of the solution. To implement it,
let us compare the definitions of reverse and append. Reverse uses the recursive
function Rev:

fun {Reverse R}
fun {Rev R A}

case R
of nil then A
[] X|R2 then {Rev R2 X|A} end

end
in {Rev R nil} end

Rev traverses R, accumulates a solution in A, and then returns the solution. Can
we do both Rev and LAppend in a single loop? Here is LAppend :

fun lazy {LAppend F B}
case F
of nil then B
[] X|F2 then X|{LAppend F2 B}
end

end

This traverses F and returns B. The recursive call is passed B unchanged. Let
us change this to use B to accumulate the result of the reverse! This gives the
following combined function:

fun lazy {LAppRev F R B}
case F#R
of nil#[Y] then Y|B
[] (X|F2)#(Y|R2) then X|{LAppRev F2 R2 Y|B}
end

end

LAppRev traverses both F and R. During each iteration, it calculates one element
of the append and accumulates one element of the reverse. This definition only
works if R has exactly one more element than F, which is true for our queue. The
original call:

{LAppend F {Reverse R}}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

306 Declarative Concurrency

is replaced by:

{LAppRev F R nil}

which gives exactly the same result except that LAppRev is completely incremen-
tal. The definition of Check then becomes:

fun {Check Q}
case Q of q(LenF F LenR R) then

if LenR=<LenF then Q
else q(LenF+LenR {LAppRev F R nil} 0 nil) end

end
end

Careful analysis shows that the worst-case bound of this queue is O(logn), and
not O(1) as our intuition might expect it to be. The bound is much better than
O(n), but it is not constant. See the Exercises for an explanation and a suggestion
on how to achieve a constant bound.

Taking a program with a worst-case bound and adding laziness naively will
give an amortized bound. This is because laziness changes where the function calls
are executed, but does not do more of them (the eager case is an upper bound).
The definition of this section is remarkable because it does just the opposite: it
starts with an amortized bound and uses laziness to give a worst-case bound.

Lessons for algorithm design

Laziness is able to shuffle calculations around, spreading them out or bunching
them together without changing the final result. This is a powerful tool for
designing declarative algorithms. It has to be used carefully, however. Used
naively, laziness can destroy perfectly good worst-case bounds, turning them into
amortized bounds. Used wisely, laziness can improve amortized algorithms: it
can sometimes make the algorithm persistent and it can sometimes transform the
amortized bound into a worst-case bound.

We can outline a general scheme. Start with an algorithm A that has an
amortized bound O(f(n)) when used ephemerally. For example, the first queue
of Section 3.4.5 has an amortized bound of O(1). We can use laziness to move
from ephemeral to persistent while keeping this time bound. There are two
possibilities:

• Often we can get a modified algorithm A’ that keeps the amortized bound
O(f(n)) when used persistently. This is possible when the expensive opera-
tions can be spread out to be mostly incremental but with a few remaining
monolithic operations.

• In a few cases, we can go farther and get a modified algorithm A” with
worst-case bound O(f(n)) when used persistently. This is possible when
the expensive operations can be spread out to be completely incremental.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.5 Lazy execution 307

This section realizes both possibilities with the first queue of Section 3.4.5. The
persistent algorithms so obtained are often quite efficient, especially if used by
applications that really need the persistence. They compare favorably with algo-
rithms in stateful models.

4.5.9 List comprehensions

List comprehensions are a powerful tool for calculating with lazy streams. They
allow to specify lazy streams in a way that closely resembles the mathematical
notation of set comprehension. For example, the mathematical notation {x ∗
y | 1 ≤ x ≤ 10, 1 ≤ y ≤ x} specifies the set {1∗1, 2∗1, 2∗2, 3∗1, 3∗2, 3∗3, ...10∗10},
i.e. {1, 2, 3, 4, 5, ..., 100}. We turn this notation into a practical programming tool
by modifying it to specify not sets, but lazy streams. This makes the notation
very efficient to implement, while keeping it at a high level of abstraction. For
example, the list comprehension [x ∗ y | 1 ≤ x ≤ 10, 1 ≤ y ≤ x] (notice the
square list brackets!) specifies the list [1*1 2*1 2*2 3*1 3*2 3*3 · · · 10*10]

(in this order), i.e., the list [1 2 4 3 6 9 · · · 100] . The list is calculated lazily.
Because of laziness the list comprehension can generate a potentially unbounded
stream, not just a finite list.

List comprehensions have the following basic form:

[f(x) | x← generator(a1, ..., an), guard(x, a1, ..., an)]

The generator x← generator(a1, ..., an) calculates a lazy list whose elements are
successively assigned to x. The guard guard(x, a1, ..., an) is a boolean function.
The list comprehension specifies a lazy list containing the elements f(x), where
f is any function and x takes on values from the generator for which the guard is
true. In the general case, there can be any number of variables, generators, and
guards. A typical generator is from:

x← from(a, b)

Here x takes on the integer values a, a+1, ..., b, in that order. Calculation is done
from left to right. The generators, when taken from left to right, are considered
as nested loops: the rightmost generator is the innermost loop.

There is a close connection between list comprehensions and the relational
programming of Section 9. Both provide lazy interfaces to infinitely long se-
quences and make it easy to write “generate-and-test” programs. Both allow to
specify the sequences in a declarative way.

While list comprehensions are usually considered to be lazy, they can in fact
be programmed in both eager and lazy versions. For example, the list compre-
hension:

z = [x#x | x← from(1, 10)]

can be programmed in two ways. An eager version is:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

308 Declarative Concurrency

Z = {Map {From 1 10} fun {$ X} X#X end }

For the eager version, the declarative model of Chapter 2 is good enough. It uses
the Map function of Section 3.6.3 and the From function which generates a list of
integers. A lazy version is:

Z = {LMap {LFrom 1 10} fun {$ X} X#X end }

The lazy version uses the LMap and LFrom functions of the previous section. This
example and most examples of this section can be done with either a lazy or eager
version. Using the lazy version is always correct. Using the eager version is a
performance optimization. It is several times faster if the cost of calculating the
list elements is not counted. The optimization is only possible if the whole list
fits in memory. In the rest of this section, we always use the lazy version.

Here is a list comprehension with two variables:

z = [x#y | x← from(1, 10), y ← from(1, x)]

This can be programmed as:

Z = {LFlatten
{LMap {LFrom 1 10} fun {$ X}

{LMap {LFrom 1 X} fun {$ Y}
X#Y

end }
end }}

We have seen LFlatten in the previous section; it converts a list of lists to a
“flat” lazy list, i.e., a lazy list that contains all the elements, but no lists. We
need LFlatten because otherwise we have a list of lists. We can put LFlatten

inside LMap:

fun {FMap L F}
{LFlatten {LMap L F}}

end

This simplifies the program:

Z = {FMap {LFrom 1 10} fun {$ X}
{LMap {LFrom 1 X} fun {$ Y}

X#Y
end }

end }

Here is an example with two variables and a guard:

z = [x#y | x← from(1, 10), y ← from(1, 10), x + y ≤ 10]

This gives the list of all pairs x#y such that the sum x + y is at most 10. It can
be programmed as:

Z = {LFilter
{FMap {LFrom 1 10} fun {$ X}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 309

{LMap {LFrom 1 10} fun {$ Y}
X#Y

end }
end }
fun {$ X#Y} X+Y=<10 end }

This uses the function LFilter defined in the previous section. We can refor-
mulate this example to be more efficient. The idea is to generate as few elements
as possible. In the above example, 100 (=10*10) elements are generated. From
2 ≤ x + y ≤ 10 and 1 ≤ y ≤ 10, we derive that 1 ≤ y ≤ 10 − x. This gives the
following solution:

z = [x#y | x← from(1, 10), y ← from(1, 10− x)]

The program then becomes:

Z = {FMap {LFrom 1 10} fun {$ X}
{LMap {LFrom 1 10-X} fun {$ Y}

X#Y
end }

end }

This gives the same list as before, but only generates about half as many elements.

4.6 Soft real-time programming

4.6.1 Basic operations

The Time module contains a number of useful soft real-time operations. A real-
time operation has a set of deadlines (particular times) at which certain calcu-
lations must be completed. A soft real-time operation requires only that the
real-time deadlines be respected most of the time. This is opposed to hard real-
time, which has hard deadlines, i.e., that must be respected all the time, without
any exception. Hard real-time is needed when lives are at stake, e.g., in medical
equipment and air traffic control. Soft real-time is used in other cases, e.g., for
telephony and consumer electronics. Hard real-time requires special techniques
for both hardware and software. Standard personal computers cannot do hard
real-time because they have unpredictable hardware delays (e.g., virtual memory,
caching, process scheduling). Soft real-time is much easier to implement and is
often sufficient. Three soft real-time operations provided by Time are:

• {Delay I} : suspends the executing thread for at least I milliseconds and
then continues.

• {Alarm I U} : creates a new thread that binds U to unit after at least I

milliseconds. Alarm can be implemented with Delay .

• {Time.time} : returns the integer number of seconds that have passed since
the current year started.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

310 Declarative Concurrency

local
proc {Ping N}

if N==0 then {Browse ´ ping terminated ´ }
else {Delay 500} {Browse ping} {Ping N-1} end

end
proc {Pong N}

{For 1 N 1
proc {$ I} {Delay 600} {Browse pong} end }

{Browse ´ pong terminated ´ }
end

in
{Browse ´ game started ´ }
thread {Ping 50} end
thread {Pong 50} end

end

Figure 4.30: A simple ‘Ping Pong’ program

The semantics of Delay is simple: it communicates to the scheduler that the
thread is to be considered suspended for a given time period. After this time
is up, the scheduler marks the thread as runnable again. The thread is not
necessarily run immediately. If there are lots of other runnable threads, it may
take some time before the thread actually runs.

We illustrate the use of Delay by means of a simple example that shows the
interleaving execution of two threads. The program is called ´ Ping Pong ´ and
is defined in Figure 4.30. It starts two threads. One displays ping periodically
each 500 milliseconds and the other displays pong each 600 milliseconds. Because
pongs come out slower than pings, it is possible for two pings to be displayed
without any pongs in between. Can the same thing happen with two pongs?
That is, can two pongs ever be displayed with no pings in between? Assume that
the Ping thread has not yet terminated, otherwise the question would be too
easy. Think carefully before reading the answer in the footnote.14

A simple standalone application

Section 3.9 in Chapter 2 shows how to make standalone applications in Oz. To
make the ´ Ping Pong ´ program standalone, the first step is to make a functor
of it, as shown in Figure 4.31. If the source code is stored in file PingPong.oz ,
then the program can be compiled with the following command:

ozc -x PingPong.oz

14The language does indeed allow two pongs to be displayed with no intervening pings because
the definition of Delay only gives the minimum suspension time. The thread suspending for
500 milliseconds can occasionally suspend for a longer time, for example for 700 milliseconds.
But this is a rare occurrence in practice because it depends on external events in the operating
system or in other threads.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 311

functor
import

Browser(browse:Browse)
define

proc {Ping N}
if N==0 then {Browse ´ ping terminated ´ }
else {Delay 500} {Browse ping} {Ping N-1} end

end
proc {Pong N}

{For 1 N 1
proc {$ I} {Delay 600} {Browse pong} end }

{Browse ´ pong terminated ´ }
end

in
{Browse ´ game started ´ }
thread {Ping 50} end
thread {Pong 50} end

end

Figure 4.31: A standalone ‘Ping Pong’ program

Type PingPong in your shell to start the program. To terminate this program in
a Unix shell you have to type CTRL-C.

The program of Figure 4.31 does not terminate properly when the Ping and
the Pong threads terminate. It does not detect when the threads terminate. We
can fix this problem using the techniques of Section 4.4.3. Figure 4.32 adds a
termination detection that terminates the main thread only when both the Ping

and the Pong threads terminate. We could also use the Barrier abstraction
directly. After detecting termination, we use the call {Application.exit 0}

to cleanly exit the application.

4.6.2 Ticking

We would like to invoke an action (e.g., send a message to a stream object, call
a procedure, etc.) exactly once per second, giving it the local time as argument.
We have three operations at our disposal: {Delay D} , which delays for at least D

milliseconds, {Time.time} , which returns the number of seconds since January
1 of the current year, and {OS.localTime} , which returns a record giving local
time accurate to one second. How does the following function measure up:

fun {NewTicker}
fun {Loop}

X={OS.localTime}
in

{Delay 1000}
X|{Loop}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

312 Declarative Concurrency

functor
import

Browser(browse:Browse)
Application

define
...
X1 X2

in
{Browse ´ game started ´ }
thread {Ping 50} X1= unit end
thread {Pong 50} X2= unit end
{Wait X1} {Wait X2}
{Application.exit 0}

end

Figure 4.32: A standalone ‘Ping Pong’ program that exits cleanly

end
in

thread {Loop} end
end

This function creates a stream that grows by one element per second. To execute
an action once every second, create a thread that reads the stream and performs
the action:

thread for X in {NewTicker} do {Browse X} end end

Any number of threads can read the same stream. The problem is, this solution
is not quite right. The stream is extended almost exactly once per second. The
problem is the “almost”. Every once in a while, one second is lost, i.e., successive
elements on the stream show a difference of two seconds. However, there is
one good point: the same second cannot be sent twice, since {Delay 1000}

guarantees a delay of at least 1000 milliseconds, to which is added the execution of
the instructions in Loop . This gives a total delay of at least 1000+ε milliseconds,
where ε is a fraction of a microsecond.

How can we correct this problem? A simple way is to compare the current
result of OS.localTime with the previous result, and to add an element to the
stream only when the local time changes. This gives:

fun {NewTicker}
fun {Loop T}

T1={OS.localTime}
in

{Delay 900}
if T1\=T then T1|{Loop T1} else {Loop T1} end

end
in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.6 Soft real-time programming 313

thread {Loop {OS.localTime}} end
end

This version guarantees that exactly one tick will be sent per second, if {Delay

900} always delays for less than one second. The latter condition holds if there
are not too many active threads and garbage collection does not take too long.
One way to guarantee the first condition is to give the Loop thread high priority
and all other threads medium or low priority. To guarantee the second condition,
the program must ensure that there is not too much active data, since garbage
collection time is proportional to the amount of active data.

This version has the minor problem that it “hesitates” every 9 seconds. That
is, it can happen that {OS.localTime} gives the same result twice in a row,
since the two calls are separated by just slightly more than 900 milliseconds.
This means that the stream will not be updated for 1800 milliseconds. Another
way to see this problem is that 10 intervals of 900 milliseconds are needed to
cover 9 seconds, which means that nothing happens during one of the intervals.
How can we avoid this hesitation? A simple way is to make the delay smaller.
With a delay of 100 milliseconds, the hesitation will never be greater than 100
milliseconds plus the garbage collection time.

A better way to avoid the hesitation is to use synchronized clocks. That is, we
create a free-running counter that runs at approximately one second per tick, and
we adjust its speed so that it remains synchronized with the operating system
time. Here is how it is done:

fun {NewTicker}
fun {Loop N}

T={Time.time}
in

if T>N then {Delay 900}
elseif T<N then {Delay 1100}
else {Delay 1000} end
N|{Loop N+1}

end
in

thread {Loop {Time.time}} end
end

The loop has a counter, N, that is always incremented by one. We compare the
counter value to the result of {Time.time} .15 If the counter is slower (T>N),
we speed it up. Likewise, if the counter is faster (T<N), we slow it down. The
speedup and slowdown factors are small (10% in the example), which makes the
hesitation unnoticeable.

15How would you fix NewTicker to work correctly when Time.time turns over, i.e., goes
back to 0?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

314 Declarative Concurrency

4.7 Limitations and extensions of declarative pro-

gramming

Declarative programming has the major advantage that it considerably simplifies
system building. Declarative components can be built and debugged indepen-
dently of each other. The complexity of a system is the sum of the complexities
of its components. A natural question to ask is how far can declarative pro-
gramming go? Can everything be programmed in a declarative way, such that
programs are both natural and efficient? This would be a major boon for sys-
tem building. We say a program is efficient if its performance differs by just a
constant factor from the performance of an assembly language program to solve
the same problem. We say a program is natural if very little code is needed just
for technical reasons unrelated to the problem at hand. Let us consider efficiency
and naturalness issues separately. There are three naturalness issues: modularity,
nondeterminism, and interfacing with the real world.

We recommend to use the declarative model of this chapter or the sequential
version of Chapter 2 except when any of the above issues is critical. This makes
it easier to write correct and efficient components.

4.7.1 Efficiency

Is declarative programming efficient? There is a fundamental mismatch between
the declarative model and a standard computer, such as presented in [146]. The
computer is optimized for modifying data in-place, while the declarative model
never modifies data but always creates new data. This is not as severe a prob-
lem as it seems at first glance. The declarative model may have a large inherent
memory consumption, but its active memory size remains small. The task re-
mains, though, to implement the declarative model with in-place assignment.
This depends first on the sophistication of the compiler.

Can a compiler map declarative programs effectively to a standard computer?
Paraphrasing science fiction author and futurologist Arthur C. Clarke, we can say
that “any sufficiently advanced compiler is indistinguishable from magic” [37].16

That is, it is unrealistic to expect the compiler to rewrite your program. Even
after several decades of research, no such compiler exists for general-purpose pro-
gramming. The farthest we have come is compilers that can rewrite the program
in particular cases. Computer scientist Paul Hudak calls them “smart-aleck”
compilers. Because of their unpredictable optimizations, they are hard to use.
Therefore, for the rest of the discussion, we assume that the compiler does a
straightforward mapping from the source program to the target, in the sense that
time and space complexities of compiled code can be derived in a simple way
from language semantics.

16Clarke’s Third Law: “Any sufficiently advanced technology is indistinguishable from mag-
ic.”

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 315

Now we can answer the question whether declarative programming is efficient.
Given a straightforward compiler, the pedantic answer to the question is no. But
in fact the practical answer is yes, with one caveat: declarative programming is
efficient if one is allowed to rewrite the program to be less natural. Here are three
typical examples:

1. A program that does incremental modifications of large data structures,
e.g., a simulation that modifies large graphs (see Section 6.8.4), cannot in
general be compiled efficiently. Even after decades of research, there is no
straightforward compiler that can take such a program and implement it
efficiently. However, if one is allowed to rewrite the program, then there is
a simple trick that is often sufficient in practice. If the state is threaded
(e.g., kept in an accumulator) and the program is careful never to access
an old state, then the accumulator can be implemented with destructive
assignment.

2. A function that does memoization cannot be programmed without changing
its interface. Assume we have a function that uses many computational
resources. To improve its performance, we would like to add memoization
to it, i.e., an internal cache of previously-calculated results, indexed by the
function arguments. At each function call, we first check the cache to see
if the result is already there. This internal cache cannot be added without
rewriting the program by threading an accumulator everywhere that the
function is called. Section 10.3.2 gives an example.

3. A function that implements a complex algorithm often needs intricate code.
That is, even though the program can be written declaratively with the same
efficiency as a stateful program, doing so makes it more complex. This
follows because the declarative model is less expressive than the stateful
model. Section 6.8.1 shows an example: a transitive closure algorithm
written in both the declarative and the stateful models. Both versions have
time efficiency O(n3). The stateful algorithm is simpler to write than the
declarative one.

We conclude that declarative programming cannot always be efficient and natural
simultaneously. Let us now look at the naturalness issues.

4.7.2 Modularity

We say a program is modular with respect to a change in a given part if the change
can be done without changing the rest of the program. Modularity is discussed
further in Section 6.7.2. Here are two examples where declarative programs are
not modular:

1. The first example is the memoization cache we saw before. Adding this
cache to a function is not modular, since an accumulator must be threaded
in many places outside the function.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

316 Declarative Concurrency

2. A second example is instrumenting a program. We would like to know how
many times some of its subcomponents are invoked. We would like to add
counters to these subcomponents, preferably without changing either the
subcomponent interfaces or the rest of the program. If program is declar-
ative, this is impossible, since the only way is to thread an accumulator
throughout the program.

Let us look closer at the second example. Assume that we are using the declarative
model to implement a large declarative component. The component definition
looks something like this:

fun {SC ...}
proc {P1 ...}

...
end
proc {P2 ...}

...
{P1 ...}
{P2 ...}

end
proc {P3 ...}

...
{P2 ...}
{P3 ...}

end
in

´ export ´ (p1:P1 p2:P2 p3:P3)
end

Calling SCinstantiates the component: it returns a module with three operations,
P1, P2, and P3. We would like to instrument the component by counting the
number of times procedure P1 is called. The successive values of the count are a
state. We can encode this state as an accumulator, i.e., by adding two arguments
to each procedure. With this added instrumentation, the component definition
looks something like this:

fun {SC ...}
proc {P1 ... S1 ?Sn}

Sn=S1+1
...

end
proc {P2 ... T1 ?Tn}

...
{P1 ... T1 T2}
{P2 ... T2 Tn}

end
proc {P3 ... U1 ?Un}

...

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 317

Main
component

Main Main

P3

P1

P2
Subcomponent

Using an accumulator Using explicit state

SC

P3

P1

P2

SC

Figure 4.33: Changes needed for instrumenting procedure P1

{P2 ... U1 U2}
{P3 ... U2 Un}

end
in

´ export ´ (p1:P1 p2:P2 p3:P3)
end

Each procedure defined by SChas a changed interface: it has two extra arguments
that together form an accumulator. The procedure P1 is called as {P1 ...

Sin Sout} , where Sin is the input count and Sout is the output count. The
accumulator has to be threaded between the procedure calls. This technique
requires both SCand the calling module to do a fair amount of bookkeeping, but
it works.

Another solution is to write the component in a stateful model. One such
model is defined in Chapter 6; for now assume that we have a new language
entity, called “cell”, that we can assign and access (with the := and @operators),
similar to an assignable variable in imperative programming languages. Cells
were introduced in Chapter 1. Then the component definition looks something
like this:

fun {SC ...}
Ctr={NewCell 0}
proc {P1 ...}

Ctr:=@Ctr+1
...

end
proc {P2 ...}

...

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

318 Declarative Concurrency

{P1 ...}
{P2 ...}

end
proc {P3 ...}

...
{P2 ...}
{P3 ...}

end
fun {Count} @Ctr end

in
´ export ´ (p1:P1 p2:P2 p3:P3 count:Count)

end

In this case, the component interface has one extra function, Count , and the
interfaces to P1, P2, and P3 are unchanged. The calling module has no book-
keeping to do whatsoever. The count is automatically initialized to zero when
the component is instantiated. The calling module can call Count at any time
to get the current value of the count. The calling module can also ignore Count

completely, if it likes, in which case the component has exactly the same behavior
as before (except for a very slight difference in performance).

Figure 4.33 compares the two approaches. The figure shows the call graph
of a program with a component Main that calls subcomponent SC. A call graph
is a directed graph where each node represents a procedure and there is an edge
from each procedure to the procedures it calls. In Figure 4.33, SC is called from
three places in the main component. Now let us instrument SC. In the declarative
approach (at left), an accumulator has to be added to each procedure on the path
from Main to P1. In the stateful approach (at right), the only changes are the
extra operation Count and the body of P1. In both cases, the changes are shown
with thick lines. Let us compare the two approaches:

• The declarative approach is not modular with respect to instrumenting
P1, because every procedure definition and call on the path from Main to
P1 needs two extra arguments. The interfaces to P1, P2, and P3 are all
changed. This means that other components calling SChave to be changed
too.

• The stateful approach is modular because the cell is mentioned only where it
is needed, in the initialization of SCand in P1. In particular, the interfaces
to P1, P2, and P3, remain the same in the stateful approach. Since the
extra operation Count can be ignored, other components calling SCdo not
have to be changed.

• The declarative approach is slower because it does much extra argument
passing. All procedures are slowed down for the sake of one. The stateful
approach is efficient; it only spends time when necessary.

Which approach is simpler: the first or the second? The first has a simpler model
but a more complex program. The second has a more complex model but a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 319

Cli ent 1

Client 2

Server?

OutS2

OutS1

InS

Figure 4.34: How can two clients send to the same server? They cannot!

simpler program. In our view, the declarative approach is not natural. Because
it is modular, the stateful approach is clearly the simplest overall.

The fallacy of the preprocessor

Maybe there is a way we can have our cake and eat it too. Let us define a
preprocessor to add the arguments so we do not have to write them everywhere.
A preprocessor is a program that takes another program’s source code as input,
transforms it according to some simple rules, and returns the result. We define a
preprocessor that takes the syntax of the stateful approach as input and translates
it into a program that looks like the declarative approach. Voilà! It seems that
we can now program with state in the declarative model. We have overcome a
limitation of the declarative model. But have we? In fact, we have done nothing
of the sort. All we have succeeded in doing is build an inefficient implementation
of a stateful model. Let us see why:

• When using the preprocessor, we see only programs that look like the state-
ful version, i.e., stateful programs. This obliges us to reason in the stateful
model. We have therefore de facto extended the declarative model with
explicit state.

• The preprocessor transforms these stateful programs into programs with
threaded state, which are inefficient because of all the argument passing.

4.7.3 Nondeterminism

The declarative concurrent model seems to be quite powerful for building concur-
rent programs. For example, we can easily build a simulator for digital electronic
circuits. However, despite this apparent power, the model has a limitation that
cripples it for many concurrent applications: it always behaves deterministically.
If a program has observable nondeterminism, then it is not declarative. This lim-
itation is closely related to modularity: components that are truly independent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

320 Declarative Concurrency

behave nondeterministically with respect to each other. To show that this is not
a purely theoretical limitation, we give two realistic examples: a client/server
application and a video display application.

The limitation can be removed by adding a nondeterministic operation to
the model. The extended model is no longer declarative. There are many pos-
sible nondeterministic operations we could add. Chapters 5 and 8 explain the
possibilities in detail. Let us briefly go over them here:

• A first solution is to add a nondeterministic wait operation, such as WaitTwo

which waits for one of two variables to become bound, and indicates one of
the bound ones. Its definition is given in the supplements file on the book’s
Web site. WaitTwo is nice for the client/server application.

• A second solution is to add IsDet , a boolean function that tests imme-
diately whether a dataflow variable is bound or not. This allows to use
dataflow variables as a weak form of state. IsDet is nice for the video
display application.

• A third solution is to add explicit state to the model, for example in the
form of ports (communication channels) or cells (mutable variables).

How do these three solutions compare in expressiveness? WaitTwo can be pro-
grammed in the declarative concurrent model with explicit state. Therefore, it
seems that the most expressive model needs just explicit state and IsDet .

A client/server application

Let us investigate a simple client/server application. Assume that there are two
independent clients. Being independent implies that they are concurrent. What
happens if they communicate with the same server? Because they are indepen-
dent, the server can receive information in any order from the two clients. This
is observable nondeterministic behavior.

Let us examine this closer and see why it cannot be expressed in the declarative
concurrent model. The server has an input stream from which it reads commands.
Let us start with one client, which sends commands to the server. This works
perfectly. How can a second client connect to the server? The second client has to
obtain a reference to a stream that it can bind and that is read by the server. The
problem is that such a stream does not exist! There is only one stream, between
the first client and the server. The second client cannot bind that stream, since
this would conflict with the first client’s bindings.

How can we solve this problem? Let us approach it naively and see if we can
find a solution. One approach might be to let the server have two input streams,
like this:

fun {Server InS1 InS2}
...

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 321

But how does the server read the streams? Does it first read one element from
InS1 and then one element from InS2 ? Does it simultaneously read one element
from both streams? Neither of these solutions is correct. In fact, it is not possible
to write a solution in the declarative concurrent model. The only thing we can
do is have two independent servers, one for each client. But these servers cannot
communicate with each other, since otherwise we would have the same problem
all over again.

Figure 4.34 illustrates the problem: InS is the server’s input stream and OutS1

and OutS2 are the two client’s output streams. How can the messages appearing
on both client streams be given to the server? The simple answer is that in the
declarative concurrent model they cannot! In the declarative concurrent model,
an active object always has to know from which stream it will read next.

How can we solve this problem? If the clients execute in coordinated fashion,
so that the server always knows which client will send the next command, then the
program is declarative. But this is unrealistic. To write a true solution, we have
to add a nondeterministic operation to the model, like the WaitTwo operation
we mentioned above. With WaitTwo , the server can wait for a command from
either client. Chapter 5 gives a solution using WaitTwo , in the nondeterministic
concurrent model (see Advanced Topics).

A video display application

Let us look at a simple video display application. It consists of a displayer
that receives a stream of video frames and displays them. The frames arrive
at a particular rate, that is, some number of frames arrive per second. For
various reasons, this rate can fluctuate: the frames have different resolutions,
some processing might be done on them, or the transmission network has varying
bandwidth and latency.

Because of the varying arrival rate, the displayer cannot always display all
frames. Sometimes it has to skip over frames. For example, it might want to
skip quickly to the latest frame that was sent. This kind of stream management
cannot be done in the declarative concurrent model, because there is no way to
detect the end of the stream. It can be done by extending the model with one new
operation, IsDet . The boolean test {IsDet Xs} checks immediately whether Xs

is already bound or not (returning true or false), and does not wait if it is not
bound. Using IsDet , we can define the function Skip that takes a stream and
returns its unbound tail:

fun {Skip Xs}
if {IsDet Xs} then

case Xs of _|Xr then {Skip Xr} [] nil then nil end
else Xs end

end

This iterates down the stream until it finds an unbound tail. Here is a slightly
different version that always waits until there is at least one element:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

322 Declarative Concurrency

fun {Skip1 Xs}
case Xs of X|Xr then

if {IsDet Xr} then {Skip1 Xr} else Xs end
[] nil then nil end

end

With Skip1 , we can write a video displayer that, after it has displayed a frame,
immediately skips to the latest transmitted frame:

proc {Display Xs}
case {Skip1 Xs}
of X|Xr then

{DisplayFrame X}
{Display Xr}

[] nil then skip
end

end

This will work well even if there are variations in the frame arrival rate and the
time to display a frame.

4.7.4 The real world

The real world is not declarative. It has both state (entities have an internal
memory) and concurrency (entities evolve independently).17 Since declarative
programs interact with the real world, either directly or indirectly, they are part
of an environment that contains these concepts. This has two consequences:

1. Interfacing problems. Declarative components lack the expressivity to in-
terface with non-declarative components. The latter are omnipresent, e.g.,
hardware peripherals and user interfaces are both inherently concurrent and
stateful (see Section 3.8). Operating systems also use concurrency and state
for their own purposes, because of the reasons mentioned previously. One
might think that these non-declarative properties could be either masked
or encoded somehow, but somehow this never works. Reality always peeks
through.

2. Specification problems. Program specifications often mention state and con-
currency, because they are targeted for the real world. If the program is
declarative, then it has to encode this in some way. For example, a specifi-
cation for a collaborative tool may require that each user lock what they are
working on to prevent conflicts during concurrent access. In the implemen-
tation, the locks have to be encoded in some way. Using locks directly in a
stateful model gives an implementation that is closer to the specification.

17In fact, the real world is parallel, but this is modeled inside a program with concurrency.
Concurrency is a language concept that expresses logically independent computations. Paral-
lelism is an implementation concept that expresses activities that happen simultaneously. In a
computer, parallelism is used only to increase performance.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 323

4.7.5 Picking the right model

There exist many computation models that differ in how expressive they are and
how hard it is to reason about programs written in them. The declarative model is
one of the simplest of all. However, as we have explained, it has serious limitations
for some applications. There are more expressive models that overcome these
limitations, at the price of sometimes making reasoning more complicated. For
example, concurrency is often needed when interacting with the external world.
When such interactions are important then a concurrent model should be used
instead of trying to get by with just the declarative model.

The more expressive models are not “better” than the others, since they do
not always give simpler programs and reasoning in them is usually harder.18 In
our experience, all models have their place and can be used together to good
effect in the same program. For example, in a program with concurrent state,
many components can be declarative. Conversely, in a declarative program, some
components (e.g., graph algorithms) need state to be implemented well. We
summarize this experience in the following rule:

Rule of least expressiveness

When programming a component, the right computation
model for the component is the least expressive model
that results in a natural program.

The idea is that each component should be programmed in its “natural” model.
Using a less expressive model would give a more complex program and using
a more expressive model would not give a simpler program but would make
reasoning about it harder.

The problem with this rule is that we have not really defined “natural”. This
is because to some degree, naturalness is a subjective property. Different people
may find different models easier to use, because of their differing knowledge and
background. The issue is not the precise definition of “natural”, but the fact
that such a definition exists for each person, even though it might be different for
different people.

4.7.6 Extended models

Now we have some idea of the limitations of the declarative model and a few
intuitions on how extended models with state and concurrency can overcome
these limitations. Let us therefore give a brief overview of the declarative model
and its extensions:

• Declarative sequential model (see Chapters 2–3). This model encom-
passes strict functional programming and deterministic logic programming.

18Another reason why they are not better has to do with distributed programming and
network-awareness, which is explained in Chapter 11.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

324 Declarative Concurrency

It extends the former with partial values (using dataflow variables, which
are also called “logic variables”) and the latter with higher-order proce-
dures. Reasoning with this model is based on algebraic calculations with
values. Equals can be substituted for equals and algebraic identities can be
applied. A component’s behavior is independent of when it is executed or
of what happens in the rest of the computation.

• Declarative concurrent model (in this chapter; defined in Sections 4.1
and 4.5). This is the declarative model extended with explicit threads
and by-need computation. This model keeps most of the nice properties
of the declarative model, e.g., reasoning is almost as simple, while being
truly concurrent. This model can do both data-driven and demand-driven
concurrency. It subsumes lazy functional programming and deterministic
concurrent logic programming. Components interact by binding and using
sharing dataflow variables.

• Declarative model with exceptions (defined in Sections 2.6.2 and 4.9.1).
The concurrent declarative model with exceptions is no longer declarative,
since programs can be written that expose nondeterminism.

• Message-passing concurrent model (see Chapter 5). This is the declar-
ative model extended with communication channels (ports). This removes
the limitation of the declarative concurrent model that it cannot implement
programs with some nondeterminism, e.g., a client/server where several
clients talk to a server. This is a useful generalization of the declarative
concurrent model that is easy to program in and allows to restrict the non-
determinism to small parts of the program.

• Stateful model (see Chapters 6–7; defined in Section 6.3). This is the
declarative model extended with explicit state. This model can express
sequential object-oriented programming. A state is a sequence of values
that is extended as the computation proceeds. Having explicit state means
that a component does not always give the same result when called with
the same arguments. The component can “remember” information from
one call to the next. This allows the component to have a “history”, which
lets it interact more meaningfully with its environment by adapting and
learning from its past. Reasoning with this model requires reasoning on the
history.

• Shared-state concurrent model (see Chapter 8; defined in Section 8.1).
This is the declarative model extended with both explicit state and threads.
This model contains concurrent object-oriented programming. The concur-
rency is more expressive than the declarative concurrent model since it can
use explicit state to wait simultaneously on one of several events occurring
(this is called nondeterministic choice). Reasoning with this model is the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.7 Limitations and extensions of declarative programming 325

most complex since there can be multiple histories interacting in unpre-
dictable ways.

• Relational model (in Chapter 9; defined in Section 9.1). This is the
declarative model extended with search (which is sometimes called “don’t
know” nondeterminism, although the search algorithm is almost always de-
terministic). In the program, the search is expressed as sequence of choices.
The search space is explored by making different choices until the result is
satisfactory. This model allows to program with relations. It encompasses
nondeterministic logic programming in the Prolog style. This model is a
precursor to constraint programming, which is introduced in Chapter 12.

Later on, we will devote whole chapters to each of these models to explain what
they are good for, how to program in them, and how to reason with them.

4.7.7 Using different models together

Typically, any well-written program of reasonable size has different parts writ-
ten in different models. There are many ways to use different models together.
This section gives an example of a particularly useful technique, which we call
impedance matching, that naturally leads to using different models together in
the same program.

Impedance matching is one of the most powerful and practical ways to imple-
ment the general principle of separation of concerns. Consider two computation
models Big and Small, such that model Big is more expressive than Small, but
harder to reason in. For example, model Big could be stateful and model Small
declarative. With impedance matching, we can write a program in model Small
that can live in the computational environment of model Big.

Impedance matching works by building an abstraction in model Big that is
parameterized with a program in model Small. The heart of impedance matching
is finding and implementing the right abstraction. This hard work only needs to
be done once; afterwards there is only the easy work of using the abstraction.
Perhaps surprisingly, it turns out that it is almost always possible to find and
implement an appropriate abstraction. Here are some typical cases of impedance
matching:

• Using a sequential component in a concurrent model. For example, the ab-
straction can be a serializer that accepts concurrent requests, passes them
sequentially, and returns the replies correctly. Figure 4.35 gives an illustra-
tion. Plugging a sequential component into the serializer gives a concurrent
component.

• Using a declarative component in a stateful model. For example, the ab-
straction can be a storage manager that passes its content to the declarative
program and stores the result as its new content.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

326 Declarative Concurrency

Serializer

requests and replies

Sequential component

Concurrent component
Plug in the

Sequential

component

Concurrent
requests and replies

Figure 4.35: Impedance matching: example of a serializer

• Using a centralized component in a distributed model. A distributed model
executes over more than one operating system process. For example, the
abstraction can be a collector that accepts requests from any site and passes
them to a single site.

• Using a component that is intended for a secure model in an insecure mod-
el. A insecure model is one that assumes the existence of malicious entities
that can disturb programs in well-defined ways. A secure model assumes
that no such entities exist. The abstraction can be a protector that insu-
lates a computation by verifying all requests from other computations. The
abstraction handles all the details of coping with the presence of malicious
adversaries. A firewall is a kind of protector.

• Using a component that is intended for a closed model in an open model.
An open model is one that lets independent computations find each other
and interact. A closed model assumes that all computations are initially
known. The abstraction can be a connector that accepts requests from one
computation to connect to another, using an open addressing scheme.

• Using a component that assumes a reliable model in a model with par-
tial failure. Partial failure occurs in a distributed system when part of the
system fails. For example, the abstraction can be a replicator that imple-
ments fault tolerance by doing active replication between several sites and
managing recovery when one fails.

These cases are orthogonal. As the examples show, it is often a good idea to
implement several cases in one abstraction. This book has abstractions that
illustrate all these cases and more. Usually, the abstraction puts a minor condition

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 327

on the program written in model Small. For example, a replicator often assumes
that the function it is replicating is deterministic.

Impedance matching is extensively used in the Erlang project at Ericsson [9].
A typical Erlang abstraction takes a declarative program written in a functional
language and makes it stateful, concurrent, and fault tolerant.

4.8 The Haskell language

We give a brief introduction to Haskell, a popular functional programming lan-
guage supported by a number of interpreters and compilers [85, 148].19 It is
perhaps the most successful attempt to define a practical, completely declara-
tive language. Haskell is a non-strict, strongly-typed functional language that
supports currying and the monadic programming style. Strongly typed means
that the types of all expressions are computed at compile time and all function
applications must be type correct. The monadic style is a set of higher-order
programming techniques that can be used to replace explicit state in many cases.
The monadic style can do much more than just simulate state; we do not explain
it in this brief introduction but we refer to any of the many papers and tutorials
written about it [86, 209, 135].

Before giving the computation model, let us start with a simple example. We
can write a factorial function in Haskell as follows:

factorial :: Integer -> Integer

factorial 0 = 1

factorial n | n > 0 = n * factorial (n-1)

The first line is the type signature. It specifies that factorial is a function
that expects an argument of type Integer and returns a result of type Integer.
Haskell does type inferencing, i.e., the compiler is able to automatically infer the
type signatures, for almost all functions.20 This happens even when the type
signature is provided: the compiler then checks that the signature is accurate.
Type signatures provide useful documentation.

The next two lines are the code for factorial. In Haskell a function definition
can consist of many equations. To apply a function to an argument we do pattern
matching; we examine the equations one by one from top to bottom until we find
the first one whose pattern matches the argument. The first line of factorial

only matches an argument of 0; in this case the answer is immediate, namely 1.
If the argument is nonzero we try to match the second equation. This equation
has a Boolean guard which must be true for the match to succeed. The second
equation matches all arguments that are greater than 0; in that case we evaluate
n * factorial (n-1). What happens if we apply factorial to a negative

19The author of this section is Kevin Glynn.
20Except in a very few special cases which are beyond the scope of this section, such as

polymorphic recursion.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

328 Declarative Concurrency

argument? None of the equations match and the program will give a run-time
error.

4.8.1 Computation model

A Haskell program consists of a single expression. This expression may contain
many reducible subexpressions. In which order should they be evaluated? Haskell
is a non-strict language, so no expression should be evaluated unless its result is
definitely needed. Intuitively then, we should first reduce the leftmost expression
until it is a function, substitute arguments in the function body (without evalu-
ating them!) and then reduce the resulting expression. This evaluation order is
called normal order. For example, consider the following expression:

(if n >= 0 then factorial else error) (factorial (factorial n))

This uses n to choose which function, factorial or error, to apply to the ar-
gument (factorial (factorial n)). It is pointless evaluating the argument
until we have evaluated the if then else statement. Once this is evaluated we
can substitute factorial (factorial n) in the body of factorial or error

as appropriate and continue evaluation.
Let us explain in a more precise way how expressions reduce in Haskell. Imag-

ine the expression as a tree.21 Haskell first evaluates the leftmost subexpression
until it evaluates to a data constructor or function:

• If it evaluates to a data constructor then evaluation is finished. Any re-
maining subexpressions remain unevaluated.

• If it evaluates to a function and it is not applied to any arguments then
evaluation is finished.

• Otherwise, it evaluates to a function and is applied to arguments. Apply
the function to the first argument (without evaluating it) by substituting it
in the body of the function and re-evaluate.

Built-in functions such as addition and pattern matching cause their arguments to
be evaluated before they can evaluate. For declarative programs this evaluation
order has the nice property that it always terminates if any evaluation order
could.

4.8.2 Lazy evaluation

Since arguments to functions are not automatically evaluated before function
calls, we say that function calls in Haskell are non-strict. Although not mandated
by the Haskell language, most Haskell implementations are in fact lazy, that is,

21For efficiency reasons, most Haskell implementations represent expressions as graphs, i.e.,
shared expressions are only evaluated once.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 329

they ensure that expressions are evaluated at most once. The differences between
lazy and non-strict evaluation are explained in Section 4.9.2.

Optimising Haskell compilers perform an analysis called strictness analysis to
determine when the laziness is not necessary for termination or resource control.
Functions that do not need laziness are compiled as eager (“strict”) functions,
which is much more efficient.

As an example of laziness we reconsider the calculation of a square root by
Newton’s method given in Section 3.2. The idea is that we first create an “infinite”
list containing better and better approximations to the square root. We then
traverse the list until we find the first approximation which is accurate enough
and return it. Because of laziness we will only create as much of the list of
approximations as we need.

sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)

where

goodEnough guess = (abs (x - guess*guess))/x < 0.00001

improve guess = (guess + x/guess)/2.0

sqrtGuesses = 1:(map improve sqrtGuesses)

The definitions following the where keyword are local definitions, i.e., they are
only visible within sqrt. goodEnough returns true if the current guess is close
enough. improve takes a guess and returns a better guess. sqrtGuesses produces
the infinite list of approximations. The colon : is the list constructor, equivalent
to | in Oz. The first approximation is 1. The following approximations are
calculated by applying the improve function to the list of approximations. map is
a function that applies a function to all elements of a list, similar to Map in Oz.22

So the second element of sqrtGuesses will be improve 1, the third element will
be improve (improve 1). To calculate the nth element of the list we evaluate
improve on the (n− 1)th element.

The expression dropWhile (not . goodEnough) sqrtGuesses drops the
approximations from the front of the list that are not close enough. (not .

goodEnough) is a function composition. It applies goodEnough to the approx-
imation and then applies the boolean function not to the result. So (not .

goodEnough) is a function that returns true if goodEnough returns false.
Finally, head returns the first element of the resulting list, which is the first

approximation that was close enough. Notice how we have separated the calcu-
lation of the approximations from the calculation that chooses the appropriate
answer.

4.8.3 Currying

From the reduction rules we see that a function that expects multiple arguments is
actually applied to its arguments one at a time. In fact, applying an n-argument

22Note that the function and list arguments appear in a different order in the Haskell and Oz
versions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

330 Declarative Concurrency

function to a single argument evaluates to an (n−1) argument function specialized
to the value of the first argument. This process is called currying (see also
Section 3.6.6). We can write a function which doubles all the elements in a list
by calling map with just one argument:

doubleList = map (\x -> 2*x)

The notation \x -> 2*x is Haskell’s notation for an anonymous function (a λ
expression). In Oz the same expression would be written fun {$ X} 2*X end .
Let us see how doubleList evaluates:

doubleList [1,2,3,4]

=> map (\x -> 2*x) [1,2,3,4]

=> [2,4,6,8]

Note that list elements are separated by commas in Haskell.

4.8.4 Polymorphic types

All Haskell expressions have a statically-determined type. However, we are not
limited to Haskell’s predefined types. A program can introduce new types. For
example, we can introduce a new type BinTree for binary trees:

data BinTree a = Empty | Node a (BinTree a) (BinTree a)

A BinTree is either Empty or a Node consisting of an element and two sub-
trees. Empty and Node are data constructors: they build data structures of type
BinTree. In the definition a is a type variable and stands for an arbitrary type,
the type of elements contained in the tree. BinTree Integer is then the type of
binary trees of integers. Notice how in a Node the element and the elements in
subtrees are restricted to have the same type. We can write a size function that
returns the number of elements in a binary tree as follows:

size :: BinTree a -> Integer

size Empty = 0

size (Node val lt rt) = 1 + (size lt) + (size rt)

The first line is the type signature. It can be read as “For all types a, size takes
an argument of type BinTree a and returns an Integer”. Since size works on
trees containing any type of element it is called a polymorphic function. The code
for the function consists of two lines. The first line matches trees that are empty,
their size is 0. The second line matches trees that are non-empty, their size is 1
plus the size of the left subtree plus the size of the right subtree.

Let us write a lookup function for an ordered binary tree. The tree con-
tains tuples consisting of an integer key and a string value. It has type BinTree

(Integer,String). The lookup function returns a value with type Maybe String.
This value will be Nothing if the key does not exist in the tree and Just val if
(k,val) is in the tree:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.8 The Haskell language 331

lookup :: Integer -> BinTree (Integer,String) -> Maybe String

lookup k Empty = Nothing

lookup k (Node (nk,nv) lt rt) | k == nk = Just nv

lookup k (Node (nk,nv) lt rt) | k < nk = lookup k lt

lookup k (Node (nk,nv) lt rt) | k > nk = lookup k rt

At first sight, the type signature of lookup may look strange. Why is there a
-> between the Integer and tree arguments? This is due to currying. When we
apply lookup to an integer key we get back a new function which when applied
to a binary tree always looks up the same key.

4.8.5 Type classes

A disadvantage of the above definition of lookup is that the given type is very
restrictive. We would like to make it polymorphic as we did with size. Then
the same code could be used to search trees containing tuples of almost any type.
However, we must restrict the first element of the tuple to be a type that supports
the comparison operations ==, <, and > (e.g., there is not a computable ordering
for functions, so we do not want to allow functions as keys).

To support this Haskell has type classes. A type class gives a name to a group
of functions. If a type supports those functions we say the type is a member of
that type class. In Haskell there is a built in type class called Ord which supports
==, <, and >. The following type signature specifies that the type of the tree’s
keys must be in type class Ord:

lookup :: (Ord a) => a -> BinTree (a,b) -> Maybe b

and indeed this is the type Haskell will infer for lookup. Type classes allow
function names to be overloaded. The < operator for Integers is not the same
as the < operator for Strings. Since a Haskell compiler knows the types of all
expressions, it can substitute the appropriate type specific operation at each use.
Type classes are supported by functional languages such as Clean and Mercury.
(Mercury is a logic language with functional programming support.) Other lan-
guages, including Standard ML and Oz, can achieve a similar overloading effect
by using functors.

Programmers can add their own types to type classes. For example, we could
add the BinTree type to Ord by providing appropriate definitions for the com-
parison operators. If we created a type for complex numbers we could make
it a member of the numeric type class Num by providing appropriate numerical
operators. The most general type signature for factorial is

factorial :: (Num a, Ord a) => a -> a

So factorial can be applied to an argument of any type supporting numerical
and comparison operations, returning a value of the same type.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

332 Declarative Concurrency

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value

Table 4.3: The declarative concurrent kernel language with exceptions

4.9 Advanced topics

4.9.1 The declarative concurrent model with exceptions

In Section 2.6 we added exceptions to sequential declarative programming. Let
us now see what happens when we add exceptions to concurrent declarative pro-
gramming. We first explain how exceptions interact with concurrency. Then we
explain how exceptions interact with by-need computation.

Exceptions and concurrency

So far, we have ignored exceptions in concurrent declarative programming. There
is a very simple reason for this: if a component raises an exception in the declar-
ative concurrent model then the model is no longer declarative! Let us add
exceptions to the declarative concurrent model and see what happens. For the
data-driven model, the resulting kernel language is given in Table 4.3. This table
contains the thread and ByNeed instructions, the try and raise statements,
and also one new operation, FailedValue , which handles the interaction between
exceptions and by-need computation. We first explain the interaction between
concurrency and exceptions; we leave FailedValue to the next section.

Let us investigate how exceptions can make the model nondeclarative. There
are two basic ways. First, to be declarative, a component has to be deterministic.
If the statements X=1 and X=2 are executed concurrently, then execution is no
longer deterministic: one of them will succeed and the other will raise an excep-
tion. In the store, X will be bound either to 1 or to 2; both cases are possible.
This is a clear case of observable nondeterminism. The exception is a witness to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 333

this; it is raised on unification failure, which means that there is potentially an
observable nondeterminism. The exception is not a guarantee of this; for example
executing X=1 and X=2 in order in the same thread will raise an exception, yet
X is always bound to 1. But if there are no exceptions, then execution is surely
deterministic and hence declarative.

A second way that an exception can be raised is when an operation cannot
complete normally. This can be due to internal reasons, e.g., the arguments are
outside the operation’s domain (such as dividing by zero), or external reasons,
e.g., the external environment has a problem (such as trying to open a file that
does not exist). In both cases, the exception indicates that an operation was
attempted outside of its specification. When this happens, all bets are off, so to
speak. From the viewpoint of semantics, there is no guarantee on what the oper-
ation has done; it could have done anything. Again, the operation has potentially
become nondeterministic.

To summarize, when an exception is raised, this is an indication either of non-
deterministic execution or of an execution outside specification. In either case,
the component is no longer declarative. We say that the declarative concurrent
model is declarative modulo exceptions. It turns out that the declarative con-
current model with exceptions is similar to the shared-state concurrent model of
Chapter 8. This is explained in Section 8.1.

So what do we do when an exception occurs? Are we completely powerless to
write a declarative program? Not at all. In some cases, the component can “fix
things” so that it is still declarative when viewed from the outside. The basic
problem is to make the component deterministic. All sources of nondeterminism
have to be hidden from the outside. For example, if a component executes X=1

and X=2 concurrently, then the minimum it has to do is (1) catch the exception
by putting a try around each binding, and (2) encapsulate X so its value is not
observable from the outside. See the failure confinement example in Section 4.1.4.

Exceptions and by-need computation

In Section 2.6, we added exceptions to the declarative model as a way to handle
abnormal conditions without encumbering the code with error checks. If a binding
fails, it raises a failure exception, which can be caught and handled by another
part of the application.

Let us see how to extend this idea to by-need computation. What happens
if the execution of a by-need trigger cannot complete normally? In that case it
does not calculate a value. For example:

X={ByNeed fun {$} A=foo(1) B=foo(2) in A=B A end }

What should happen if a thread needs X? Triggering the calculation causes a
failure when attempting the binding A=B. It is clear that X cannot be bound to
a value, since the by-need computation is not able to complete. On the other
hand, we cannot simply leave X unbound since the thread that needs X expects a
value. The right solution is for that thread to raise an exception. To ensure this,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

334 Declarative Concurrency

we can bind X to a special value called a failed value. Any thread that needs a
failed value will raise an exception.

We extend the kernel language with the operation FailedValue , which cre-
ates a failed value:

X={FailedValue cannotCalculate}

Its definition is given in the supplements file on the book’s Web site. It creates
a failed value that encapsulates the exception cannotCalculate . Any thread
that attempts to use X will raise the exception cannotCalculate . Any partial
value can be encapsulated inside the failed value.

With FailedValue we can define a “robust” version of ByNeed that auto-
matically creates a failed value when a by-need computation raises an exception:

proc {ByNeed2 P X}
{ByNeed

proc {$ X}
try Y in {P Y} X=Y
catch E then X={FailedValue E} end

end X}
end

ByNeed2 is called in the same way as ByNeed. If there is any chance that the
by-need computation will raise an exception, then ByNeed2 will encapsulate the
exception in a failed value.

Table 4.3 gives the kernel language for the complete declarative concurrent
model including both by-need computation and exceptions. The kernel language
contains the operations ByNeed and FailedValue as well as the try and raise

statements. The operation {FailedValue 〈x〉 〈y〉} encapsulates the exception
〈x〉 in the failed value 〈y〉. Whenever a thread needs 〈y〉, the statement raise

〈x〉 end is executed in the thread.
One important use of failed values is in the implementation of dynamic linking.

Recall that by-need computation is used to load and link modules on need. If
the module could not be found, then the module reference is bound to a failed
value. Then, whenever a thread tries to use the nonexistent module, an exception
is raised.

4.9.2 More on lazy execution

There is a rich literature on lazy execution. In Section 4.5 we have just touched
the tip of the iceberg. Let us now continue the discussion of lazy execution. We
bring up two topics:

• Language design issues. When designing a new language, what is the
role of laziness? We briefly summarize the issues involved.

• Reduction order and parallelism. Modern functional programming
languages, as exemplified by Haskell, often use a variant of laziness called

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 335

non-strict evaluation. We give a brief overview of this concept and why it
is useful.

Language design issues

Should a declarative language be lazy or eager or both? This is part of a larger
question: should a declarative language be a subset of an extended, nondeclarative
language? Limiting a language to one computation model allows to optimize its
syntax and semantics for that model. For programs that “fit” the model, this can
give amazingly concise and readable code. Haskell and Prolog are particularly
striking examples of this approach to language design [17, 182]. Haskell uses
lazy evaluation throughout and Prolog uses Horn clause resolution throughout.
See Section 4.8 and Section 9.7, respectively, for more information on these two
languages. FP, an early and influential functional language, carried this to an
extreme with a special character set, which paradoxically reduces readability [12].
However, as we shall see in Section 4.7, many programs require more than one
computation model. This is true also for lazy versus eager execution. Let us see
why:

• For programming in the small, e.g., designing algorithms, eagerness is im-
portant when execution complexity is an issue. Eagerness makes it easy to
design and reason about algorithms with desired worst-case complexities.
Laziness makes this much harder; even experts get confused. On the oth-
er hand, laziness is important when designing algorithms with persistence,
i.e., that can have multiple coexisting versions. Section 4.5.8 explains why
this is so and gives an example. We find that a good approach is to use
eagerness by default and to put in laziness explicitly, exactly where it is
needed. Okasaki does this with a version of the eager functional language
Standard ML extended with explicit laziness [138].

• For programming in the large, eagerness and laziness both have important
roles when interfacing components. For example, consider a pipeline com-
munication between a producer and consumer component. There are two
basic ways to control this execution: either the producer decides when to
calculate new elements (“push” style) or the consumer asks for elements as
it needs them (“pull” style). A push style implies an eager execution and a
pull style implies a lazy execution. Both styles can be useful. For example,
a bounded buffer enforces a push style when it is not full and a pull style
when it is full.

We conclude that a declarative language intended for general-purpose program-
ming should support both eager and lazy execution, with eager being the default
and lazy available through a declaration. If one is left out, it can always be
encoded, but this makes programs unnecessarily complex.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

336 Declarative Concurrency

Reduction order and parallelism

We saw that lazy evaluation will evaluate a function’s arguments only when they
are needed. Technically speaking, this is called normal order reduction. When
executing a declarative program, normal order reduction will always choose to
reduce first the leftmost expression. After doing one reduction step, then again
the leftmost expression is chosen. Let us look at an example to see how this
works. Consider the function F1 defined as follows:

fun {F1 A B}
if B then A else 0 end

end

Let us evaluate the expression {F1 {F2 X} {F3 Y}} . The first reduction step
applies F1 to its arguments. This substitutes the arguments into the body of F1.
This gives if {F3 Y} then {F2 X} else 0 end . The second step starts the
evaluation of F3. If this returns false , then F2 is not evaluated at all. We can
see intuitively that normal order reduction only evaluates expressions when they
are needed.

There are many possible reduction orders. This is because every execution
step gives a choice which function to reduce next. With declarative concurrency,
many of these orders can appear during execution. This makes no difference in
the result of the calculation: we say that there is no observable nondeterminism.

Besides normal order reduction, there is another interesting order called ap-
plicative order reduction. It always evaluates a function’s arguments before eval-
uating the function. This is the same as eager evaluation. In the expression {F1

{F2 X} {F3 Y}} , this evaluates both {F2 X} and {F3 Y} before evaluating F1.
With applicative order reduction, if either {F2 X} or {F3 Y} goes into an infinite
loop, then the whole computation will go into an infinite loop. This is true even
though the results of {F2 X} or {F3 Y} might not be needed by the rest of the
computation. We say that applicative order reduction is strict.

For all declarative programs, we can prove that all reduction orders that
terminate give the same result. This result is a consequence of the Church-
Rosser Theorem, which shows that reduction in the λ calculus is confluent, i.e.,
reductions that start from the same expression and follow different paths can
always be brought back together again. We can say this another way: changing
the reduction order only affects whether or not the program terminates but does
not change its result. We can also prove that normal order reduction gives the
smallest number of reduction steps when compared to any other reduction order.

Non-strict evaluation A functional programming language whose computa-
tion model terminates when normal order reduction terminates is called a non-
strict language. We mention non-strict evaluation because it is used in Haskell, a
popular functional language. The difference between non-strict and lazy evalua-
tion is subtle. A lazy language does the absolute minimum number of reduction
steps. A non-strict language might do more steps, but it is still guaranteed to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 337

Asynchronous Synchronous
Send bind a variable wait until variable needed

Receive use variable immediately wait until variable bound

Table 4.4: Dataflow variable as communication channel

terminate in those cases when the lazy language terminates. To better see the
difference between lazy and non-strict, consider the following example:

local X={F 4} in X+X end

In a non-strict language {F 4} may be computed twice. In a lazy language {F

4} will be computed exactly once when X is first needed and the result reused for
each subsequent occurrence of X. A lazy language is always non-strict, but not
the other way around.

The difference between non-strict and lazy evaluation becomes important in a
parallel processor. For example, during the execution of {F1 {F2 X} {F3 Y}}

we might start executing {F2 X} on an available processor, even before we know
whether it is really needed or not. This is called speculative execution. If later on
we find out that {F2 X} is needed, then we have a head start in its execution. If
{F2 X} is not needed, then we abort it as soon as we know this. This might waste
some work, but since it is on another processor it will not cause a slowdown. A
non-strict language can be implemented with speculative execution.

Non-strictness is problematic when we want to extend a language with explicit
state (as we will do in Chapter 6). A non-strict language is hard to extend with
explicit state because non-strictness introduces a fundamental unpredictability
in a language’s execution. We can never be sure how many times a function is
evaluated. In a declarative model this is not serious since it does not change
computations’ results. It becomes serious when we add explicit state. Functions
with explicit state can have unpredictable results. Lazy evaluation has the same
problem but to a lesser degree: evaluation order is data-dependent but at least
we know that a function is evaluated at most once. The solution used in the
declarative concurrent model is to make eager evaluation the default and lazy
evaluation require an explicit declaration. The solution used in Haskell is more
complicated: to avoid explicit state and instead use a kind of accumulator called
a monad. The monadic approach uses higher-order programming to make the
state threading implicit. The extra arguments are part of function inputs and
outputs. They are threaded by defining a new function composition operator.

4.9.3 Dataflow variables as communication channels

In the declarative concurrent model, threads communicate through shared dataflow
variables. There is a close correspondence between operations on dataflow vari-
ables and operations on a communication channel. We consider a dataflow vari-
able as a kind of communication channel and a thread as a kind of object. Then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

338 Declarative Concurrency

binding a variable is a kind of send and waiting until a variable is bound is a kind
of receive. The channel has the property that only one message can be sent but
the message can be received many times. Let us investigate this analogy further.

On a communication channel, send and receive operations can be asynchronous
or synchronous. This gives four possibilities in all. Can we express these possi-
bilities with dataflow variables? Two of the possibilities are straightforward since
they correspond to a standard use of dataflow execution:

• Binding a variable corresponds to an asynchronous send. The binding can
be done independent of whether any threads have received the message.

• Waiting until a variable is bound corresponds to a synchronous receive. The
binding must exist for the thread to continue execution.

What about asynchronous receive and synchronous send? In fact, they are both
possible:

• Asynchronous receive means simply to use a variable before it is bound.
For example, the variable can be inserted in a data structure before it is
bound. Of course, any operation that needs the variable’s value will wait
until the value arrives.

• Synchronous send means to wait with binding until the variable’s value is
received. Let us consider that a value is received if it is needed by some
operation. Then the synchronous send can be implemented with by-need
triggers:

proc {SyncSend X M}
Sync in

{ByNeed proc {$ _} X=M Sync= unit end X}
{Wait Sync}

end

Doing {SyncSend X M} sends Mon channel X and waits until it has been
received.

Table 4.4 summarizes these four possibilities.
Communication channels sometimes have nonblocking send and receive oper-

ations. These are not the same as asynchronous operations. The defining charac-
teristic of a nonblocking operation is that it returns immediately with a boolean
result telling whether the operation was successful or not. With dataflow vari-
ables, a nonblocking send is trivial since a send is always successful. A nonblocking
receive is more interesting. It consists in checking whether the variable is bound
or not, and returning true or false accordingly. This can be implemented with
the IsDet function. {IsDet X} returns immediately with true if X is bound
and with false otherwise. To be precise, IsDet returns true if X is determined,
i.e., bound to a number, record, or procedure. Needless to say, IsDet is not a
declarative operation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 339

4.9.4 More on synchronization

We have seen that threads can communicate through shared dataflow variables.
When a thread needs the result of a calculation done by another thread then it
waits until this result is available. We say that it synchronizes on the availability
of the result. Synchronization is one of the fundamental concepts in concurrent
programming. Let us now investigate this concept more closely.

We first define precisely the basic concept, called a synchronization point.
Consider threads T1 and T2, each doing a sequence of computation steps. T1
does α0 → α1 → α2 → ... and T2 does β0 → β1 → β2 → The threads
actually execute together in one global computation. This means that there is
one global sequence of computation steps that contains the steps of each thread,
interleaved: α0 → β0 → β1 → α1 → α2 → There are many ways that the
two computations can be interleaved. But not all interleavings can occur in real
computations:

• Because of fairness, it is not possible to have an infinite sequence of α steps
without some β steps. Fairness is a global property that is enforced by the
system.

• If the threads depend on each other’s results in some way, then there are ad-
ditional constraints called synchronization points. A synchronization point
links two computation steps βi and αj . We say that βi synchronizes on
αj if in every interleaving that can occur in a real computation, βi occurs
after αj . Synchronization is a local property that is enforced by operations
happening in the threads.

How does the program specify when to synchronize? There are two broad ap-
proaches:

• Implicit synchronization. In this approach, the synchronization opera-
tions are not visible in the program text; they are part of the operational
semantics of the language. For example, using a dataflow variable will syn-
chronize on the variable being bound to a value.

• Explicit synchronization. In this approach, the synchronization oper-
ations are visible in the program text; they consist of explicit operations
put there by the programmer. For example, Section 4.3.3 shows a demand-
driven producer/consumer that uses a programmed trigger. Later on in the
book we will see other ways to do explicit synchronization, for example by
using locks or monitors (see Chapter 8).

There are two directions of synchronization:

• Supply-driven synchronization (eager execution). Attempting to ex-
ecute an operation causes the operation to wait until its arguments are
available. In other words, the operation synchronizes on the availability of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

340 Declarative Concurrency

Supply-driven Demand-driven
Implicit dataflow execution lazy execution
Explicit locks, monitors, etc. programmed trigger

Table 4.5: Classifying synchronization

its arguments. This waiting has no effect on whether or not the arguments
will be calculated; if some other thread does not calculate them then the
operation will wait indefinitely.

• Demand-driven synchronization (lazy execution). Attempting to
execute an operation causes the calculation of its arguments. In other words,
the calculation of the arguments synchronizes on the operation needing
them.

Table 4.5 shows the four possibilities that result. All four are practical and exist
in real systems. Explicit synchronization is the primary mechanism in most lan-
guages that are based on a stateful model, e.g., Java, Smalltalk, and C++. This
mechanism is explained in Chapter 8. Implicit synchronization is the primary
mechanism in most languages that are based on a declarative model, e.g., func-
tional languages such as Haskell use lazy evaluation and logic languages such as
Prolog and concurrent logic languages use dataflow execution. This mechanism
is presented in this chapter.

All four possibilities can be used efficiently in the computation models of
this book. This lets us compare their expressiveness and ease of use. We find
that concurrent programming is simpler with implicit synchronization than with
explicit synchronization. In particular, we find that programming with dataflow
execution makes concurrent programs simpler. Even in a stateful model, like the
one in Chapter 8, dataflow execution is advantageous. After comparing languages
with explicit and implicit synchronization, Bal et al come to the same conclusion:
that dataflow variables are “spectacularly expressive” in concurrent programming
as compared to explicit synchronization, even without explicit state [14]. This
expressiveness is one of the reasons why we emphasize implicit synchronization in
the book. Let us now examine more closely the usefulness of dataflow execution.

4.9.5 Usefulness of dataflow variables

Section 4.2.3 shows how dataflow execution is used for synchronization in the
declarative concurrent model. There are many other uses for dataflow execution.
This section summarizes these uses. We give pointers to examples throughout
the book to illustrate them. Dataflow execution is useful because:

• It is a powerful primitive for concurrent programming (see this chapter and
Chapter 8). It can be used for synchronizing and communicating between

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.9 Advanced topics 341

concurrent computations. Many concurrent programming techniques be-
come simplified and new techniques become possible when using dataflow
variables.

• It removes order dependencies between parts of a program (see this chapter
and Chapter 8). To be precise, it replaces static dependencies (decided by
the programmer) by dynamic dependencies (decided by the data). This is
the basic reason why dataflow computation is useful for parallel program-
ming. The output of one part can be passed directly as input to the next
part, independent of the order in which the two parts are executed. When
the parts execute, the second one will block only if necessary, i.e., only if it
needs the result of the first and it is not yet available.

• It is a powerful primitive for distributed programming (see Chapter 11). It
improves latency tolerance and third-party independence. A dataflow vari-
able can be passed among sites arbitrarily. At all times, it “remembers its
origins,” i.e., when the value becomes known then the variable will receive
it. The communication needed to bind the variable is part of the variable
and not part of the program manipulating the variable.

• It makes it possible to do declarative calculations with partial information.
This was exploited in Chapter 3 with difference lists. One way to look at
partial values is as complete values that are only partially known. This is
a powerful idea that is further exploited in constraint programming (see
Chapter 12).

• It allows the declarative model to support logic programming (see Sec-
tion 9.3). That is, it is possible to give a logical semantics to many declar-
ative programs. This allows reasoning about these programs at a very high
level of abstraction. From a historical viewpoint, dataflow variables were
originally discovered in the context of concurrent logic programming, where
they are called logic variables.

An insightful way to understand dataflow variables is to see them as a middle
ground between having no state and having state:

• A dataflow variable is stateful, because it can change state (i.e., be bound to
a value), but it can be bound to just one value in its lifetime. The stateful
aspect can be used to get some of the advantages of programming with
state (as explained in Chapter 6) while staying within a declarative model.
For example, difference lists can be appended in constant time, which is not
possible for lists in a pure functional model.

• A dataflow variable is stateless, because binding is monotonic. By mono-
tonic we mean that more information can be added to the binding, but no
information can be changed or removed. Assume the variable is bound to a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

342 Declarative Concurrency

partial value. Later on, more and more of the partial value can be bound,
which amounts to binding the unbound variables inside the partial value.
But these bindings cannot be changed or undone.

The stateless aspect can be used to get some of the advantages of declarative
programming within a non-declarative model. For example, it is possible
to add concurrency to the declarative model, giving the declarative concur-
rent model of this chapter, precisely because threads communicate through
shared dataflow variables.

Futures and I-structures

The dataflow variables used in this book are but one technique to implement
dataflow execution. Another, quite popular technique is based on a slightly dif-
ferent concept, the single-assignment variable. This is a mutable variable that
can be assigned only once. This differs from a dataflow variable in that the latter
can be assigned (perhaps multiple times) to many partial values, as long as the
partial values are compatible with each other.

Two of the best-known instances of the single-assignment variable are futures
and I-structures. The purpose of futures and I-structures is to increase the po-
tential parallelism of a program by removing inessential dependencies between
calculations. They allow concurrency between a computation that calculates a
value and one that uses the value. This concurrency can be exploited on a paral-
lel machine. We define futures and I-structures and compare them with dataflow
variables.

Futures were first introduced in Multilisp, a language intended for writing
parallel programs [68]. Multilisp introduces the function call (future E) (in
Lisp syntax), where E is any expression. This does two things: it immediately
returns a placeholder for the result of E and it initiates a concurrent evaluation
of E. When the value of E is needed, i.e., a computation tries to access the
placeholder, then the computation blocks until the value is available. We model
this as follows in the declarative concurrent model (where E is a zero-argument
function):

fun {Future E}
X in

thread X={E} end
!!X

end

A future can only be bound by the concurrent computation that is created along
with it. This is enforced by returning a read-only variable. Multilisp also has a
delay construct that does not initiate any evaluation but uses by-need execution.
It causes evaluation of its argument only when the result is needed.

An I-structure (for incomplete structure) is an array of single-assignment vari-
ables. Individual elements can be accessed before all the elements are computed.
I-structures were introduced as a language construct for writing parallel programs

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.10 Historical notes 343

on dataflow machines, for example in the dataflow language Id [11, 202, 88, 131].
I-structures are also used in pH (“parallel Haskell”), a recent language design
that extends Haskell for implicit parallelism [132, 133]. An I-structure permits
concurrency between a computation that calculates the array elements and a
computation that uses their values. When the value of an element is needed,
then the computation blocks until it is available. Like a future and a read-only
variable, an element of an I-structure can only be bound by the computation that
calculates it.

There is a fundamental difference between dataflow variables on one side and
futures and I-structures on the other side. The latter can be bound only once,
whereas dataflow variables can be bound more than once, as long as the bindings
are consistent with each other. Two partial values are consistent if they are
unifiable. A dataflow variable can be bound many times to different partial
values, as long as the partial values are unifiable. Section 4.3.1 gives an example
when doing stream communication with multiple readers. Multiple readers are
each allowed to bind the list’s tail, since they bind it in a consistent way.

4.10 Historical notes

Declarative concurrency has a long and respectable history. We give some of
the highlights. In 1974, Gilles Kahn defined a simple Algol-like language with
threads that communicate by channels that behave like FIFO queues with block-
ing wait and nonblocking send [97]. He called this model determinate parallel
programming.23 In Kahn’s model, a thread can wait on only one channel at a
time, i.e., each thread always knows from what channel the next input will come.
Furthermore, only one thread can send on each channel. This last restriction is
actually a bit too strong. Kahn’s model could be extended to be like the declar-
ative concurrent model. More than one thread could send on a channel, as long
as the sends are ordered deterministically. For example, two threads could take
turns sending on the same channel.

In 1977, Kahn and David MacQueen extended Kahn’s original model in sig-
nificant ways [98]. The extended model is demand-driven, supports dynamic
reconfiguration of the communication structure, and allows multiple readers on
the same channel.

In 1990, Vijay Saraswat et al generalized Kahn’s original model to concurrent
constraints [164]. This adds partial values to the model and reifies communica-
tion channels as streams. Saraswat et al define first a determinate concurrent
constraint language, which is essentially the same as the data-driven model of
this chapter. It generalizes Kahn’s original model to make possible programming
techniques such as dynamic reconfiguration, channels with multiple readers, in-
complete messages, difference structures, and tail-recursive append.

23By “parallelism” he means concurrency. In those days the term parallelism was used to
cover both concepts.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

344 Declarative Concurrency

Saraswat et al define the concept of resting point, which is closely related to
partial termination as defined in Section 13.2. A resting point of a program is a
store σ that satisfies the following property. When the program executes with this
store, no information is ever added (the store is unchanged). The store existing
when a program is partially terminated is a resting point.

The declarative concurrent models of this book have strong relationships to the
papers cited above. The basic concept of determinate concurrency was defined by
Kahn. The existence of the data-driven model is implicit in the work of Saraswat
et al. The demand-driven model is related to the model of Kahn and MacQueen.
The contribution of this book is to place these models in a uniform framework
that subsumes all of them. Section 4.5 defines a demand-driven model by adding
by-need synchronization to the data-driven model. By-need synchronization is
based on the concept of needing a variable. Because need is defined as a monotonic
property, this gives a quite general declarative model that has both concurrency
and laziness.

4.11 Exercises

1. Thread semantics. Consider the following variation of the statement used
in Section 4.1.3 to illustrate thread semantics:

local B in
thread B=true end
thread B=false end
if B then {Browse yes} end

end

For this exercise, do the following:

(a) Enumerate all possible executions of this statement.

(b) Some of these executions cause the program to terminate abnormally.
Make a small change to the program to avoid these abnormal termi-
nations.

2. Threads and garbage collection. This exercise examines how garbage
collection behaves with threads and dataflow variables. Consider the fol-
lowing program:

proc {B _}
{Wait _}

end

proc {A}
Collectible={NewDictionary}

in
{B Collectible}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 345

end

After the call {A} is done, will Collectible become garbage? That is,
will the memory occupied by Collectible be recovered? Give an answer
by thinking about the semantics. Verify that the Mozart system behaves
in this way.

3. Concurrent Fibonacci. Consider the following sequential definition of
the Fibonacci function:

fun {Fib X}
if X=<2 then 1
else

{Fib X-1}+{Fib X-2}
end

end

and compare it with the concurrent definition given in Section 4.2.3. Run
both on the Mozart system and compare their performance. How much
faster is the sequential definition? How many threads are created by the
concurrent call {Fib N} as a function of N?

4. Order-determining concurrency. Explain what happens when execut-
ing the following:

declare A B C D in
thread D=C+1 end
thread C=B+1 end
thread A=1 end
thread B=A+1 end
{Browse D}

In what order are the threads created? In what order are the additions
done? What is the final result? Compare with the following:

declare A B C D in
A=1
B=A+1
C=B+1
D=C+1
{Browse D}

Here there is only one thread. In what order are the additions done? What
is the final result? What do you conclude?

5. The Wait operation. Explain why the {Wait X} operation could be
defined as:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

346 Declarative Concurrency

proc {Wait X}
if X==unit then skip else skip end

end

Use your understanding of the dataflow behavior of the if statement and
== operation.

6. Thread scheduling. Section 4.7.3 shows how to skip over already-calculated
elements of a stream. If we use this technique to sum the elements of the in-
teger stream in Section 4.3.1, the result is much smaller than 11249925000,
which is the sum of the integers in the stream. Why is it so much smaller?
Explain this result in terms of thread scheduling.

7. Programmed triggers using higher-order programming. Programmed
triggers can be implemented by using higher-order programming instead of
concurrency and dataflow variables. The producer passes a zero-argument
function F to the consumer. Whenever the consumer needs an element, it
calls the function. This returns a pair X#F2 where X is the next stream
element and F2 is a function that has the same behavior as F. Modify the
example of Section 4.3.3 to use this technique.

8. Dataflow behavior in a concurrent setting. Consider the function
{Filter In F} , which returns the elements of In for which the boolean
function F returns true . Here is a possible definition of Filter :

fun {Filter In F}
case In
of X|In2 then

if {F X} then X|{Filter In2 F}
else {Filter In2 F} end

else
nil

end
end

Executing the following:

{Show {Filter [5 1 2 4 0] fun {$ X} X>2 end }}

displays:

[5 4]

So Filter works as expected in the case of a sequential execution when all
the input values are available. Let us now explore the dataflow behavior of
Filter .

(a) What happens when we execute the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 347

declare A
{Show {Filter [5 1 A 4 0] fun {$ X} X>2 end }}

One of the list elements is a variable A that is not yet bound to a value.
Remember that the case and if statements will suspend the thread
in which they execute, until they can decide which alternative path to
take.

(b) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
{Show Out}

Remember that calling Show displays its argument as it exists at the
instant of the call. Several possible results can be displayed; which
and why? Is the Filter function deterministic? Why or why not?

(c) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
{Delay 1000}
{Show Out}

Remember that the call {Delay N} suspends its thread for at least N

milliseconds. During this time, other ready threads can be executed.

(d) What happens when we execute the following:

declare Out A
thread Out={Filter [5 1 A 4 0] fun {$ X} X>2 end } end
thread A=6 end
{Delay 1000}
{Show Out}

What is displayed and why?

9. Digital logic simulation. In this exercise we will design a circuit to add n-
bit numbers and simulate it using the technique of Section 4.3.5. Given two
n-bit binary numbers, (xn−1...x0)2 and (yn−1...y0)2. We will build a circuit
to add these numbers by using a chain of full adders, similar to doing long
addition by hand. The idea is to add each pair of bits separately, passing
the carry to the next pair. We start with the low-order bits x0 and y0.
Feed them to a full adder with the third input z = 0. This gives a sum
bit s0 and a carry c0. Now feed x1, y1, and c0 to a second full adder. This
gives a new sum s1 and carry c1. Continue this for all n bits. The final
sum is (sn−1...s0)2. For this exercise, program the addition circuit using full
adders. Verify that it works correctly by feeding it several additions.

10. Basics of laziness. Consider the following program fragment:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

348 Declarative Concurrency

fun lazy {Three} {Delay 1000} 3 end

Calculating {Three}+0 returns 3 after a 1000 millisecond delay. This is as
expected, since the addition needs the result of {Three} . Now calculate
{Three}+0 three times in succession. Each calculation waits 1000 millisec-
onds. How can this be, since Three is supposed to be lazy. Shouldn’t its
result be calculated only once?

11. Laziness and concurrency I. This exercise looks closer at the concurrent
behavior of lazy execution. Execute the following:

fun lazy {MakeX} {Browse x} {Delay 3000} 1 end
fun lazy {MakeY} {Browse y} {Delay 6000} 2 end
fun lazy {MakeZ} {Browse z} {Delay 9000} 3 end

X={MakeX}
Y={MakeY}
Z={MakeZ}

{Browse (X+Y)+Z}

This displays x and y immediately, z after 6 seconds, and the result 6 after
15 seconds. Explain this behavior. What happens if (X+Y)+Z is replaced by
X+(Y+Z) or by thread X+Y end + Z? Which form gives the final result
the quickest? How would you program the addition of n integers i1, ...,
in, given that integer ij only appears after tj milliseconds, so that the final
result appears the quickest?

12. Laziness and concurrency II. Let us compare the kind of incremental-
ity we get from laziness and from concurrency. Section 4.3.1 gives a pro-
ducer/consumer example using concurrency. Section 4.5.3 gives the same
producer/consumer example using laziness. In both cases, it is possible for
the output stream to appear incrementally. What is the difference? What
happens if you use both concurrency and laziness in the producer/consumer
example?

13. Laziness and monolithic functions. Consider the following two defini-
tions of lazy list reversal:

fun lazy {Reverse1 S}
fun {Rev S R}

case S of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

fun lazy {Reverse2 S}
fun lazy {Rev S R}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 349

case S of nil then R
[] X|S2 then {Rev S2 X|R} end

end
in {Rev S nil} end

What is the difference in behavior between {Reverse1 [a b c]} and
{Reverse2 [a b c]} ? Do the two definitions calculate the same result?
Do they have the same lazy behavior? Explain your answer in each case.
Finally, compare the execution efficiency of the two definitions. Which
definition would you use in a lazy program?

14. Laziness and iterative computation. In the declarative model, one
advantage of dataflow variables is that the straightforward definition of
Append is iterative. For this exercise, consider the straightforward lazy
version of Append without dataflow variables, as defined in Section 4.5.7.
Is it iterative? Why or why not?

15. Performance of laziness. For this exercise, take some declarative pro-
grams you have written and make them lazy by declaring all routines as
lazy. Use lazy versions of all built-in operations, for example addition be-
comes Add, which is defined as fun lazy {Add X Y} X+Y end . Compare
the behavior of the original eager programs with the new lazy ones. What is
the difference in efficiency? Some functional languages, such as Haskell and
Miranda, implicitly consider all functions as lazy. To achieve reasonable
performance, these languages do strictness analysis, which tries to find as
many functions as possible that can safely be compiled as eager functions.

16. By-need execution. Define an operation that requests the calculation of
X but that does not wait.

17. Hamming problem. The Hamming problem of Section 4.5.6 is actually
a special case of the original problem, which asks for the first n integers of
the form pa1

1 pa2
2 ...pak

k with a1, a2, ..., ak ≥ 0 using the first k primes p1, ...,
pk. For this exercise, write a program that solves this problem for any n
when given k.

18. Concurrency and exceptions. Consider the following control abstraction
that implements try –finally :

proc {TryFinally S1 S2}
B Y in

try {S1} B= false catch X then B=true Y=X end
{S2}
if B then raise Y end end

end

Using the abstract machine semantics as a guide, determine the different
possible results of the following program:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

350 Declarative Concurrency

local U=1 V=2 in
{TryFinally

proc {$}
thread

{TryFinally proc {$} U=V end
proc {$} {Browse bing} end }

end
end
proc {$} {Browse bong} end }

end

How many different results are possible? How many different executions
are possible?

19. Limitations of declarative concurrency. Section 4.7 states that declar-
ative concurrency cannot model client/server applications, because the serv-
er cannot read commands from more than one client. Yet, the declarative
Merge function of Section 4.5.6 reads from three input streams to generate
one output stream. How can this be?

20. (advanced exercise) Worst-case bounds with laziness. Section 4.5.8
explains how to design a queue with worst-case time bound of O(log n). The
logarithm appears because the variable F can have logarithmically many
suspensions attached to it. Let us see how this happens. Consider an
empty queue to which we repeatedly add new elements. The tuple (|F|, |R|)
starts out as (0, 0). It then becomes (0, 1), which immediately initiates a
lazy computation that will eventually make it become (1, 0). (Note that
F remains unbound and has one suspension attached.) When two more
elements are added, the tuple becomes (1, 2), and a second lazy computation
is initiated that will eventually make it become (3, 0). Each time that R is
reversed and appended to F, one new suspension is created on F. The size
of R that triggers the lazy computation doubles with each iteration. The
doubling is what causes the logarithmic bound. For this exercise, let us
investigate how to write a queue with a constant worst-case time bound.
One approach that works is to use the idea of schedule, as defined in [138].

21. (advanced exercise) List comprehensions. Define a linguistic abstraction
for list comprehensions (both lazy and eager) and add it to the Mozart
system. Use the gump parser-generator tool documented in [104].

22. (research project) Controlling concurrency. The declarative concurrent
model gives three primitive operations that affect execution order without
changing the results of a computation: sequential composition (total order,
supply-driven), lazy execution (total order, demand-driven), and concur-
rency (partial order, determined by data dependencies). These operations
can be used to “tune” the order in which a program accepts input and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

4.11 Exercises 351

gives results, for example to be more or less incremental. This is a good
example of separation of concerns. For this exercise, investigate this topic
further and answer the following questions. Are these three operations com-
plete? That is, can all possible partial execution orders be specified with
them? What is the relationship with reduction strategies in the λ calculus
(e.g., applicative order reduction, normal order reduction)? Are dataflow
or single-assignment variables essential?

23. (research project) Parallel implementation of functional languages.
Section 4.9.2 explains that non-strict evaluation allows to take advantage
of speculative execution when implementing a parallel functional language.
However, using non-strict evaluation makes it difficult to use explicit state.
For this exercise, study this trade-off. Can a parallel functional language
take advantage of both speculative execution and explicit state? Design,
implement, and evaluate a language to verify your ideas.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

352 Declarative Concurrency

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 5

Message-Passing Concurrency

“Only then did Atreyu notice that the monster was not a single,
solid body, but was made up of innumerable small steel-blue insects
which buzzed like angry hornets. It was their compact swarm that
kept taking different shapes.”
– The Neverending Story, Michael Ende (1929–1995)

In the last chapter we saw how to program with stream objects, which is
both declarative and concurrent. But it has the limitation that it cannot handle
observable nondeterminism. For example, we wrote a digital logic simulator in
which each stream object knows exactly which object will send it the next mes-
sage. We cannot program a client/server where the server does not know which
client will send it the next message.

We can remove this limitation by extending the model with an asynchronous
communication channel. Then any client can send messages to the channel and
the server can read them from the channel. We use a simple kind of channel
called a port that has an associated stream. Sending a message to the port causes
the message to appear on the port’s stream.

The extended model is called the message-passing concurrent model. Since this
model is nondeterministic, it is no longer declarative. A client/server program
can give different results on different executions because the order of client sends
is not determined.

A useful programming style for this model is to associate a port to each stream
object. The object reads all its messages from the port, and sends messages to
other stream objects through their ports. This style keeps most of the advantages
of the declarative model. Each stream object is defined by a recursive procedure
that is declarative.

Another programming style is to use the model directly, programming with
ports, dataflow variables, threads, and procedures. This style can be useful for
building concurrency abstractions, but it is not recommended for large programs
because it is harder to reason about.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

354 Message-Passing Concurrency

Structure of the chapter

The chapter consists of the following parts:

• Section 5.1 defines the message-passing concurrent model. It defines the
port concept and the kernel language. It also defines port objects, which
combine ports with a thread.

• Section 5.2 introduces the concept of port objects, which we get by com-
bining ports with stream objects.

• Section 5.3 shows how to do simple kinds of message protocols with port
objects.

• Section 5.4 shows how to design programs with concurrent components. It
uses port objects to build a lift control system.

• Section 5.5 shows how to use the message-passing model directly, without
using the port object abstraction. This can be more complex than using
port objects, but it is sometimes useful.

• Section 5.6 gives an introduction to Erlang, a programming language based
on port objects. Erlang is designed for and used in telecommunications
applications, where fine-grained concurrency and robustness are important.

• Section 5.7 explains one advanced topic: the nondeterministic concurrent
model, which is intermediate in expressiveness between the declarative con-
current model and the message-passing model of this chapter.

5.1 The message-passing concurrent model

The message-passing concurrent model extends the declarative concurrent model
by adding ports. Table 5.1 shows the kernel language. Ports are a kind of com-
munication channel. Ports are no longer declarative since they allow observable
nondeterminism: many threads can send a message on a port and their order is
not determined. However, the part of the computation that does not use ports
can still be declarative. This means that with care we can still use many of the
reasoning techniques of the declarative concurrent model.

5.1.1 Ports

A port is an ADT that has two operations, namely creating a channel and sending
to it:

• {NewPort S P} : create a new port with entry point P and stream S.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.1 The message-passing concurrent model 355

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {NewPort 〈y〉 〈x〉} Port creation
| {Send 〈x〉 〈y〉} Port send

Table 5.1: The kernel language with message-passing concurrency

• {Send P X} : append X to the stream corresponding to the entry point P.
Successive sends from the same thread appear on the stream in the same
order in which they were executed. This property implies that a port is an
asynchronous FIFO communication channel.

For example:

declare S P in
{NewPort S P}
{Browse S}
{Send P a}
{Send P b}

This displays the stream a|b|_ . Doing more sends will extend the stream. Say
the current end of the stream is S. Doing the send {Send P a} will bind S to
a|S1 , and S1 becomes the new end of the stream. Internally, the port always
remembers the current end of the stream. The end of the stream is a read-only
variable. This means that a port is a secure ADT.

By asynchronous we mean that a thread that sends a message does not wait
for any reply. As soon as the message is in the communication channel, the object
can continue with other activities. This means that the communication channel
can contain many pending messages, which are waiting to be handled. By FIFO
we mean that messages sent from any one object arrive in the same order that
they are sent. This is important for coordination among the threads.

5.1.2 Semantics of ports

The semantics of ports is quite straightforward. To define it, we first extend the
execution state of the declarative model by adding a mutable store. Figure 5.1

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

356 Message-Passing Concurrency

Immutable store Mutable store
(single−assignment)

{Send Q f} ... case Z of a|Z2 then ... Semantic stacks (threads)

(ports)

...

Z

V=B|X

B=2A=1

X p1:X
p2:Z

Q=p2P=p1

W=A|V

Figure 5.1: The message-passing concurrent model

shows the mutable store. Then we define the operations NewPort and Send in
terms of the mutable store.

Extension of execution state

Next to the single-assignment store σ (and the trigger store τ , if laziness is im-
portant) we add a new store µ called the mutable store. This store contains
ports, which are pairs of the form x : y, where x and y are variables of the single-
assignment store. The mutable store is initially empty. The semantics guarantees
that x is always bound to a name value that represents a port and that y is un-
bound. We use name values to identify ports because name values are unique
unforgeable constants. The execution state becomes a triple (MST, σ, µ) (or a
quadruple (MST, σ, µ, τ) if the trigger store is considered).

The NewPort operation

The semantic statement ({NewPort 〈x〉 〈y〉} , E) does the following:

• Create a fresh port name n.

• Bind E(〈y〉) and n in the store.

• If the binding is successful, then add the pair E(〈y〉) : E(〈x〉) to the mutable
store µ.

• If the binding fails, then raise an error condition.

The Send operation

The semantic statement ({Send 〈x〉 〈y〉} , E) does the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.2 Port objects 357

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not bound to the name of a port, then raise an error
condition.

– If the mutable store contains E(〈x〉) : z then do the following actions:

∗ Create a new variable z′ in the store.

∗ Update the mutable store to be E(〈x〉) : z′.

∗ Create a new list pair E(〈y〉)| z′ and bind z with it in the store.

• If the activation condition is false, then suspend execution.

This semantics is slightly simplified with respect to the complete port semantics.
In a correct port, the end of the stream should always be a read-only view. This
requires a straightforward extension to the NewPort and Send semantics. We
leave this as an exercise for the reader.

Memory management

Two modifications to memory management are needed because of the mutable
store:

• Extending the definition of reachability: A variable y is reachable if the
mutable store contains x : y and x is reachable.

• Reclaiming ports: If a variable x becomes unreachable, and the mutable
store contains the pair x : y, then remove this pair.

5.2 Port objects

A port object is a combination of one or more ports and a stream object. This
extends stream objects in two ways. First, many-to-one communication is possi-
ble: many threads can reference a given port object and send to it independently.
This is not possible with a stream object because it has to know from where
its next message will come from. Second, port objects can be embedded inside
data structures (including messages). This is not possible with a stream object
because it is referenced by a stream that can be extended by just one thread.

The concept of port object has many popular variations. Sometimes the word
“agent” is used to cover a similar idea: an active entity with which one can
exchange messages. The Erlang system has the “process” concept, which is like a
port object except that it adds an attached mailbox that allows to filter incoming
messages by pattern matching. Another often-used term is “active object”. It is
similar to a port object except that it is defined in an object-oriented way, by a
class (as we shall see in Chapter 7). In this chapter we use only port objects.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

358 Message-Passing Concurrency

In the message-passing model, a program consists of a set of port objects
sending and receiving messages. Port objects can create new port objects. Port
objects can send messages containing references to other port objects. This means
that the set of port objects forms a graph that can evolve during execution.

Port objects can be used to model distributed systems, where a distributed
system is a set of computers that can communicate with each other through a
network. Each computer is modeled as one or more port objects. A distributed
algorithm is simply an algorithm between port objects.

A port object has the following structure:

declare P1 P2 ... Pn in
local S1 S2 ... Sn in

{NewPort S1 P1}
{NewPort S2 P2}
...
{NewPort Sn Pn}
thread {RP S1 S2 ... Sn} end

end

The thread contains a recursive procedure RP that reads the port streams and
performs some action for each message received. Sending a message to the port
object is just sending a message to one of the ports. Here is an example port
object with one port that displays all the messages it receives:

declare P in
local S in

{NewPort S P}
thread {ForAll S proc {$ M} {Browse M} end } end

end

With the for loop syntax, this can be written more concisely as:

declare P in
local S in

{NewPort S P}
thread for M in S do {Browse M} end end

end

Doing {Send P hi} will eventually display hi . We can compare this with the
stream objects of Chapter 4. The difference is that port objects allow many-to-
one communication, i.e., any thread that references the port can send a message
to the port object at any time. The object does not know from which thread the
next message will come. This is in contrast to stream objects, where the object
always knows from which thread the next message will come.

5.2.1 The NewPortObject abstraction

We can define an abstraction to make it easier to program with port objects. Let
us define an abstraction in the case that the port object has just one port. To

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.2 Port objects 359

ball

ball

ball

ball

ball

ball

Player 3

Player 2Player 1

Figure 5.2: Three port objects playing ball

define the port object, we only have to give the initial state Init and the state
transition function Fun. This function is of type 〈fun {$ Ts Tm}: Ts〉 where Ts

is the state type and Tm is the message type.

fun {NewPortObject Init Fun}
proc {MsgLoop S1 State}

case S1 of Msg|S2 then
{MsgLoop S2 {Fun Msg State}}

[] nil then skip end
end
Sin

in
thread {MsgLoop Sin Init} end
{NewPort Sin}

end

Some port objects are purely reactive, i.e., they have no internal state. The
abstraction becomes simpler for them:

fun {NewPortObject2 Proc}
Sin in

thread for Msg in Sin do {Proc Msg} end end
{NewPort Sin}

end

There is no state transition function, but simply a procedure that is invoked for
each message.

5.2.2 An example

There are three players standing in a circle, tossing a ball amongst themselves.
When a player catches the ball, he picks one of the other two randomly to throw
the ball to. We can model this situation with port objects. Consider three port
objects, where each object has a reference to the others. There is a ball that is sent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

360 Message-Passing Concurrency

between the objects. When a port object receives the ball, it immediately sends
it to another, picked at random. Figure 5.2 shows the three objects and what
messages each object can send and where. Such a diagram is called a component
diagram. To program this, we first define a component that creates a new player:

fun {Player Others}
{NewPortObject2

proc {$ Msg}
case Msg of ball then

Ran={OS.rand} mod {Width Others} + 1
in

{Send Others.Ran ball}
end

end }
end

Others is a tuple that contains the other players. Now we can set up the game:

P1={Player others(P2 P3)}
P2={Player others(P1 P3)}
P3={Player others(P1 P2)}

In this program, Player is a component and P1, P2, P3 are its instances. To
start the game, we toss a ball to one of the players:

{Send P1 ball}

This starts a furiously fast game of tossing the ball. To slow it down, we can add
a {Delay 1000} in each player.

5.2.3 Reasoning with port objects

Consider a program that consists of port objects which send each other messages.
Proving that the program is correct consists of two parts: proving that each port
object is correct (when considered by itself) and proving that the port objects
work together correctly. The first step is to show that each port object is correct.
Each port object defines an ADT. The ADT should have an invariant assertion,
i.e., an assertion that is true whenever an ADT operation has completed and
before the next operation has started. To show that the ADT is correct, it is
enough to show that the assertion is an invariant. We showed how to do this for
the declarative model in Chapter 3. Since the inside of a port object is declarative
(it is a recursive function reading a stream), we can use the techniques we showed
there.

Because the port object has just one thread, the ADT’s operations are exe-
cuted sequentially within it. This means we can use mathematical induction to
show that the assertion is an invariant. We have to prove two things:

• When the port object is first created, the assertion is satisfied.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.3 Simple message protocols 361

• If the assertion is satisfied before a message is handled, then the assertion
is satisfied after the message is handled.

The existence of the invariant shows that the port object itself is correct. The
next step is to show that the program using the port objects is correct. This
requires a whole different set of techniques.

A program in the message-passing model is a set of port objects that send
each other messages. To show that this is correct, we have to determine what the
possible sequences of messages are that each port object can receive. To determine
this, we start by classifying all the events in the system (there are three kinds:
message sends, message receives, and internal events of a port object). We can
then define causality between events (whether an event happens before another).
Considering the system of port objects as a state transition system, we can then
reason about the whole program. Explaining this in detail is beyond the scope
of this chapter. We refer interested readers to books on distributed algorithms,
such as Lynch [115] or Tel [189].

5.3 Simple message protocols

Port objects work together by exchanging messages in coordinated ways. It is
interesting to study what kinds of coordination are important. This leads us to
define a protocol as a sequence of messages between two or more parties that can
be understood at a higher level of abstraction than just its individual messages.
Let us take a closer look at message protocols and see how to realize them with
port objects.

Most well-known protocols are rather complicated ones such as the Internet
protocols (TCP/IP, HTTP, FTP, etc.) or LAN (Local Area Network) protocols
such as Ethernet, DHCP (Dynamic Host Connection Protocol), and so forth [107].
In this section we show some of simpler protocols and how to implement them
using port objects. All the examples use NewPortObject2 to create port objects.

Figure 5.3 shows the message diagrams of many of the simple protocols (we
leave the other diagrams up to the reader!). These diagrams show the messages
passed between a client (denoted C) and a server (denoted S). Time flows down-
wards. The figure is careful to distinguish idle threads (which are available to
service requests) from suspended threads (which are not available).

5.3.1 RMI (Remote Method Invocation)

Perhaps the most popular of the simple protocols is the RMI. It allows an object
to call another object in a different operating system process, either on the same
machine or on another machine connected by a network [119]. Historically, the
RMI is a descendant of the RPC (Remote Procedure Call), which was invented in
the early 1980’s, before object-oriented programming became popular [18]. The
terminology RMI became popular once objects started replacing procedures as

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

362 Message-Passing Concurrency

1. RMI
(2 calls)

5. Asynchronous RMI

3. RMI with callback
(using thread)

Thread states

with callback

4. RMI with callback
(using continuation)

2. Asynchronous RMI
(2 calls)

(using threads)
(2 calls)

C S C S

C S

SC C S

suspended
idle

active

Figure 5.3: Message diagrams of simple protocols

the remote entities to be called. We apply the term RMI somewhat loosely to port
objects, even though they do not have methods in the sense of object-oriented
programming (see Chapter 7 for more on methods). For now, we assume that a
“method” is simply what a port object does when it receives a particular message.

From the programmer’s viewpoint, the RMI and RPC protocols are quite
simple: a client sends a request to a server and then waits for the server to send
back a reply. (This viewpoint abstracts from implementation details such as how
data structures are passed from one address space to another.) Let us give an
example. We first define the server as a port object:

proc {ServerProc Msg}
case Msg
of calc(X Y) then

Y=X*X+2.0*X+2.0
end

end
Server={NewPortObject2 ServerProc}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.3 Simple message protocols 363

This particular server has no internal state. The second argument Y of calc is
bound by the server. We assume the server does a complex calculation, which we
model by the polynomial X*X+2.0*X+2.0 . We define the client:

proc {ClientProc Msg}
case Msg
of work(Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Wait Y1}
{Send Server calc(20.0 Y2)}
{Wait Y2}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

Note that we are using a nesting marker “$”. We recall that the last line is
equivalent to:

local X in {Send Client work(X)} {Browse X} end

Nesting markers are a convenient way to turn statements into expressions. There
is an interesting difference between the client and server definitions. The client
definition references the server directly but the server definition does not know
its clients. The server gets a client reference indirectly, through the argument Y.
This is a dataflow variable that is bound to the answer by the server. The client
waits until receiving the reply before continuing.

In this example, all messages are executed sequentially by the server. In our
experience, this is the best way to implement RMI. It is simple to program with
and reason about. Some RMI implementations do things somewhat differently.
They allow multiple calls from different clients to be processed concurrently. This
is done by allowing multiple threads at the server-side to accept requests for the
same object. The server no longer serves requests sequentially. This is much
harder to program with: it requires the server to protect its internal state data.
We will examine this case later, in Chapter 8. When programming in a language
that provides RMI or RPC, such as C or Java, it is important to know whether
or not messages are executed sequentially by the server.

In this example, the client and server are both written in the same language
and both execute in the same operating system process. This is true for all
programs of this chapter. When the processes are not the same, we speak of a
distributed system. This is explained in Chapter 11. This is possible, e.g., in
Java RMI, where both processes run Java. The programming techniques of this
chapter still hold for this case, with some modifications due to the nature of
distributed systems.

It can happen that the client and server are written in different languages,
but that we still want them to communicate. There exist standards for this, e.g.,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

364 Message-Passing Concurrency

the CORBA architecture. This is useful for letting programs communicate even
if their original design did not plan for it.

5.3.2 Asynchronous RMI

Another useful protocol is the asynchronous RMI. This is similar to RMI, except
that the client continues execution immediately after sending the request. The
client is informed when the reply arrives. With this protocol, two requests can be
done in rapid succession. If communications between client and server are slow,
then this will give a large performance advantage over RMI. In RMI, we can only
send the second request after the first is completed, i.e., after one round trip from
client to server.

proc {ClientProc Msg}
case Msg
of work(?Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1)}
{Send Server calc(20.0 Y2)}
Y=Y1+Y2

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

The message sends overlap. The client waits for both results Y1 and Y2 before
doing the addition Y1+Y2.

Note that the server sees no difference with standard RMI. It still receives
messages one by one and executes them sequentially. Requests are handled by
the server in the same order as they are sent and the replies arrive in that order as
well. We say that the requests and replies are sent in First-In-First-Out (FIFO)
order.

5.3.3 RMI with callback (using thread)

The RMI with callback is like an RMI except that the server needs to call the
client in order to fulfill the request. Let us see an example. Here is a server that
does a callback to find the value of a special parameter called delta , which is
known only by the client:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.3 Simple message protocols 365

end
end
Server={NewPortObject2 ServerProc}

The server knows the client reference because it is an argument of the calc

message. We leave out the {Wait D} since it is implicit in the addition X+D.
Here is a client that calls the server in the same way as for RMI:

proc {ClientProc Msg}
case Msg
of work(?Z) then
Y in

{Send Server calc(10.0 Y Client)}
Z=Y+100.0

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

(As before, the Wait is implicit.) Unfortunately, this solution does not work. It
deadlocks during the call {Send Client work(Z)} . Do you see why? Draw a
message diagram to see why.1 This shows that a simple RMI is not the right
concept for doing callbacks.

The solution to this problem is for the client call not to wait for the reply.
The client must continue immediately after making its call, so that it is ready to
accept the callback. When the reply comes eventually, the client must handle it
correctly. Here is one way to write a correct client:

proc {ClientProc Msg}
case Msg
of work(?Z) then
Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then
D=1.0

end
end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

Instead of waiting for the server to bind Y, the client creates a new thread to do
the waiting. The new thread’s body is the work to do when Y is bound. When
the reply comes eventually, the new thread does the work and binds Z.

1It is because the client suspends when it calls the server, so that the server cannot call the
client.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

366 Message-Passing Concurrency

It is interesting to see what happens when we call this client from outside. For
example, let us do the call {Send Client work(Z)} . When this call returns, Z

will usually not be bound yet. Usually this is not a problem, since the operation
that uses Z will block until Z is bound. If this is undesirable, then the client call
can itself be treated like an RMI:

{Send Client work(Z)}
{Wait Z}

This lifts the synchronization from the client to the application that uses the
client. This is the right way to handle the problem. The problem with the
original, buggy solution is that the synchronization is done in the wrong place.

5.3.4 RMI with callback (using record continuation)

The solution of the previous example creates a new thread for each client call.
This assumes that threads are inexpensive. How do we solve the problem if we
are not allowed to create a new thread? The solution is for the client to pass a
continuation to the server. After the server is done, it passes the continuation
back to the client so that the client can continue. In that way, the client never
waits and deadlock is avoided. Here is the server definition:

proc {ServerProc Msg}
case Msg
of calc(X Client Cont) then
X1 D Y in

{Send Client delta(D)}
X1=X+D
Y=X1*X1+2.0*X1+2.0
{Send Client Cont#Y}

end
end
Server={NewPortObject2 ServerProc}

After finishing its own work, the server passes Cont#Y back to the client. It adds
Y to the continuation since Y is needed by the client!

proc {ClientProc Msg}
case Msg
of work(?Z) then

{Send Server calc(10.0 Client cont(Z))}
[] cont(Z)#Y then

Z=Y+100.0
[] delta(?D) then

D=1.0
end

end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.3 Simple message protocols 367

The part of work after the server call is put into a new method, cont . The client
passes the server the continuation cont(Z) . The server calculates Y and then lets
the client continue its work by passing it cont(Z)#Y .

When the client is called from outside, the continuation-based solution to
callbacks behaves in the same way as the thread-based solution. Namely, Z will
usually not be bound yet when the client call returns. We handle this in the same
way as the thread-based solution, by lifting the synchronization from the client
to its caller.

5.3.5 RMI with callback (using procedure continuation)

The previous example can be generalized in a powerful way by passing a procedure
instead of a record. We change the client as follows (the server is unchanged):

proc {ClientProc Msg}
case Msg
of work(?Z) then

C=proc {$ Y} Z=Y+100.0 end
in

{Send Server calc(10.0 Client cont(C))}
[] cont(C)#Y then

{C Y}
[] delta(?D) then

D=1.0
end

end
Client={NewPortObject2 ClientProc}
{Browse {Send Client work($)}}

The continuation contains the work that the client has to do after the server call
returns. Since the continuation is a procedure value, it is self-contained: it can
be executed by anyone without knowing what is inside.

5.3.6 Error reporting

All the protocols we covered so far assume that the server will always do its job
correctly. What should we do if this is not the case, that is, if the server can
occasionally make an error? For example, it might be due to a network problem
between the client and server, or the server process is no longer running. In any
case, the client should be notified that an error has occurred. The natural way to
notify the client is by raising an exception. Here is how we can modify the server
to do this:

proc {ServerProc Msg}
case Msg
of sqrt(X Y E) then

try

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

368 Message-Passing Concurrency

Y={Sqrt X}
E=normal

catch Exc then
E=exception(Exc)

end
end

end
Server={NewPortObject2 ServerProc}

The extra argument E signals whether execution was normal or not. The server
calculates square roots. If the argument is negative, Sqrt raises an exception,
which is caught and passed to the client.

This server can be called by both synchronous and asynchronous protocols.
In a synchronous protocol, the client can call it as follows:

{Send Server sqrt(X Y E)}
case E of exception(Exc) then raise Exc end end

The case statement blocks the client until E is bound. In this way, the client
synchronizes on one of two things happening: a normal result or an exception. If
an exception was raised at the server, then the exception is raised again at the
client. This guarantees that Y is not used unless it is bound to a normal result.
In an asynchronous protocol there is no guarantee. It is the client’s responsibility
to check E before using Y.

This example makes the basic assumption that the server can catch the ex-
ception and pass it back to the client. What happens when the server fails or the
communication link between the client and server is cut or too slow for the client
to wait? These cases will be handled in Chapter 11.

5.3.7 Asynchronous RMI with callback

Protocols can be combined to make more sophisticated ones. For example, we
might want to do two asynchronous RMIs where each RMI does a callback. Here
is the server:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
thread

X1=X+D
Y=X1*X1+2.0*X1+2.0

end
end

end

Here is the client:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.3 Simple message protocols 369

proc {ClientProc Msg}
case Msg
of work(?Y) then
Y1 Y2 in

{Send Server calc(10.0 Y1 Client)}
{Send Server calc(20.0 Y2 Client)}
thread Y=Y1+Y2 end

[] delta(?D) then
D=1.0

end
end

What is the message diagram for the call {Send Client work(Y)} ? What
would happen if the server did not create a thread for doing the work after the
callback?

5.3.8 Double callbacks

Sometimes the server does a first callback to the client, which itself does a second
callback to the server. To handle this, both the client and the server must continue
immediately and not wait until the result comes back. Here is the server:

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then
X1 D in

{Send Client delta(D)}
thread

X1=X+D
Y=X1*X1+2.0*X1+2.0

end
[] serverdelta(?S) then

S=0.01
end

end

Here is the client:

proc {ClientProc Msg}
case Msg
of work(Z) then
Y in

{Send Server calc(10.0 Y Client)}
thread Z=Y+100.0 end

[] delta(?D) then S in
{Send Server serverdelta(S)}
thread D=1.0+S end

end
end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

370 Message-Passing Concurrency

Calling {Send Client work(Z)} calls the server, which calls the client method
delta(D) , which itself calls the server method serverdelta(S) . A question for
an alert reader: why is the last statement D=1.0+S also put in a thread?2

5.4 Program design for concurrency

This section gives an introduction to component-based programming with con-
current components.

In Section 4.3.5 we saw how to do digital logic design using the declarative
concurrent model. We defined a logic gate as the basic circuit component and
showed how to compose them to get bigger and bigger circuits. Each circuit had
inputs and outputs, which were modeled as streams.

This section continues that discussion in a more general setting. We put it in
the larger context of component-based programming. Because of message-passing
concurrency we no longer have the limitations of the synchronous “lock-step”
execution of Chapter 4.

We first introduce the basic concepts of concurrent modeling. Then we give a
practical example, a lift control system. We show how to design and implement
this system using high-level component diagrams and state diagrams. We start
by explaining these concepts.

5.4.1 Programming with concurrent components

To design a concurrent application, the first step is to model it as a set of con-
current activities that interact in well-defined ways. Each concurrent activity
is modeled by exactly one concurrent component. A concurrent component is
sometimes known as an “agent”. Agents can be reactive (have no internal state)
or have internal state. The science of programming with agents is sometimes
known as multi-agent systems, often abbreviated as MAS. Many different proto-
cols of varying complexities have been devised in MAS. This section only briefly
touches on these protocols. In component-based programming, agents are usually
considered as quite simple entities with little intelligence built-in. In the artifi-
cial intelligence community, agents are usually considered as doing some kind of
reasoning.

Let us define a simple model for programming with concurrent components.
The model has primitive components and ways to combine components. The
primitive components are used to create port objects.

A concurrent component

Let us define a simple model for component-based programming that is based
on port objects and executes with concurrent message-passing. In this model, a

2Strictly speaking, it is not needed in this example. But in general, the client does not know
whether the server will do another callback!

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 371

concurrent component is a procedure with inputs and outputs. When invoked,
the procedure creates a component instance, which is a port object. An input is
a port whose stream is read by the component. An output is a port to which the
component can send.

Procedures are the right concept to model concurrent components since they
allow to compose components and to provide arbitrary numbers of inputs and
outputs. Inputs and outputs can be local, with visibility restricted to inside the
component.

Interface

A concurrent component interacts with its environment through its interface.
The interface consists of the set of its inputs and outputs, which are collectively
known as its wires. A wire connects one or more outputs to one or more inputs.
The message-passing model of this chapter provides two basic kinds of wires:
one-shot and many-shot. One-shot wires are implemented by dataflow variables.
They are used for values that do not change or for one-time messages (like ac-
knowledgements). Only one message can be passed and only one output can be
connected to a given input. Many-shot wires are implemented by ports. They
are used for message streams. Any number of messages can be passed and any
number of outputs can write to a given input.

The declarative concurrent model of Chapter 4 also has one-shot and many-
shot wires, but the latter are restricted in that only one output can write to a
given input.

Basic operations

There are four basic operations in component-based programming:

• Instantiation: creating an instance of a component. By default, each in-
stance is independent of each other instance. In some cases, instances might
all have a dependency on a shared instance.

• Composition: build a new component out of other components. The lat-
ter can be called subcomponents to emphasize their relationship with the
new component. We assume that the default is that the components we
wish to compose have no dependencies. This means that they are concur-
rent! Perhaps surprisingly, compound components in a sequential system
have dependencies even if they share no arguments. This follows because
execution is sequential.

• Linking: combining component instances by connecting inputs and outputs.
Different kinds of links: one-shot, many-shot, inputs that can be connected
to one output only or to many outputs, outputs that can be connected
to one input only or to many inputs. Usually, one-shot links go from one
output to many inputs. All inputs see the same value when it is available.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

372 Message-Passing Concurrency

Many-shot links go from many outputs to many inputs. All inputs see the
same stream of input values.

• Restriction: restricting visibility of inputs or outputs to within a compound
component. Restriction means to limit some of the interface wires of the
subcomponents to the interior of the new component, i.e., they do not
appear in the new component’s interface.

Let us give an example to illustrate these concepts. In Section 4.3.5 we showed
how to model digital logic circuits as components. We defined procedures AndG,
OrG, NotG, and DelayG to implement logic gates. Executing one of these pro-
cedures creates a component instance. These instances are stream objects, but
they could have been port objects. (A simple exercise is to generalize the logic
gates to become port objects.) We defined a latch as a compound component as
follows in terms of gates:

proc {Latch C DI ?DO}
X Y Z F

in
{DelayG DO F}
{AndG F C X}
{NotG C Z}
{AndG Z DI Y}
{OrG X Y DO}

end

The latch component has five subcomponents. These are linked together by
connecting outputs and inputs. For example, the output X of the first And gate
is given as input to the Or gate. Only the wires DI and DOare visible to the
outside of the latch. The wires X, Y, Z, and F are restricted to the inside of the
component.

5.4.2 Design methodology

Designing a concurrent program is more difficult than designing a sequential
program, because there are usually many more potential interactions between
the different parts. To have confidence that the concurrent program is correct,
we need to follow a sequence of unambiguous design rules. From our experience,
the design rules of this section give good results if they are followed with some
rigor.

• Informal specification. Write down a possibly informal, but precise specifi-
cation of what the system should do.

• Components. Enumerate all the different forms of concurrent activity in
the specification. Each activity will become one component. Draw a block
diagram of the system that shows all component instances.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 373

• Message protocols. Decide on what messages the components will send and
design the message protocols between them. Draw the component diagram
with all message protocols.

• State diagrams. For each concurrent entity, write down its state diagram.
For each state, verify that all the appropriate messages are received and
sent with the right conditions and actions.

• Implement and schedule. Code the system in your favorite programming
language. Decide on the scheduling algorithm to be used for implementing
the concurrency between the components.

• Test and iterate. Test the system and reiterate until it satisfies the initial
specification.

We will use these rules for designing the lift control system that is presented later
on.

5.4.3 List operations as concurrency patterns

Programming with concurrent components results in many message protocols.
Some simple protocols are illustrated in Section 5.3. Much more complicated pro-
tocols are possible. Because message-passing concurrency is so close to declarative
concurrency, many of these can be programmed as simple list operations.

All the standard list operations (e.g., of the List module) can be interpreted
as concurrency patterns. We will see that this is a powerful way to write concur-
rent programs. For example, the standard Map function can be used as a pattern
that broadcasts queries and collects their replies in a list. Consider a list PL of
ports, each of which is the input port of a port object. We would like to send the
message query(foo Ans) to each port object, which will eventually bind Ans to
the answer. By using Map we can send all the messages and collect the answers
in a single line:

AL={Map PL fun {$ P} Ans in {Send P query(foo Ans)} Ans end }

The queries are sent asynchronously and the answers will eventually appear in
the list AL. We can simplify the notation even more by using the $ nesting marker
with the Send. This completely avoids mentioning the variable Ans:

AL={Map PL fun {$ P} {Send P query(foo $)} end }

We can calculate with AL as if the answers are already there; the calculation will
automatically wait if it needs an answer that is not there. For example, if the
answers are positive integers, we can calculate their maximum by doing the same
call as in a sequential program:

M={FoldL AL Max 0}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

374 Message-Passing Concurrency

Lift shaft 1 Lift shaft 2 Lift shaft 3

Floor N

Floor 2

Floor 1 Lift 3

Lift 1

Lift 2

User B

User A User C

...

Controller 1 Controller 2 Controller 3

Figure 5.4: Schematic overview of a building with lifts

5.4.4 Lift control system

Lifts are a part of our everyday life.3 Yet, have you ever wondered how they
work? How do lifts communicate with floors and how does a lift decide which
floor to go to? There are many ways to program a lift control system.

In this section we will design a simple lift control system as a concurrent
program. Our first design will be quite simple. Nevertheless, as you will see, the
concurrent program that results will still be fairly complex. Therefore we take
care to follow the design methodology given earlier.

We will model the operation of the hypothetical lift control system of a build-
ing, with a fixed number of lifts, a fixed number of floors between which lifts
travel, and users. Figure 5.4 gives an abstract view of what our building looks
like. There are floors, lifts, controllers for lift movement, and users that come
and go. We will model what happens when a user calls a lift to go to another
floor. Our model will focus on concurrency and timing, to show correctly how
the concurrent activities interact in time. But we will put in enough detail to get
a running program.

The first task is the specification. In this case, we will be satisfied with a
partial specification of the problem. There are a set of floors and a set of lifts.
Each floor has a call button that users can press. The call button does not specify
an up or down direction. The floor randomly chooses the lift that will service its
request. Each lift has a series of call(I) buttons numbered for all floors I, to tell

3Lifts are useful for those who live in flats, in the same way that elevators are useful for
those who live in apartments.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 375

Controller signals successful move

arrive(Ack)

call(F)

at(F)

step(D)

UserUser

call call(F)

Controller CLift L
Ack=unit

Floor F

arrive(Ack)

Ack=unit

step(D)

at(F)

call(F)

call User presses button to call a lift

Floor F calls a lift to itself
User presses button to go to floor F

Lift signals its arrival at the floor

Floor tells lift it can leave now

Lift asks controller to move one floor

Figure 5.5: Component diagram of the lift control system

Received message &
Boolean condition

Sent message
& ActionFirst

state state

Second

Figure 5.6: Notation for state diagrams

it to stop at a given floor. Each lift has a schedule, which is the list of floors that
it will visit in order.

The scheduling algorithm we will use is called FCFS (First-Come-First-Served):
a new floor is always added at the end of the schedule. This is also known as
FIFO (First-In-First-Out) scheduling. Both the call and call(I) buttons do FCFS.
When a lift arrives at a scheduled floor, the doors open and stay open for a fixed
time before closing. Moving lifts take a fixed time to go from one floor to the
next.

The lift control system is designed as a set of interacting concurrent compo-
nents. Figure 5.5 shows the block diagram of their interactions. Each rectangle
represents an instance of a concurrent component. In our design, there are four
kinds of components, namely floors, lifts, controllers, and timers. All component
instances are port objects. Controllers are used to handle lift motion. Timers
handle the real-time aspect of the system.

Because of FCFS scheduling, lifts will often move much farther than necessary.
If a lift is already at a floor, then calling that floor again may call another lift. If
a lift is on its way from one floor to another, then calling an intermediate floor
will not cause the lift to stop there. We can avoid these problems by making the
scheduler more intelligent. Once we have determined the structure of the whole
application, it will become clear how to do this and other improvements.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

376 Message-Passing Concurrency

State transition diagrams

A good way to design a port object is to start by enumerating the states it can be
in and the messages it can send and receive. This makes it easy to check that all
messages are properly handled in all states. We will go over the state diagrams
of each component. First we introduce the notation for state transition diagrams
(sometimes called state diagrams for short).

A state transition diagram is a finite state automaton. It consists of a finite
set of states and a set of transitions between states. At each instant, it is in
a particular state. It starts in an initial state and evolves by doing transitions.
A transition is an atomic operation that does the following. The transition is
enabled when the appropriate message is received and a boolean condition on it
and the state is true. The transition can then send a message and change the
state. Figure 5.6 shows the graphical notation. Each circle represents a state.
Arrows between circles represent transitions.

Messages can be sent in two ways: to a port or by binding a dataflow variable.
Messages can be received on the port’s stream or by waiting for the binding.
Dataflow variables are used as a lightweight channel on which only one message
can be sent (a “one-shot wire”). To model time delays, we use a timer protocol:
the caller Pid sends the message starttimer(N Pid) to a timer agent to request
a delay of N milliseconds. The caller then continues immediately. When time
is up, the timer agent sends a message stoptimer back to the caller. (The
timer protocol is similar to the {Delay N} operation, reformulated in the style
of concurrent components.)

Implementation

We present the implementation of the lift control system by showing each part
separately, namely the controller, the floor, and the lift. We will define functions
to create them:

• {Floor Num Init Lifts} returns a floor Fid with number Num, initial
state Init , and lifts Lifts .

• {Lift Num Init Cid Floors} returns a lift Lid with number Num, ini-
tial state Init , controller Cid , and floors Floors .

• {Controller Init} returns a controller Cid .

For each function, we explain how it works and give the state diagram and the
source code. We then create a building with a lift control system and show how
the components interact.

The controller The controller is the easiest to explain. It has two states,
motor stopped and motor running. At the motor stopped state the controller can
receive a step(Dest) from the lift, where Dest is the destination floor number.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 377

F\=Dest

stopped running

Lid
FF

step(Dest)
F==Dest

Lid

stoptimer / ’at’(F) to Lid

starttimer(5000 Cid) to Tid
New F: if F<Dest then F+1 else F−1

step(Dest)

Figure 5.7: State diagram of a lift controller

The controller then goes to the motor running state. Depending on the direction,
the controller moves up or down one floor. Using the timer protocol, the motor
running state automatically makes a transition to the motor stopped state after
a fixed time. This is the time needed to move from one floor to the next (either
up or down). In the example, we assume this time to be 5000 ms. The timer
protocol models a real implementation which would have a sensor at each floor.
When the lift has arrived at floor F, the controller sends the message ´ at ´ (F)

to the lift. Figure 5.7 gives the state diagram of controller Cid.
The source code of the timer and the controller is given in Figure 5.8. It is

interesting to compare the controller code with the state diagram. The timer
defined here is used also in the floor component.

Attentive readers will notice that the controller actually has more than two
states, since strictly speaking the floor number is also part of the state. To keep
the state diagram simple, we parameterize the motor stopped and motor running
states by the floor number. Representing several states as one state with variables
inside is a kind of syntactic sugar for state diagrams. It lets us represent very big
diagrams in a compact way. We will use this technique also for the floor and lift
state diagrams.

The floor Floors are more complicated because they can be in one of three
states: no lift called, lift called but not yet arrived, and lift arrived and doors
open. Figure 5.9 gives the state diagram of floor Fid. Each floor can receive a
call message from a user, an arrive(Ack) message from a lift, and an internal
timer message. The floor can send a call(F) message to a lift.

The source code of the floor is shown in Figure 5.10. It uses the random
number function OS.rand to pick a lift at random. It uses Browse to display
when a lift is called and when the doors open and close. The total time needed
for opening and closing the doors is assumed to be 5000 ms.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

378 Message-Passing Concurrency

fun {Timer}
{NewPortObject2

proc {$ Msg}
case Msg of starttimer(T Pid) then

thread {Delay T} {Send Pid stoptimer} end
end

end }
end

fun {Controller Init}
Tid={Timer}
Cid={NewPortObject Init

fun {$ Msg state(Motor F Lid)}
case Motor
of running then

case Msg
of stoptimer then

{Send Lid ´ at ´ (F)}
state(stopped F Lid)

end
[] stopped then

case Msg
of step(Dest) then

if F==Dest then
state(stopped F Lid)

elseif F<Dest then
{Send Tid starttimer(5000 Cid)}
state(running F+1 Lid)

else % F>Dest
{Send Tid starttimer(5000 Cid)}
state(running F-1 Lid)

end
end

end
end }

in Cid end

Figure 5.8: Implementation of the timer and controller components

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 379

stoptimer /

notcalled called

doorsopen
(Ack) arrive(Ack) /starttimer(5000 Fid) to Tid

arrive(Ack) /

call / call(F) to random Lid

call / −

arrive(A) / A=Ack

call / −

starttimer(5000 Fid) to Tid

Ack=unit

Figure 5.9: State diagram of a floor

The lift Lifts are the most complicated of all. Figure 5.11 gives the state
diagram of lift Lid. Each lift can be in one of four states: empty schedule and
lift stopped (idle), nonempty schedule and lift moving past a given floor, waiting
for doors when moving past a scheduled floor, and waiting for doors when idle
at a called floor. The way to understand this figure is to trace through some
execution scenarios. For example, here is a simple scenario. A user presses the
call button at floor 1. The floor then sends call(1) to a lift. The lift receives
this and sends step(1) to the controller. Say the lift is currently at floor 3. The
controller sends ´ at ´ (2) to the lift, which then sends step(1) to the controller
again. The controller sends ´ at ´ (1) to the lift, which then sends arrive(Ack)

to floor 1 and waits until the floor acknowledges that it can leave.
Each lift can receive a call(N) message and an ´ at ´ (N) message. The lift

can send an arrive(Ack) message to a floor and a step(Dest) message to
its controller. After sending the arrive(Ack) message, the lift waits until the
floor acknowledges that the door actions have finished. The acknowledgement is
done by using the dataflow variable Ack as a one-shot wire. The floor sends an
acknowledgement by binding Ack= unit and the lift waits with {Wait Ack} .

The source code of the lift component is shown in Figure 5.12. It uses a series
of if statements to implement the conditions for the different transitions. It uses
Browse to display when a lift will go to a called floor and when the lift arrives
at a called floor. The function {ScheduleLast L N} implements the scheduler:
it adds N to the end of the schedule L and returns the new schedule.

The building We have now specified the complete system. It is instructive to
trace through the execution by hand, following the flow of control in the floors,
lifts, controllers, and timers. For example, say that there are 10 floors and 2 lifts.
Both lifts are on floor 1 and floors 9 and 10 each call a lift. What are the possible
executions of the system? Let us define a compound component that creates a
building with FN floors and LN lifts:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

380 Message-Passing Concurrency

fun {Floor Num Init Lifts}
Tid={Timer}
Fid={NewPortObject Init

fun {$ Msg state(Called)}
case Called
of notcalled then Lran in

case Msg
of arrive(Ack) then

{Browse ´ Lift at floor ´ #Num#́ : open doors ´ }
{Send Tid starttimer(5000 Fid)}
state(doorsopen(Ack))

[] call then
{Browse ´ Floor ´ #Num#́ calls a lift! ´ }
Lran=Lifts.(1+{OS.rand} mod {Width Lifts})
{Send Lran call(Num)}
state(called)

end
[] called then

case Msg
of arrive(Ack) then

{Browse ´ Lift at floor ´ #Num#́ : open doors ´ }
{Send Tid starttimer(5000 Fid)}
state(doorsopen(Ack))

[] call then
state(called)

end
[] doorsopen(Ack) then

case Msg
of stoptimer then

{Browse ´ Lift at floor ´ #Num#́ : close doors ´ }
Ack= unit
state(notcalled)

[] arrive(A) then
A=Ack
state(doorsopen(Ack))

[] call then
state(doorsopen(Ack))

end
end

end }
in Fid end

Figure 5.10: Implementation of the floor component

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 381

New Pos: NPos

call(N) & N==Pos

Pos

Sched/=nil

Moving=true

Wait

doors
for

call(N) &
N/=Pos

New Sched: [N]

Sched=nil

Moving=false

Pos

Wait

doors
for

call(N)

arrive(Ack) to Pos

{Wait Ack} & Sched.2==nil

New Sched: {ScheduleLast Sched N}

at(NPos) & NPos==Sched.1
arrive(Ack) to Sched.1

{Wait Ack} / −

{Wait Ack} & Sched.2/=nil

step(Sched.2.1) to Cid
New Pos: NPos

New Sched: Sched.2

step(N) to Cid

New Pos: NPos

at(NPos) & NPos/=Sched.1
step(Sched.1) to Cid

Figure 5.11: State diagram of a lift

proc {Building FN LN ?Floors ?Lifts}
Lifts={MakeTuple lifts LN}
for I in 1..LN do Cid in

Cid={Controller state(stopped 1 Lifts.I)}
Lifts.I={Lift I state(1 nil false) Cid Floors}

end
Floors={MakeTuple floors FN}
for I in 1..FN do

Floors.I={Floor I state(notcalled) Lifts}
end

end

This uses MakeTuple to create a new tuple containing unbound variables. Each
component instance will run in its own thread. Here is a sample execution:

declare F L in
{Building 2 0 2 F L}
{Send F.20 call}
{Send F.4 call}
{Send F.10 call}
{Send L.1 call(4)}

This makes the lifts move around in a building with 20 floors and 2 lifts.

Reasoning about the lift control system To show that the lift works cor-
rectly, we can reason about its invariant properties. For example, an ´ at ´ (_)

message can only be received when Sched\=nil . This is a simple invariant that
can be proved easily from the fact that ´ at ´ and step messages occur in pairs.
It is easy to see by inspection that a step message is always done when the lift
goes into a state where Sched\=nil , and that the only transition out of this

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

382 Message-Passing Concurrency

fun {ScheduleLast L N}
if L\=nil andthen {List.last L}==N then L
else {Append L [N]} end

end

fun {Lift Num Init Cid Floors}
{NewPortObject Init

fun {$ Msg state(Pos Sched Moving)}
case Msg
of call(N) then

{Browse ´ Lift ´ #Num#́ needed at floor ´ #N}
if N==Pos andthen {Not Moving} then

{Wait {Send Floors.Pos arrive($)}}
state(Pos Sched false)

else Sched2 in
Sched2={ScheduleLast Sched N}
if {Not Moving} then

{Send Cid step(N)} end
state(Pos Sched2 true)

end
[] ´ at ´ (NewPos) then

{Browse ´ Lift ´ #Num#́ at floor ´ #NewPos}
case Sched
of S|Sched2 then

if NewPos==S then
{Wait {Send Floors.S arrive($)}}
if Sched2==nil then

state(NewPos nil false)
else

{Send Cid step(Sched2.1)}
state(NewPos Sched2 true)

end
else

{Send Cid step(S)}
state(NewPos Sched Moving)

end
end

end
end }

end

Figure 5.12: Implementation of the lift component

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.4 Program design for concurrency 383

Controller C

User

at(F)

step(D)arrive(Ack)

call(F)

User

call

Ack=unit

call(F)

LiftShaft

Floor F Lift L

Figure 5.13: Hierarchical component diagram of the lift control system

state (triggered by a call message) preserves the invariant. Another invariant is
that successive elements of a schedule are always different (can you prove this?).

5.4.5 Improvements to the lift control system

The lift control system of the previous section is somewhat naive. In this section
we will indicate five ways in which it can be improved: by using component
composition to make it hierarchical, by improving how it opens and closes doors,
by using negotiation to find the best lift to call, by improving scheduling to reduce
the amount of lift motion, and by handling faults (lifts that stop working). We
leave the last three improvements as exercises for the reader.

Hierarchical organization

Looking at the component diagram of Figure 5.5, we see that each controller talks
only with its corresponding lift. This is visible also in the definition of Building .
This means that we can improve the organization by combining controller and
lift into a compound component, which we call a lift shaft. Figure 5.13 shows the
updated component diagram with a lift shaft. We implement this by defining the
component LiftShaft as follows:

fun {LiftShaft I state(F S M) Floors}
Cid={Controller state(stopped F Lid)}
Lid={Lift I state(F S M) Cid Floors}

in Lid end

Then the Building procedure can be simplified:

proc {Building FN LN ?Floors ?Lifts}
Lifts={MakeTuple lifts LN}
for I in 1..LN do Cid in

Lifts.I={LiftShaft I state(1 nil false) Floors}
end
Floors={MakeTuple floors FN}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

384 Message-Passing Concurrency

for I in 1..FN do
Floors.I={Floor I state(notcalled) Lifts}

end
end

The encapsulation provided by LiftShaft improves the modularity of the pro-
gram. We can change the internal organization of a lift shaft without changing
its interface.

Improved door management

Our system opens all doors at a floor when the first lift arrives and closes them
a fixed time later. So what happens if a lift arrives at a floor when the doors
are already open? The doors may be just about to close. This behavior is
unacceptable for a real lift. We need to improve our lift control system so that
each lift has its own set of doors.

Improved negotiation

We can improve our lift control system so that the floor picks the closest lift
instead of a random lift. The idea is for the floor to send messages to all lifts
asking them to give an estimate of the time it would take to reach the floor. The
floor can then pick the lift with the least time. This is an example of a simple
negotiation protocol.

Improved scheduling

We can improve the lift scheduling. For example, assume the lift is moving from
floor 1 to floor 5 and is currently at floor 2. Calling floor 3 should cause the lift
to stop on its way up, instead of the naive solution where it first goes to floor 5
and then down to floor 3. The improved algorithm moves in one direction until
there are no more floors to stop at and then changes direction. Variations on this
algorithm, which is called the elevator algorithm for obvious reasons, are used to
schedule the head movement of a hard disk. With this scheduler we can have two
call buttons to call upgoing and downgoing lifts separately.

Fault tolerance

What happens if part of the system stops working? For example, a lift can be out
of order, either because of maintenance, because it has broken down, or simply
because someone is blocking open the doors at a particular floor. Floors can also
be “out of order”, e.g., a lift may be forbidden to stop at a floor for some reason.
We can extend the lift control system to handle these cases. The basic ideas are
explained in the Exercises.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 385

5.5 Using the message-passing concurrent mod-

el directly

The message-passing model can be used in other ways rather than just program-
ming with port objects. One way is to program directly with threads, procedures,
ports, and dataflow variables. Another way is to use other abstractions. This
section gives some examples.

5.5.1 Port objects that share one thread

It is possible to run many port objects on just one thread, if the thread serializes
all their messages. This can be more efficient than using one thread per port
object. According to David Wood of Symbian Ltd., this solution was used in the
operating system of the Psion Series 3 palmtop computers, where memory is at a
premium [210]. Execution is efficient since no thread scheduling has to be done.
Objects can access shared data without any particular precautions since all the
objects run in the same thread. The main disadvantage is that synchronization is
harder. Execution cannot wait inside an object for a calculation done in another
object. Attempting this will block the program. This means that programs must
be written in a particular style. State must be either global or stored in the
message arguments, not in the objects. Messages are a kind of continuation, i.e.,
there is no return. Each object execution finishes by sending a message.

Figure 5.14 defines the abstraction NewPortObjects . It sets up the single
thread and returns two procedures, AddPortObject and Call :

• {AddPortObject PO Proc} adds a new port object with name POto the
thread. The name should be a literal or a number. Any number of new
port objects can be added to the thread.

• {Call PO Msg} asynchronously sends the message Msg to the port object
PO. All message executions of all port objects are executed in the single
thread. Exceptions raised during message execution are simply ignored.

Note that the abstraction stores the port objects’ procedures in a record and uses
AdjoinAt to extend this record when a new port object is added.

Figure 5.15 gives a screenshot of a small concurrent program, ‘Ping-Pong’,
which uses port objects that share one thread. Figure 5.16 gives the full source
code of ‘Ping-Pong’. It uses NewProgWindow , the simple progress monitor defined
in Chapter 10. Two objects are created initially, pingobj and pongobj . Each
object understands two messages, ping(N) and pong(N) . The pingobj object
asynchronously sends a pong(N) message to the pongobj object and vice versa.
Each message executes by displaying a text and then continuing execution by
sending a message to the other object. The integer argument N counts messages
by being incremented at each call. Execution is started with the initial call {Call

pingobj ping(0)} .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

386 Message-Passing Concurrency

proc {NewPortObjects ?AddPortObject ?Call}
Sin P={NewPort Sin}

proc {MsgLoop S1 Procs}
case S1
of msg(I M)|S2 then

try {Procs.I M} catch _ then skip end
{MsgLoop S2 Procs}

[] add(I Proc Sync)|S2 then Procs2 in
Procs2={AdjoinAt Procs I Proc}
Sync= unit
{MsgLoop S2 Procs2}

[] nil then skip end
end

in
proc {AddPortObject I Proc}
Sync in

{Send P add(I Proc Sync)}
{Wait Sync}

end

proc {Call I M}
{Send P msg(I M)}

end

thread {MsgLoop Sin procs} end
end

Figure 5.14: Defining port objects that share one thread

Figure 5.15: Screenshot of the ‘Ping-Pong’ program

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 387

declare AddPortObject Call
{NewPortObjects AddPortObject Call}

InfoMsg={NewProgWindow "See ping-pong"}

fun {PingPongProc Other}
proc {$ Msg}

case Msg
of ping(N) then

{InfoMsg "ping("#N#")"}
{Call Other pong(N+1)}

[] pong(N) then
{InfoMsg "pong("#N#")"}
{Call Other ping(N+1)}

end
end

end

{AddPortObject pingobj {PingPongProc pongobj}}
{AddPortObject pongobj {PingPongProc pingobj}}
{Call pingobj ping(0)}

Figure 5.16: The ‘Ping-Pong’ program: using port objects that share one thread

When the program starts, it creates a window that displays a term of the
form ping(123) or pong(123) , where the integer gives the message count. This
monitors execution progress. When the checkbutton is enabled, then each term
is displayed for 50 ms. When the checkbutton is disabled, then the messages are
passed internally at a much faster rate, limited only by the speed of the Mozart
run-time system.4

5.5.2 A concurrent queue with ports

The program shown in Figure 5.17 defines a thread that acts as a FIFO queue.
The function NewQueuereturns a new queue Q, which is a record queue(put:PutProc

get:GetProc) that contains two procedures, one for inserting an element in the
queue and one for fetching an element from the queue. The queue is implement-
ed with two ports. The use of dataflow variables makes the queue insensitive to
the relative arrival order of Q.get and Q.put requests. For example, the Q.get

requests can arrive even when the queue is empty. To insert an element X, call
{Q.put X} . To fetch an element in Y, call {Q.get Y} .

The program in Figure 5.17 is almost correct, but it does not work because
port streams are read-only variables. To see this, try the following sequence of

4With Mozart 1.3.0 on a 1 GHz PowerPC processor (PowerBook G4), the rate is about
300000 asynchronous method calls per second.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

388 Message-Passing Concurrency

fun {NewQueue}
Given GivePort={NewPort Given}
Taken TakePort={NewPort Taken}

in
Given=Taken
queue(put: proc {$ X} {Send GivePort X} end

get: proc {$ X} {Send TakePort X} end)
end

Figure 5.17: Queue (naive version with ports)

statements:

declare Q in
thread Q={NewQueue} end
{Q.put 1}
{Browse {Q.get $}}
{Browse {Q.get $}}
{Browse {Q.get $}}
{Q.put 2}
{Q.put 3}

The problem is that Given=Taken tries to impose equality between two read-
only variables, i.e., bind them. But a read-only variable can only be read and
not bound. So the thread defining the queue will suspend in the statement
Given=Taken . We can fix the problem by defining a procedure Match and run-
ning it in its own thread, as shown in Figure 5.18. You can verify that the above
sequence of statements now works.

Let us look closer to see why the correct version works. Doing a series of put
operations:

{Q.put I0} {Q.put I1} ... {Q.put In}

incrementally adds the elements I0 , I1 , ..., In , to the stream Given , resulting
in:

I0|I1|...|In|F1

where F1 is a read-only variable. In the same way, doing a series of get operations:

{Q.get X0} {Q.get X1} ... {Q.get Xn}

adds the elements X0, X1, ..., Xn to the stream Taken , resulting in:

X0|X1|...|Xn|F2

where F2 is another read-only variable. The call {Match Given Taken} binds
the Xi ’s to Ii ’s and blocks again for F1=F2.

This concurrent queue is completely symmetric with respect to inserting and
retrieving elements. That is, Q.put and Q.get are defined in exactly the same
way. Furthermore, because they use dataflow variables to reference queue ele-
ments, these operations never block. This gives the queue the remarkable prop-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 389

fun {NewQueue}
Given GivePort={NewPort Given}
Taken TakePort={NewPort Taken}
proc {Match Xs Ys}

case Xs # Ys
of (X|Xr) # (Y|Yr) then

X=Y {Match Xr Yr}
[] nil # nil then skip
end

end
in

thread {Match Given Taken} end
queue(put: proc {$ X} {Send GivePort X} end

get: proc {$ X} {Send TakePort X} end)
end

Figure 5.18: Queue (correct version with ports)

erty that it can be used to insert and retrieve elements before the elements are
known. For example, if you do a {Q.get X} when there are no elements in the
queue, then an unbound variable is returned in X. The next element that is in-
serted will be bound to X. To do a blocking retrieval, i.e., one that waits when
there are no elements in the queue, the call to Q.get should be followed by a
Wait :

{Q.get X}
{Wait X}

Similarly, if you do {Q.put X} when X is unbound, i.e., when there is no element
to insert, then the unbound variable X will be put in the queue. Binding X will
make the element known. To do an insert only when the element is known, the
call to Q.put should be preceded by a Wait :

{Wait X}
{Q.put X}

We have captured the essential asymmetry between put and get: it is in the Wait

operation. Another way to see this is that put and get reserve places in the queue.
The reservation can be done independent of whether the values of the elements
are known or not.

Attentive readers will see that there is an even simpler solution to the problem
of Figure 5.17. The procedure Match is not really necessary. It is enough to run
Given=Taken in its own thread. This is because the unification algorithm does
exactly what Match does.5

5This FIFO queue design was first given by Denys Duchier.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

390 Message-Passing Concurrency

5.5.3 A thread abstraction with termination detection
“Ladies and gentlemen, we will be arriving shortly in Brussels Midi
station, where this train terminates.”
– Announcement, Thalys high-speed train, Paris-Brussels line, Jan-
uary 2002

Thread creation with thread 〈stmt〉 end can itself create new threads during
the execution of 〈stmt〉. We would like to detect when all these new threads
have terminated. This does not seem easy: new threads may themselves create
new threads, and so forth. A termination detection algorithm like the one of
Section 4.4.3 is needed. The algorithm of that section requires explicitly passing
variables between threads. We require a solution that is encapsulated, i.e., it does
not have this awkwardness. To be precise, we require a procedure NewThread

with the following properties:

• The call {NewThread P SubThread} creates a new thread that executes
the zero-argument procedure P. It also returns a one-argument procedure
SubThread .

• During the execution of P, new threads can be created by calling {SubThread

P1} , where the zero-argument procedure P1 is the thread body. We call
these subthreads. SubThread can be called recursively, that is, inside
threads created with SubThread .

• The NewThread call returns after the new thread and all subthreads have
terminated.

That is, there are three ways to create a new thread:

thread 〈stmt〉 end

{NewThread proc {$} 〈stmt〉 end SubThread}

{SubThread proc {$} 〈stmt〉 end }

They have identical behavior except for NewThread , which has a different termi-
nation behavior. NewThread can be defined using the message-passing model as
shown in Figure 5.19. This definition uses a port. When a subthread is created,
then 1 is sent to the port. When a subthread terminates, then −1 is sent. The
procedure ZeroExit accumulates a running total of these numbers. If the total
ever reaches zero, then all subthreads have terminated and ZeroExit returns.

We can prove that this definition is correct by using invariant assertions.
Consider the following assertion: “the sum of the elements on the port’s stream is
greater than or equal to the number of active threads.” When the sum is zero, this
implies that the number of active threads is zero as well. We can use induction to
show that the assertion is true at every part of every possible execution, starting
from the call to NewThread . It is clearly true when Newthread starts since both
numbers are zero. During an execution, there are four relevant actions: sending

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 391

local
proc {ZeroExit N Is}

case Is of I|Ir then
if N+I\=0 then {ZeroExit N+I Ir} end

end
end

in
proc {NewThread P ?SubThread}

Is Pt={NewPort Is}
in

proc {SubThread P}
{Send Pt 1}
thread

{P} {Send Pt ˜1}
end

end
{SubThread P}
{ZeroExit 0 Is}

end
end

Figure 5.19: A thread abstraction with termination detection

+1, sending -1, starting a thread, and terminating a thread. By inspection of the
program, each of these actions keeps the assertion true. (We can assume without
loss of generality that thread termination occurs just before sending -1, since the
thread then no longer executes any part of the user program.)

This definition of NewThread has two restrictions. First, P and P1 should
always call SubThread to create subthreads, never any other operation (such
as thread ... end or a SubThread created elsewhere). Second, SubThread

should not be called anywhere else in the program. The definition can be extended
to relax these restrictions or to check them. We leave these tasks as exercises for
the reader.

An issue about port send semantics

We know that the Send operation is asynchronous, that is, it completes imme-
diately. The termination detection algorithm relies on another property of Send:
that {Send Pt 1} (in the parent thread) arrives before {Send Pt ˜1} (in the
child thread). Can we assume that sends in different threads behave in this way?
Yes we can, if we are sure the Send operation reserves a slot in the port stream.
Look back to the semantics we have defined for ports in the beginning of the
chapter: the Send operation does indeed put its argument in the port stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

392 Message-Passing Concurrency

proc {ConcFilter L F ?L2}
Send Close

in
{NewPortClose L2 Send Close}
{Barrier

{Map L
fun {$ X}

proc {$}
if {F X} then {Send X} end

end
end }}

{Close}
end

Figure 5.20: A concurrent filter without sequential dependencies

We call this the slot-reserving semantics of Send.6

Unfortunately, this semantics is not the right one in general. We really want
an eventual slot-reserving semantics, where the Send operation might not imme-
diately reserve a slot but we are sure that it will eventually. Why is this semantics
“right”? It is because it is the natural behavior of a distributed system, where
a program is spread out over more than one process and processes can be on
different machines. A Send can execute on a different process than where the
port stream is constructed. Doing a Send does not immediately reserve a slot
because the slot might be on a different machine (remember that the Send should
complete immediately)! All we can say is that doing a Send will eventually reserve
a slot.

With the “right” semantics for Send, our termination detection algorithm is
incorrect since {Send Pt ˜1} might arrive before {Send Pt 1} . We can fix the
problem by defining a slot-reserving port in terms of an eventual slot-reserving
port:

proc {NewSPort ?S ?SSend}
S1 P={NewPort S1} in

proc {SSend M} X in {Send P M#X} {Wait X} end
thread S={Map S1 fun {$ M#X} X= unit M end } end

end

NewSPort behaves like NewPort . If NewPort defines an eventual slot-reserving
port, then NewSPort will define a slot-reserving port. Using NewSPort in the
termination detection algorithm will ensure that it is correct in case we use the
“right” port semantics.

6This is sometimes called a synchronous Send, because it only completes when the message
is delivered to the stream. We will avoid this term because the concept of “delivery” is not
clear. For example, we might want to talk about delivering a message to an application process
instead of a stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.5 Using the message-passing concurrent model directly 393

5.5.4 Eliminating sequential dependencies

Let us examine how to remove useless sequential dependencies between different
parts of a program. We take as example the procedure {Filter L F L2} , which
takes a list L and a one-argument boolean function F. It outputs a list L2 that
contains the elements X of L for which {F X} is true. This is a library function
(it is part of the List module) that can be defined declaratively as follows:

fun {Filter L F}
case L
of nil then nil
[] X|L2 then

if {F X} then X|{Filter L2 F} else {Filter L2 F} end
end

end

or equivalently, using the loop syntax:

fun {Filter L F}
for X in L collect:C do

if {F X} then {C X} end
end

end

This definition is efficient, but it introduces sequential dependencies: {F X} can
be calculated only after it has been calculated for all elements of L before X. These
dependencies are introduced because all calculations are done sequentially in the
same thread. But these dependencies are not really necessary. For example, in
the call:

{Filter [A 5 1 B 4 0 6] fun {$ X} X>2 end Out}

it is possible to deduce immediately that 5, 4, and 6 will be in the output, without
waiting for A and B to be bound. Later on, if some other thread does A=10, then
10 could be added to the result immediately.

We can write a new version of Filter that avoids these dependencies. It
constructs its output incrementally, as the input information arrives. We use two
building blocks:

• Concurrent composition (see Section 4.4.3). The procedure Barrier im-
plements concurrent composition: it creates a concurrent task for each list
element and waits until all are finished.

• Asynchronous channels (ports, see earlier in this chapter). The procedure
NewPortClose implements a port with a send and a close operation. Its
definition is given in the supplements file on the book’s Web site. The close
operation terminates the port’s stream with nil .

Figure 5.20 gives the definition. It first creates a port whose stream is the output
list. Then Barrier is called with a list of procedures, each of which adds X to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

394 Message-Passing Concurrency

the output list if {F X} is true. Finally, when all list elements are taken care of,
the output list is ended by closing the port.

Is ConcFilter declarative? As it is written, certainly not, since the output
list can appear in any order (an observable nondeterminism). It can be made
declarative by hiding this nondeterminism, for example by sorting the output
list. There is another way, using the properties of ADTs. If the rest of the
program does not depend on the order (e.g., the list is a representation of a set
data structure), then ConcFilter can be treated as if it were declarative. This
is easy to see: if the list were in fact hidden inside a set ADT, then ConcFilter

would be deterministic and hence declarative.

5.6 The Erlang language

The Erlang language was developed by Ericsson for telecommunications applica-
tions, in particular, for telephony [9, 206]. Its implementation, the Ericsson OTP
(Open Telecom Platform), features fine-grained concurrency (efficient threads),
extreme reliability (high performance software fault tolerance), and hot code re-
placement ability (update software while the system is running). It is a high-level
language that hides the internal representation of data and does automatic mem-
ory management. It has been used successfully in several Ericsson products.

5.6.1 Computation model

The Erlang computation model has an elegant layered structure. We first ex-
plain the model and then we show how it is extended for distribution and fault
tolerance.

The Erlang computation model consists of entities called processes, similar to
port objects, that communicate through message passing. The language can be
divided into two layers:

• Functional core. Port objects are programmed in a dynamically-typed
strict functional language. Each port object contains one thread that runs
a recursive function whose arguments are the thread’s state. Functions can
be passed in messages.

• Message passing extension. Threads communicate by sending messages
to other threads asynchronously in FIFO order. Each thread has a unique
identifier, its PID, which is a constant that identifies the receiving thread,
but can also be embedded in data structures and messages. Messages are
values in the functional core. They are put in the receiving thread’s mailbox.
Receiving can be blocking or nonblocking. The receiving thread uses pattern
matching to wait for and then remove messages that have a given form
from its mailbox, without disturbing the other messages. This means that
messages are not necessarily treated in the order that they are sent.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 395

A port object in Erlang consists of a thread associated with one mailbox. This
is called a process in Erlang terminology. A process that spawns a new process
specifies which function should be initially executed inside it.

Extensions for distribution and fault tolerance

The centralized model is extended for distribution and fault tolerance:

• Transparent distribution. Processes can be on the same machine or
on different machines. A single machine environment is called a node in
Erlang terminology. In a program, communication between local or remote
processes is written in exactly the same way. The PID encapsulates the
destination and allows the run-time system to decide whether to do a local or
remote operation. Processes are stationary; this means that once a process
is created in a node it remains there for its entire lifetime. Sending a
message to a remote process requires exactly one network operation, i.e.,
no intermediate nodes are involved. Processes can also be created at remote
nodes. Programs are network transparent, i.e., they give the same result
no matter on which nodes the processes are placed. Programs are network
aware since the programmer has complete control of process placement and
can optimize it according to the network characteristics.

• Failure detection. A process can be set up to detect faults in another pro-
cess. In Erlang terminology this is called linking the two processes. When
the second process fails, a message is sent to the first, which can receive it.
This failure detection ability allows many fault-tolerance mechanisms to be
programmed entirely in Erlang.

• Persistence. The Erlang run-time system comes with a database, called
Mnesia, that helps to build highly available applications.

We can summarize by saying that Erlang’s computation model (port objects
without mutable state) is strongly optimized for building fault-tolerant distribut-
ed systems. The Mnesia database compensates for the lack of a general mutable
store. A typical example of a product built using Erlang is Ericsson’s AXD301
ATM switch, which provides telephony over an ATM network. The AXD301
handles 30-40 million calls per week with a reliability of 99.9999999% (about 30
ms downtime per year) and contains 1.7 million lines of Erlang [8].

5.6.2 Introduction to Erlang programming

To give a taste of Erlang, we give some small Erlang programs and show how
to do the same thing in the computation models of this book. The programs
are mostly taken from the Erlang book [9]. We show how to write functions
and concurrent programs with message passing. For more information on Erlang
programming, we highly recommend the Erlang book.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

396 Message-Passing Concurrency

A simple function

The core of Erlang is a strict functional language with dynamic typing. Here is
a simple definition of the factorial function:

factorial(0) -> 1;

factorial(N) when N>0 -> N*factorial(N-1).

This example introduces the basic syntactic conventions of Erlang. Function
names are in lowercase and variable identifiers are capitalized. Variable identifiers
are bound to values when defined, which means that Erlang has a value store.
An identifier’s binding cannot be changed; it is single assignment, just as in the
declarative model. These conventions are inherited from Prolog, in which the
first Erlang implementation (an interpreter) was written.

Erlang functions are defined by clauses; each clause has a head (with a pattern
and optional guard) and a body. The patterns are checked in order starting with
the first clause. If a pattern matches, its variables are bound and the clause body
is executed. The optional guard is a boolean function that has to return true.
All the variable identifiers in the pattern must be different. If a pattern does not
match, then the next clause is tried. We can translate the factorial as follows in
the declarative model:

fun {Factorial N}
case N
of 0 then 1
[] N andthen N>0 then N*{Factorial N-1}
end

end

The case statement does pattern matching exactly as in Erlang, with a different
syntax.

Pattern matching with tuples

Here is a function that does pattern matching with tuples:

area({square, Side}) ->

Side*Side;

area({rectangle, X, Y}) ->

X*Y;

area({circle, Radius}) ->

3.14159*Radius*Radius;

area({triangle, A, B, C}) ->

S=(A+B+C)/2;

math:sqrt(S*(S-A)*(S-B)*(S-C)).

This uses the square root function sqrt defined in the module math. This function
calculates the area of a plane shape. It represents the shape by means of a tuple

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 397

that identifies the shape and gives its size. Tuples in Erlang are written with curly
braces: {square, Side} would be written as square(Side) in the declarative
model. In the declarative model, the function can be written as follows:

fun {Area T}
case T
of square(Side) then Side*Side
[] rectangle(X Y) then X*Y
[] circle(Radius) then 3.14159*Radius*Radius
[] triangle(A B C) then S=(A+B+C)/2.0 in

{Sqrt S*(S-A)*(S-B)*(S-C)}
end

end

Concurrency and message passing

In Erlang, threads are created together with a mailbox that can be used to send
messages to the thread. This combination is called a process. There are three
primitives:

• The spawn operation (written as spawn(M,F,A)) creates a new process and
returns a value (called “process identifier”) that can be used to send mes-
sages to it. The arguments of spawn give the initial function call that starts
the process, identified by module M, function name F, and argument list A.

• The send operation (written as Pid!Msg) asynchronously sends the message
Msg to the process, which is identified by its process identifier Pid. The
messages are put in the mailbox, which is a kind of process queue.

• The receive operation receives a message from inside the process. It uses
pattern matching to pick a message from the mailbox.

Let us take the area function and put it inside a process. This makes it into a
server that can be called from any other process.

-module(areaserver).

-export([start/0, loop/0]).

start() -> spawn(areaserver, loop, []).

loop() ->

receive

{From, Shape} ->

From!area(Shape),

loop()

end.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

398 Message-Passing Concurrency

This defines the two operations start and loop in the new module areaserver.
These two operations are exported outside the module. We need to define them
in a module because the spawn operation requires the module name as an ar-
gument. The loop operation repeatedly reads a message (a two-argument tuple
{From, Shape}) and responds to it by calling area and sending the reply to the
process From. Now let us start a new server and call it:

Pid=areaserver:start(),

Pid!{self(), {square, 3.4}},

receive

Ans -> ...

end,

Here self() is a language operation that returns the process identifier of the
current process. This allows the server to return a reply. Let us write this in the
concurrent stateful model:

fun {Start}
S AreaServer={NewPort S} in

thread
for msg(Ans Shape) in S do

Ans={Area Shape}
end

end
AreaServer

end

Let us again start a new server and call it:

Pid={Start}
local Ans in

{Send Pid msg(Ans square(3.4))}
{Wait Ans}
...

end

This example uses the dataflow variable Ans to get the reply. This mimics the
send to From done by Erlang. To do exactly what Erlang does, we need to
translate the receive operation into a computation model of the book. This is
a little more complicated. It is explained in the next section.

5.6.3 The receive operation

Much of the unique flavor and expressiveness of concurrent programming in Er-
lang is due to the mailboxes and how they are managed. Messages are taken out
of a mailbox with the receive operation. It uses pattern matching to pick out
a desired message, leaving the other messages unchanged. Using receive gives
particularly compact, readable, and efficient code. In this section, we implement

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 399

receive as a linguistic abstraction. We show how to translate it into the com-
putation models of this book. There are two reasons for giving the translation.
First, it gives a precise semantics for receive, which aids the understanding of
Erlang. Second, it shows how to do Erlang-style programming in Oz.

Because of Erlang’s functional core, receive is an expression that returns a
value. The receive expression has the following general form [9]:

receive

Pattern1 [when Guard1] -> Body1;

...

PatternN [when GuardN] -> BodyN;

[after Expr -> BodyT;]

end

The guards (when clauses) and the time out (after clause) are optional. This
expression blocks until a message matching one of the patterns arrives in the
current thread’s mailbox. It then removes this message, binds the corresponding
variables in the pattern, and executes the body. Patterns are very similar to pat-
terns in the case statement of this book: they introduce new single-assignment
variables whose scope ranges over the corresponding body. For example, the
Erlang pattern {rectangle, [X,Y]} corresponds to the pattern rectangle([X

Y]) . Identifiers starting with lowercase letters correspond to atoms and identi-
fiers starting with capital letters correspond to variables, like the notation of this
book. Compound terms are enclosed in braces { and } and correspond to tuples.

The optional after clause defines a time out; if no matching message arrives
after a number of milliseconds given by evaluating the expression Expr, then the
time-out body is executed. If zero milliseconds are specified, then the after

clause is executed immediately if there are no messages in the mailbox.

General remarks

Each Erlang process is translated into one thread with one port. Sending to
the process means sending to the port. This adds the message to the port’s
stream, which represents the mailbox contents. All forms of receive, when they
complete, either take exactly one message out of the mailbox or leave the mailbox
unchanged. We model this by giving each translation of receive an input stream
and an output stream. All translations have two arguments, Sin and Sout , that
reference the input stream and the output stream. These streams do not appear
in the Erlang syntax. After executing a receive, there are two possibilities for
the value of the output stream. Either it is the same as the input stream or it
has one less message than the input stream. The latter occurs if the message
matches a pattern.

We distinguish three different forms of receive that result in different trans-
lations. In each form the translation can be directly inserted in a program and
it will behave like the respective receive. The first form is translated using the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

400 Message-Passing Concurrency

T (receive ... end Sin Sout) ≡
local

fun {Loop S T#E Sout}
case S of M|S1 then

case M
of T (Pattern1) then E=S1 T (Body1 T Sout)
...
[] T (PatternN) then E=S1 T (BodyN T Sout)
else E1 in E=M|E1 {Loop S1 T#E1 Sout}
end

end
end T

in
{Loop Sin T#T Sout}

end

Figure 5.21: Translation of receive without time out

declarative model. The second form has a time out; it uses the nondeterministic
concurrent model (see Section 8.2). The third form is a special case of the second
where the delay is zero, which makes the translation much simpler.

First form (without time out)

The first form of the receive expression is as follows:

receive

Pattern1 -> Body1;

...

PatternN -> BodyN;

end

The receive blocks until a message arrives that matches one of the patterns.
The patterns are checked in order from Pattern1 to PatternN. We leave out
the guards to avoid cluttering up the code. Adding them is straightforward. A
pattern can be any partial value; in particular an unbound variable will always
cause a match. Messages that do not match are put in the output stream and do
not cause the receive to complete.

Figure 5.21 gives the translation of the first form, which we will write as
T (receive ... end Sin Sout). The output stream contains the messages that
remain after the receive expression has removed the ones it needs. Note that the
translation T (Body T Sout) of a body that does not contain a receive expression
must bind Sout=T .

The Loop function is used to manage out-of-order reception: if a message Mis
received that does not match any pattern, then it is put in the output stream and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.6 The Erlang language 401

T (receive ... end Sin Sout) ≡
local

Cancel={Alarm T (Expr)}
fun {Loop S T#E Sout}

if {WaitTwo S Cancel}==1 then
case S of M|S1 then

case M
of T (Pattern1) then E=S1 T (Body1 T Sout)
...
[] T (PatternN) then E=S1 T (BodyN T Sout)
else E1 in E=M|E1 {Loop S1 T#E1 Sout} end

end
else E=S T (BodyT T Sout)

end T
in

{Loop Sin T#T Sout}
end

Figure 5.22: Translation of receive with time out

Loop is called recursively. Loop uses a difference list to manage the case when a
receive expression contains a receive expression.

Second form (with time out)

The second form of the receive expression is as follows:

receive

Pattern1 -> Body1;

...

PatternN -> BodyN;

after Expr -> BodyT;

end

When the receive is entered, Expr is evaluated first, giving the integer n. If
no match is done after n milliseconds, then the time-out action is executed. If a
match is done before n milliseconds, then it is handled as if there were no time
out. Figure 5.22 gives the translation.

The translation uses a timer interrupt implemented by Alarm and WaitTwo .
{Alarm N} , explained in Section 4.6, is guaranteed to wait for at least n mil-
liseconds and then bind the unbound variable Cancel to unit . {WaitTwo S

Cancel} , which is defined in the supplements file on the book’s Web site, waits
simultaneously for one of two events: a message (S is bound) and a time out
(Cancel is bound). It can return 1 if its first argument is bound and 2 if its
second argument is bound.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

402 Message-Passing Concurrency

T (receive ... end Sin Sout) ≡
if {IsDet Sin} then

case Sin of M|S1 then
case M
of T (Pattern1) then T (Body1 S1 Sout)
...
[] T (PatternN) then T (BodyN) S1 Sout)
else T (BodyT Sin Sout) end

end
else Sout=Sin end

Figure 5.23: Translation of receive with zero time out

The Erlang semantics is slightly more complicated than what is defined in
Figure 5.22. It guarantees that the mailbox is checked at least once, even if the
time out is zero or has expired by the time the mailbox is checked. We can
implement this guarantee by stipulating that WaitTwo favors its first argument,
i.e., that it always returns 1 if its first argument is determined. The Erlang
semantics also guarantees that the receive is exited quickly after the time out
expires. While this is easily guaranteed by an actual implementation, it is not
guaranteed by Figure 5.22 since Loop could go on forever if messages arrive
quicker than the loop iterates. We leave it to the reader to modify Figure 5.22 to
add this guarantee.

Third form (with zero time out)

The third form of the receive expression is like the second form except that
the time-out delay is zero. With zero delay the receive is nonblocking. A
simpler translation is possible when compared to the case of nonzero time out.
Figure 5.23 gives the translation. Using IsDet , it first checks whether there is a
message that matches any of the patterns. {IsDet S} , explained in Section 4.9.3,
checks immediately whether S is bound or not and returns true or false . If
there is no message that matches (for example, if the mail box is empty) then
the default action BodyT is done.

5.7 Advanced topics

5.7.1 The nondeterministic concurrent model

This section explains the nondeterministic concurrent model, which is intermedi-
ate in expressiveness between the declarative concurrent model and the message-
passing concurrent model. It is less expressive than the message-passing model
but in return it has a logical semantics (see Chapter 9).

The nondeterministic concurrent model is the model used by concurrent logic

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.7 Advanced topics 403

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {WaitTwo 〈x〉 〈y〉 〈z〉} Nondeterministic choice

Table 5.2: The nondeterministic concurrent kernel language

programming [177]. It is sometimes called the process model of logic program-
ming, since it models predicates as concurrent computations. It is interesting
both for historical reasons and for the insight it gives into practical concurrent
programming. We first introduce the nondeterministic concurrent model and
show how it solves the stream communication problem of Section 4.7.3. We then
show how to implement nondeterministic choice in the declarative concurrent
model with exceptions, showing that the latter is at least as expressive as the
nondeterministic model.

Table 5.2 gives the kernel language of the nondeterministic concurrent model.
It adds just one operation to the declarative concurrent model: a nondeterministic
choice that waits for either of two events and nondeterministically returns when
one has happened with an indication of which one.

Limitation of the declarative concurrent model

In Section 4.7.3 we saw a fundamental limitation of the declarative concurrent
model: stream objects must access input streams in a fixed pattern. Two streams
cannot independently feed the same stream object. How can we solve this prob-
lem? Consider the case of two client objects and a server object. We can try
to solve it by putting a new stream object, a stream merger, in between the two
clients and the server. The stream merger has two input streams and one output
stream. All the messages appearing on each of the input streams will be put on
the output stream. Figure 5.24 illustrates the solution. This seems to solve our
problem: each client sends messages to the stream merger, and the stream merger
forwards them to the server. The stream merger is defined as follows:

fun {StreamMerger OutS1 OutS2}
case OutS1#OutS2
of (M|NewS1)#OutS2 then

M|{StreamMerger NewS1 OutS2}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

404 Message-Passing Concurrency

Cli ent 1

Client 2

Server

OutS2

OutS1

InSStream

Merger

Figure 5.24: Connecting two clients using a stream merger

[] OutS1#(M|NewS2) then
M|{StreamMerger OutS1 NewS2}

[] nil#OutS2 then
OutS2

[] OutS1#nil then
OutS1

end
end

The stream merger is executed in its own thread. This definition handles the case
of termination, i.e., when either or both clients terminate. Yet, this solution has
a basic difficulty: it does not work! Why not? Think carefully before reading the
answer in the footnote.7

Adding nondeterministic choice

But this abortive solution has the germs of a working solution. The problem is
that the case statement only waits on one condition at a time. A possible solution
is therefore to extend the declarative concurrent model with an operation that
allows to wait concurrently on more than one condition. We call this operation
nondeterministic choice. One of the simplest ways is to add an operation that
waits concurrently on two dataflow variables being bound. We call this operation
WaitTwo because it generalizes Wait . The function call {WaitTwo A B} returns
when either A or B is bound. It returns either 1 or 2. It can return 1 when
A is bound and 2 when B is bound. A simple Mozart definition is given in
the supplements file on the book’s Web site. The declarative concurrent model
extended with WaitTwo is called the nondeterministic concurrent model.

7It is because the case statement tests only one pattern at a time, and only goes to the
next when the previous ones fail. While it is waiting on stream OutS1 , it cannot accept an
input from stream OutS2 , and vice versa.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.7 Advanced topics 405

Concurrent logic programming

The nondeterministic concurrent model is the basic model of concurrent logic
programming, as pioneered by IC-Prolog, Parlog, Concurrent Prolog, FCP (Flat
Concurrent Prolog), GHC (Guarded Horn Clauses), and Flat GHC [35, 36, 34,
175, 176, 191]. It is the principal computation model that was used by the
Japanese Fifth Generation Project and many other substantial projects in the
1980’s [177, 57, 190]. In the nondeterministic concurrent model, it is possible to
write a stream merger. Its definition looks as follows:

fun {StreamMerger OutS1 OutS2}
F={WaitTwo OutS1 OutS2}

in
case F#OutS1#OutS2
of 1#(M|NewS1)#OutS2 then

M|{StreamMerger OutS2 NewS1}
[] 2#OutS1#(M|NewS2) then

M|{StreamMerger NewS2 OutS1}
[] 1#nil#OutS2 then

OutS2
[] 2#OutS1#nil then

OutS1
end

end

This style of programming is exactly what concurrent logic programming does. A
typical syntax for this definition in a Prolog-like concurrent logic language would
be as follows:

streamMerger([M|NewS1], OutS2, InS) :- true |

InS=[M|NewS],

streamMerger(OutS2, NewS1, NewS).

streamMerger(OutS1, [M|NewS2], InS) :- true |

InS=[M|NewS],

streamMerger(NewS2, OutS1, NewS).

streamMerger([], OutS2, InS) :- true |

InS=OutS2.

streamMerger(OutS1, [], InS) :- true |

InS=OutS1.

This definition consists of four clauses, each of which defines one nondeterministic
choice. Keep in mind that syntactically Prolog uses [] for nil and [H|T] for
H|T . Each clause consists of a guard and a body. The vertical bar | separates
the guard from the body. A guard does only tests, blocking if a test cannot be
decided. A guard must be true for a clause to be choosable. The body is executed
only if the clause is chosen. The body can bind output variables.

The stream merger first calls WaitTwo to decide which stream to listen to.
Only after WaitTwo returns does it enter the case statement. Because of the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

406 Message-Passing Concurrency

argument F, alternatives that do not apply are skipped. Note that the recursive
calls reverse the two stream arguments. This helps guarantee fairness between
both streams in systems where the WaitTwo statement favors one or the other
(which is often the case in an implementation). A message appearing on an input
stream will eventually appear on the output stream, independent of what happens
in the other input stream.

Is it practical?

What can we say about practical programming in this model? Assume that new
clients arrive during execution. Each client wants to communicate with the server.
This means that a new stream merger must be created for each client! The final
result is a tree of stream mergers feeding the server. Is this a practical solution?
It has two problems:

• It is inefficient. Each stream merger executes in its own thread. The tree of
stream mergers is extended at run time each time a new object references
the server. Furthermore, the tree is not necessarily balanced. It would take
extra work to balance it.

• It lacks expressiveness. It is not possible to reference the server directly.
For example, it is not possible to put a server reference in a data structure.
The only way we have to reference the server is by referencing one of its
streams. We can put this in a data structure, but only one client can
use this reference. (Remember that declarative data structures cannot be
modified.)

How can we solve these two problems? The first problem could hypothetically
be solved by a very smart compiler that recognizes the tree of stream mergers
and replaces it by a direct many-to-one communication in the implementation.
However, after two decades of research in this area, such a compiler does not
exist [190]. Some systems solve the problem in another way: by adding an ab-
straction for multi-way merge whose implementation is done outside the model.
This amounts to extending the model with ports. The second problem can be
partially solved (see Exercises), but the solution is still cumbersome.

We seem to have found an inherent limitation of the nondeterministic con-
current model. Upon closer examination, the problem seems to be that there is
no notion of explicit state in the model, where explicit state associates a name
with a store reference. Both the name and the store reference are immutable;
only their association can be changed. There are many equivalent ways to intro-
duce explicit state. One way is by adding the concept of cell, as will be shown
in Chapter 6. Another way is by adding the concept of port, as we did in this
chapter. Ports and cells are equivalent in a concurrent language: there are simple
implementations of each in terms of the other.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.8 Exercises 407

fun {WaitTwo A B}
X in

thread {Wait A} try X=1 catch _ then skip end end
thread {Wait B} try X=2 catch _ then skip end end
X

end

Figure 5.25: Symmetric nondeterministic choice (using exceptions)

fun {WaitTwo A B}
U in

thread {Wait A} U= unit end
thread {Wait B} U= unit end
{Wait U}
if {IsDet A} then 1 else 2 end

end

Figure 5.26: Asymmetric nondeterministic choice (using IsDet)

Implementing nondeterministic choice

The WaitTwo operation can be defined in the declarative concurrent model if
exceptions are added.8 Figure 5.25 gives a simple definition. This returns 1 or 2,
depending on whether A is bound or B is bound. This definition is symmetric; it
does not favor either A or B. We can write an asymmetric version that favors A

by using IsDet , as shown in Figure 5.26.9

5.8 Exercises

1. Port objects that share one thread. Section 5.5.1 gives a small pro-
gram, ‘Ping-Pong’, that has two port objects. Each object executes a
method and then asynchronously calls the other. When one initial message
is inserted into the system, this causes an infinite ping-pong of messages to
bounce between the objects. What happens if two (or more) initial mes-
sages are inserted? For example, what happens if these two initial calls are
done:

{Call Ping ping(0)}
{Call Pong pong(10000000)}

8For practical use, however, we recommend the definition given in the supplements file on
the book’s Web site.

9Both definitions have the minor flaw that they can leave threads “hanging around” forever
if one variable is never bound. The definitions can be corrected to terminate any hanging
threads. We leave these corrections as exercises for the reader.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

408 Message-Passing Concurrency

Messages will still ping-pong indefinitely, but how? Which messages will be
sent and how will the object executions be interleaved? Will the interleaving
be in lock-step (alternating between objects strictly), looser (subject to
fluctuations due to thread scheduling), or something in between?

2. Lift control system. Section 5.4.4 gives the design of a simple lift control
system. Let us explore it:

• The current design has one controller object per lift. To economize on
costs, the developer decides to change this to keep just one controller
for the whole system. Each lift then communicates with this controller.
The controller’s internal definition stays the same. Is this a good idea?
How does it change the behavior of the lift control system?

• In the current design, the controller steps up or down one floor at a
time. It stops at all floors that it passes, even if the floor was not
requested. Change the lift and controller objects to avoid this jumpy
behavior by stopping only at requested floors.

3. Fault tolerance for the lift control system. There are two kinds of
faults that can happen: components can be blocked temporarily or they
can be permanently out of order. Let us see how to handle each case:

• A lift is blocked. Extend the system to continue working when a lift
is temporarily blocked at a floor by a malicious user. First extend the
floor to reset the door timer when the floor is called while the doors
are open. Then the lift’s schedule should be given to other lifts and the
floors should no longer call that particular lift. When the lift works
again, floors should again be able to call the lift. This can be done
with time-outs.

• A lift is out of order. The first step is to add generic primitives for
failure detection. We might need both synchronous and asynchronous
detection. In synchronous detection, when a component goes down, we
assume that any message sent to it gets the immediate reply down(Id) ,
where Id identifies the component. In asynchronous detection, we
“link” a component to another when they are both still working. Then,
when the second component crashes, the down message is sent to the
first one immediately. Now extend the system to continue working
when a lift is out of order. The system should reconfigure itself to
continue working for a building with one less lift.

• A floor is out of order. Extend the system to continue working when a
floor is out of order. The system should reconfigure itself to continue
working for a building with one less floor.

• Lift maintenance. Extend the system so that a lift can be brought
down for maintenance and brought back up again later.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.8 Exercises 409

• Interactions. What happens if several floors and lifts become out of
order simultaneously? Does your system handle this properly?

4. Termination detection. Replace definition of SubThread in Section 5.5.3
by:

proc {SubThread P}
thread

{Send Pt 1} {P} {Send Pt ˜1}
end

end

Explain why the result is not correct. Give an execution such that there
exists a point where the sum of the elements on the port’s stream is zero,
yet all threads have not terminated.

5. Concurrent filter. Section 5.5.4 defines a concurrent version of Filter ,
called ConcFilter , that calculates each output element independently, i.e.,
without waiting for the previous ones to be calculated.

(a) What happens when the following is executed:

declare Out
{ConcFilter [5 1 2 4 0] fun {$ X} X>2 end Out}
{Show Out}

How many elements are displayed by the ShowWhat is the order of the
displayed elements? If several displays are possible, give all of them.
Is the execution of ConcFilter deterministic? Why or why not?

(b) What happens when the following is executed:

declare Out
{ConcFilter [5 1 2 4 0] fun {$ X} X>2 end Out}
{Delay 1000}
{Show Out}

What is displayed now by Show? If several displays are possible, give
all of them.

(c) What happens when the following is executed:

declare Out A
{ConcFilter [5 1 A 4 0] fun {$ X} X>2 end Out}
{Delay 1000}
{Show Out}

What is displayed now? What is the order of the displayed elements?
If, after the above, A is bound to 3, then what happens to the list Out ?

(d) If the input list has n elements, what is the complexity (in “big-Oh”
notation) of the number of operations of ConcFilter ? Discuss the
difference in execution time between Filter and ConcFilter .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

410 Message-Passing Concurrency

6. Semantics of Erlang’s receive. Section 5.6.3 shows how to translate
Erlang’s receive operation. The second form of this operation, with time
out, is the most general one. Let us take a closer look.

(a) Verify that the second form reduces to the third form, when the time
out delay is zero.

(b) Verify that the second form reduces to the first form, when the time
out delay approaches infinity.

(c) Another way to translate the second form would be to insert a unique
message (using a name) after n milliseconds. This requires some care to
keep the unique message from appearing in the output stream. Write
another translation of the third form that uses this technique. What
are the advantages and disadvantages of this translation with respect
to the one in the book?

7. Erlang’s receive as a control abstraction. For this exercise, implement
the Erlang receive operation, which is defined in Section 5.6.3, as the
following control abstraction:

• C={Mailbox.new} creates a new mailbox C.

• {Mailbox.send C M} sends message Mto mailbox C.

• {Mailbox.receive C [P1#E1 P2#E2 ... Pn#En] D} performs a
receive on mailbox C. Pi is a one-argument boolean function fun {$

M} 〈expr〉 end that represents a pattern and its guard. The function
returns true if and only if the pattern and guard succeed for message
M. Ei is a one-argument function fun {$ M} 〈expr〉 end that represents
a body. It is executed when message M is received and the receive
returns its result. D represents the delay. It is either a nonnegative
integer giving the delay in milliseconds or the atom infinity , which
represents an infinite delay.

8. Limitations of stream communication. In this exercise, we explore the
limits of stream communication in the nondeterministic concurrent model.
Section 5.7.1 claims that we can partially solve the problem of putting server
references in a data structure. How far can we go? Consider the following
active object:

declare NS
thread {NameServer NS nil} end

where NameServer is defined as follows:

proc {NameServer NS L}
case NS
of register(A S)|NS1 then

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

5.8 Exercises 411

{NameServer NS1 A#S|L}
[] getstream(A S)|NS1 then L1 OldS NewS in

L1={Replace L A OldS NewS}
thread {StreamMerger S NewS OldS} end
{NameServer NS1 L1}

[] nil then
skip

end
end

fun {Replace InL A OldS NewS}
case InL
of B#S|L1 andthen A=B then

OldS=S
A#NewS|L1

[] E|L1 then
E|{Replace L1 A OldS NewS}

end
end

The NameServer object understands two commands. Assume that S is a
server’s input stream and foo is the name we wish to give the server. Given
a reference NSto the name server’s input stream, doing NS=register(foo

S)|NS1 will add the pair foo#S to its internal list L. Doing NS=getstream(foo

S1)|NS1 will create a fresh input stream, S1, for the server whose name is
foo , which the name server has stored on its internal list L. Since foo is a
constant, we can put it in a data structure. Therefore, it seems that we can
put server references in a data structure, by defining a name server. Is this
a practical solution? Why or why not? Think before reading the answer in
the footnote.10

10It’s not possible to name the name server! It has to be added as an extra argument to all
procedures. Eliminating this argument needs explicit state.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

412 Message-Passing Concurrency

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 6

Explicit State

“L’état c’est moi.”
“I am the state.”
– Louis XIV (1638–1715)

“If declarative programming is like a crystal, immutable and prac-
tically eternal, then stateful programming is organic: it grows and
evolves as we watch.”
– Inspired by On Growth and Form, D’Arcy Wentworth Thompson
(1860–1948)

At first glance, explicit state is just a minor extension to declarative program-
ming: in addition to depending on its arguments, the component’s result also
depends on an internal parameter, which is called its “state”. This parameter
gives the component a long-term memory, a “sense of history” if you will.1 With-
out state, a component has only short-term memory, one that exists during a
particular invocation of the component. State adds a potentially infinite branch
to a finitely running program. By this we mean the following. A component that
runs for a finite time can only have gathered a finite amount of information. If the
component has state, then to this finite information can be added the information
stored by the state. This “history” can be indefinitely long, since the component
can have a memory that reaches far into the past.

Oliver Sacks has described the case of people with brain damage who only
have a short-term memory [161]. They live in a continuous “present” with no
memory beyond a few seconds into the past. The mechanism to “fix” short-term
memories into the brain’s long-term storage is broken. Strange it must be to live
in this way. Perhaps these people use the external world as a kind of long-term
memory? This analogy gives some idea of how important state can be for people.
We will see that state is just as important for programming.

1Chapter 5 also introduced a form of long-term memory, the port. It was used to define port
objects, active entities with an internal memory. The main emphasis there was on concurrency.
The emphasis of this chapter is on the expressiveness of state without concurrency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

414 Explicit State

Structure of the chapter

This chapter gives the basic ideas and techniques of using state in program design.
The chapter is structured as follows:

• We first introduce and define the concept of explicit state in the first three
sections.

– Section 6.1 introduces explicit state: it defines the general notion of
“state”, which is independent of any computation model, and shows
the different ways that the declarative and stateful models implement
this notion.

– Section 6.2 explains the basic principles of system design and why state
is an essential part of system design. It also gives first definitions of
component-based programming and object-oriented programming.

– Section 6.3 precisely defines the stateful computation model.

• We then introduce ADTs with state in the next two sections.

– Section 6.4 explains how to build abstract data types both with and
without explicit state. It shows the effect of explicit state on building
secure abstract data types.

– Section 6.5 gives an overview of some useful stateful ADTs, namely
collections of items. It explains the trade-offs of expressiveness and
efficiency in these ADTs.

• Section 6.6 shows how to reason with state. We present a technique, the
method of invariants, that can make this reasoning almost as simple as
reasoning about declarative programs, when it can be applied.

• Section 6.7 explains component-based programming. This is a basic pro-
gram structuring technique that is important both for very small and very
large programs. It is also used in object-oriented programming.

• Section 6.8 gives some case studies of programs that use state, to show more
clearly the differences with declarative programs.

• Section 6.9 introduces some more advanced topics: the limitations of state-
ful programming and how to extend memory management for external ref-
erences.

Chapter 7 continues the discussion of state by developing a particularly rich
programming style, namely object-oriented programming. Because of the wide
applicability of object-oriented programming, we devote a full chapter to it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

415

A problem of terminology

Stateless and stateful programming are often called declarative and imperative
programming, respectively. The latter terms are not quite right, but tradition
has kept their use. Declarative programming, taken literally, means programming
with declarations, i.e., saying what is required and letting the system determine
how to achieve it. Imperative programming, taken literally, means to give com-
mands, i.e., to say how to do something. In this sense, the declarative model of
Chapter 2 is imperative too, because it defines sequences of commands.

The real problem is that “declarative” is not an absolute property, but a
matter of degree. The language Fortran, developed in the late 1950’s, was the
first mainstream language that allowed writing arithmetic expressions in a syntax
that resembles mathematical notation [13]. Compared to assembly language this
is definitely declarative! One could tell the computer that I+J is required with-
out specifying where in memory to store I and J and what machine instructions
are needed to retrieve and add them. In this relative sense, languages have been
getting more declarative over the years. Fortran led to Algol-60 and structured
programming [46, 45, 130], which led to Simula-67 and object-oriented program-
ming [137, 152].2

This book sticks to the traditional usage of declarative as stateless and im-
perative as stateful. We call the computation model of Chapter 2 “declarative”,
even though later models are arguably more declarative, since they are more ex-
pressive. We stick to the traditional usage because there is an important sense in
which the declarative model really is declarative according to the literal meaning.
This sense appears when we look at the declarative model from the viewpoint of
logic and functional programming:

• A logic program can be “read” in two ways: either as a set of logical axioms
(the what) or as a set of commands (the how). This is summarized by
Kowalski’s famous equation Program = Logic + Control [106]. The logical
axioms, when supplemented by control flow information (either implicit or
explicitly given by the programmer), give a program that can be run on a
computer. Section 9.3.3 explains how this works for the declarative model.

• A functional program can also be “read” in two ways: either as a definition
of a set of functions in the mathematical sense (the what) or as a set of
commands for evaluating those functions (the how). As a set of commands,
the definition is executed in a particular order. The two most popular orders
are eager and lazy evaluation. When the order is known, the mathematical
definition can be run on a computer. Section 4.9.2 explains how this works
for the declarative model.

2It is a remarkable fact that all three languages were designed in one ten-year period, from
approximately 1957 to 1967. Considering that Lisp and Absys, among other languages, also
date from this period and that Prolog is from 1972, we can speak of a veritable golden age in
programming language design.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

416 Explicit State

However, in practice, the declarative reading of a logic or functional program can
lose much of its “what” aspect because it has to go into a lot of detail on the “how”
(see the O’Keefe quote for Chapter 3). For example, a declarative definition
of tree search has to give almost as many orders as an imperative definition.
Nevertheless, declarative programming still has three crucial advantages. First, it
is easier to build abstractions in a declarative setting, since declarative operations
are by nature compositional. Second, declarative programs are easier to test, since
it is enough to test single calls (give arguments and check the results). Testing
stateful programs is harder because it involves testing sequences of calls (due to
the internal history). Third, reasoning with declarative programming is simpler
than with imperative programming (e.g., algebraic reasoning is possible).

6.1 What is state?

We have already programmed with state in the declarative model of Chapter 3.
For example, the accumulators of Section 3.4.3 are state. So why do we need a
whole chapter devoted to state? To see why, let us look closely at what state
really is. In its simplest form, we can define state as follows:

A state is a sequence of values in time that contains the intermediate
results of a desired computation.

Let us examine the different ways that state can be present in a program.

6.1.1 Implicit (declarative) state

The sequence need only exist in the mind of the programmer. It does not need
any support at all from the computation model. This kind of state is called
implicit state or declarative state. As an example, look at the declarative function
SumList :

fun {SumList Xs S}
case Xs
of nil then S
[] X|Xr then {SumList Xr X+S}
end

end

It is recursive. Each call has two arguments: Xs, the unexamined rest of the input
list, and S, the sum of the examined part of the input list. While calculating the
sum of a list, SumList calls itself many times. Let us take the pair (Xs#S) at
each call, since it gives us all the information we need to know to characterize the
call. For the call {SumList [1 2 3 4] 0} this gives the following sequence:

[1 2 3 4] # 0
[2 3 4] # 1
[3 4] # 3

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.1 What is state? 417

[4] # 6
nil # 10

This sequence is a state. When looked at in this way, SumList calculates with
state. Yet neither the program nor the computation model “knows” this. The
state is completely in the mind of the programmer.

6.1.2 Explicit state

It can be useful for a function to have a state that lives across function calls
and that is hidden from the callers. For example, we can extend SumList to
count how many times it is called. There is no reason why the function’s callers
need to know about this extension. Even stronger: for modularity reasons the
callers should not know about the extension. This cannot be programmed in the
declarative model. The closest we can come is to add two arguments to SumList

(an input and output count) and thread them across all the callers. To do it
without additional arguments we need an explicit state:

An explicit state in a procedure is a state whose lifetime extends over
more than one procedure call without being present in the procedure’s
arguments.

Explicit state cannot be expressed in the declarative model. To have it, we
extend the model with a kind of container that we call a cell. A cell has a name,
an indefinite lifetime, and a content that can be changed. If the procedure knows
the name, it can change the content. The declarative model extended with cells is
called the stateful model. Unlike declarative state, explicit state is not just in the
mind of the programmer. It is visible in both the program and the computation
model. We can use a cell to add a long-term memory to SumList . For example,
let us keep track of how many times it is called:

local
C={NewCell 0}

in
fun {SumList Xs S}

C:=@C+1
case Xs
of nil then S
[] X|Xr then {SumList Xr X+S}
end

end
fun {SumCount} @C end

end

This is the same definition as before, except that we define a cell and update
its content in SumList . We also add the function SumCount to make the state
observable. Let us explain the new operations that act on the explicit state.
NewCell creates a new cell with initial content 0. @gets the content and := puts

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

418 Explicit State

in a new content. If SumCount is not used, then this version of SumList cannot
be distinguished from the previous version: it is called in the same way and gives
the same results.3

The ability to have explicit state is very important. It removes the limits
of declarative programming (see Section 4.7). With explicit state, abstract da-
ta types gain tremendously in modularity since it is possible to encapsulate an
explicit state inside them. The access to the state is limited according to the
operations of the abstract data type. This idea is at the heart of object-oriented
programming, a powerful programming style that is elaborated in Chapter 7. The
present chapter and Chapter 7 both explore the ramifications of explicit state.

6.2 State and system building

The principle of abstraction

As far as we know, the most successful system-building principle for intelligent
beings with finite thinking abilities, such as human beings, is the principle of
abstraction. Consider any system. It can be thought of as having two parts: a
specification and an implementation. The specification is a contract, in a math-
ematical sense that is stronger than the legal sense. The contract defines how
the rest of the world interacts with the system, as seen from the outside. The
implementation is how the system is constructed, as seen from the inside. The
miraculous property of the distinction specification/implementation is that the
specification is usually much simpler to understand than the implementation.
One does not have to know how to build a watch in order to read time on it.
To paraphrase evolutionist Richard Dawkins, it does not matter whether the
watchmaker is blind or not, as long as the watch works.

This means that it is possible to build a system as a concentric series of layers.
One can proceed step by step, building layer upon layer. At each layer, build an
implementation that takes the next lower specification and provides the next
higher one. It is not necessary to understand everything at once.

Systems that grow

How is this approach supported by declarative programming? With the declar-
ative model of Chapter 2, all that the system “knows” is on the outside, except
for the fixed set of knowledge that it was born with. To be precise, because a
procedure is stateless, all its knowledge, its “smarts,” are in its arguments. The
smarter the procedure gets, the “heavier” and more numerous the arguments get.
Declarative programming is like an organism that keeps all its knowledge outside
of itself, in its environment. Despite his claim to the contrary (see the chapter
quote), this was exactly the situation of Louis XIV: the state was not in his person

3The only differences are a minor slowdown and a minor increase in memory use. In almost
all cases, these differences are irrelevant in practice.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.2 State and system building 419

but all around him, in 17th century France.4 We conclude that the principle of
abstraction is not well supported by declarative programming, because we cannot
put new knowledge inside a component.

Chapter 4 partly alleviated this problem by adding concurrency. Stream ob-
jects can accumulate internal knowledge in their internal arguments. Chapter 5
enhanced the expressive power dramatically by adding ports, which makes possi-
ble port objects. A port object has an identity and can be viewed from the outside
as a stateful entity. But this requires concurrency. In the present chapter, we
add explicit state without concurrency. We shall see that this promotes a very
different programming style than the concurrent component style of Chapter 5.
There is a total order among all operations in the system. This cements a strong
dependency between all parts of the system. Later, in Chapter 8, we will add
concurrency to remove this dependency. The model of that chapter is difficult to
program in. Let us first see what we can do with state without concurrency.

6.2.1 System properties

What properties should a system have to best support the principle of abstrac-
tion? Here are three:

• Encapsulation. It should be possible to hide the internals of a part.

• Compositionality. It should be possible to combine parts to make a new
part.

• Instantiation/invocation. It should be possible to create many instances
of a part based on a single definition. These instances “plug” themselves
into their environment (the rest of the system in which they will live) when
they are created.

These properties need support from the programming language, e.g., lexical scop-
ing supports encapsulation and higher-order programming supports instantiation.
The properties do not require state; they can be used in declarative programming
as well. For example, encapsulation is orthogonal to state. On the one hand, it
is possible to use encapsulation in declarative programs without state. We have
already used it many times, for example in higher-order programming and stream
objects. On the other hand, it is also possible to use state without encapsulation,
by defining the state globally so all components have free access to it.

Invariants

Encapsulation and explicit state are most useful when used together. Adding
state to declarative programming makes reasoning about the program much hard-

4To be fair to Louis, what he meant was that the decision-making power of the state was
vested in his person.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

420 Explicit State

er, because the program’s behavior depends on the state. For example, a pro-
cedure can do a side effect, i.e., it modifies state that is visible to the rest of
the program. Side effects make reasoning about the program extremely difficult.
Bringing in encapsulation does much to make reasoning tractable again. This is
because stateful systems can be designed so that a well-defined property, called
an invariant, is always true when viewed from the outside. This makes reasoning
about the system independent of reasoning about its environment. This part-
ly gives us back one of the properties that makes declarative programming so
attractive.

Invariants are only part of the story. An invariant just says that the com-
ponent is not behaving incorrectly; it does not guarantee that the component
is making progress towards some goal. For that, a second property is needed
to mark the progress. This means that even with invariants, programming with
state is not quite as simple as declarative programming. We find that a good
rule of thumb for complex systems is to keep as many components as possible
declarative. State should not be “smeared out” over many components. It should
be concentrated in just a few carefully-selected components.

6.2.2 Component-based programming

The three properties of encapsulation, compositionality, and instantiation define
component-based programming (see Section 6.7). A component specifies a pro-
gram fragment with an inside and an outside, i.e., with a well-defined interface.
The inside is hidden from the outside, except for what the interface permits.
Components can be combined to make new components. Components can be
instantiated, making a new instance that is linked into its environment. Compo-
nents are a ubiquitous concept. We have already seen them in several guises:

• Procedural abstraction. We have seen a first example of components in
the declarative computation model. The component is called a procedure
definition and its instance is called a procedure invocation. Procedural ab-
straction underlies the more advanced component models that came later.

• Functors (compilation units). A particularly useful kind of component is
a compilation unit, i.e., it can be compiled independently of other compo-
nents. In this book, we call such components functors and their instances
modules.

• Concurrent components. A system with independent, interacting enti-
ties can be seen as a graph of concurrent components that send each other
messages.

In component-based programming, the natural way to extend a component is
by using composition: build a new component that contains the original one.
The new component offers a new functionality and uses the old component to
implement the functionality.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.3 The declarative model with explicit state 421

We give a concrete example from our experience to show the usefulness of
components. Component-based programming was an essential part of the In-
formation Cities project, which did extensive multi-agent simulations using the
Mozart system [155, 162]. The simulations were intended to model evolution and
information flow in parts of the Internet. Different simulation engines (in a single
process or distributed, with different forms of synchronization) were defined as
reusable components with identical interfaces. Different agent behaviors were de-
fined in the same way. This allowed rapidly setting up many different simulations
and extending the simulator without having to recompile the system. The setup
was done by a program, using the module manager provided by the System mod-
ule Module . This is possible because components are values in the Oz language
(see Section 3.9.3).

6.2.3 Object-oriented programming

A popular set of techniques for stateful programming is called object-oriented
programming. We devote the whole of Chapter 7 to these techniques. Object-
oriented programming adds a fourth property to component-based programming:

• Inheritance. It is possible to build the system in incremental fashion, as
a small extension or modification of another system.

Incrementally-built components are called classes and their instances are called
objects. Inheritance is a way of structuring programs so that a new implementa-
tion extends an existing one.

The advantage of inheritance is that it factors the implementation to avoid
redundancy. But inheritance is not an unmixed blessing. It implies that a com-
ponent strongly depends on the components it inherits from. This dependency
can be difficult to manage. Much of the literature on object-oriented design, e.g.,
on design patterns [58], focuses on the correct use of inheritance. Although com-
ponent composition is less flexible than inheritance, it is much simpler to use.
We recommend to use it whenever possible and to use inheritance only when
composition is insufficient (see Chapter 7).

6.3 The declarative model with explicit state

One way to introduce state is to have concurrent components that run indefinitely
and that can communicate with other components, like the stream objects of
Chapter 4 or the port objects of Chapter 5. In the present chapter we directly
add explicit state to the declarative model. Unlike in the two previous chapters,
the resulting model is still sequential. We will call it the stateful model.

Explicit state is a pair of two language entities. The first entity is the state’s
identity and the second is the state’s current content. There exists an operation
that when given the state’s identity returns the current content. This operation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

422 Explicit State

Immutable store Mutable store (cells)

Semantic stack

V=c2

U=@V X=U.age if @X>=18 then ...

W=34

Z=person(age: Y)

U

c1:W
c2:Z

Y=c1
X

Figure 6.1: The declarative model with explicit state

defines a system-wide mapping between state identities and all language entities.
What makes it stateful is that the mapping can be modified. Interestingly, neither
of the two language entities themselves is modified. It is only the mapping that
changes.

6.3.1 Cells

We add explicit state as one new basic type to the computation model. We call
the type a cell. A cell is a pair of a constant, which is a name value, and a reference
into the single-assignment store. Because names are unforgeable, cells are a true
abstract data type. The set of all cells lives in the mutable store. Figure 6.1
shows the resulting computation model. There are two stores: the immutable
(single-assignment) store, which contains dataflow variables that can be bound
to one value, and the mutable store, which contains pairs of names and references.
Table 6.1 shows its kernel language. Compared to the declarative model, it adds
just two new statements, the cell operations NewCell and Exchange . These
operations are defined informally in Table 6.2. For convenience, this table adds
two more operations, @(access) and := (assignment). These do not provide any
new functionality since they can be defined in terms of Exchange . Using C:=Y as
an expression has the effect of an Exchange : it gives the old value as the result.

Amazingly, adding cells with their two operations is enough to build all the
wonderful concepts that state can provide. All the sophisticated concepts of ob-
jects, classes, and other abstract data types can be built with the declarative
model extended with cells. Section 7.6.2 explains how to build classes and Sec-
tion 7.6.3 explains how to build objects. In practice, their semantics are defined
in this way, but the language has syntactic support to make them easy to use
and the implementation has support to make them more efficient [75].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.3 The declarative model with explicit state 423

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 6.1: The kernel language with explicit state

Operation Description
{NewCell X C} Create a new cell C with initial content X.
{Exchange C X Y} Atomically bind X with the old content of

cell C and set Y to be the new content.
X=@C Bind X to the current content of cell C.
C:=X Set X to be the new content of cell C.
X=C:=Y Another syntax for {Exchange C X Y} .

Table 6.2: Cell operations

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

424 Explicit State

6.3.2 Semantics of cells

The semantics of cells is quite similar to the semantics of ports given in Sec-
tion 5.1.2. It is instructive to compare them. In similar manner to ports, we
first add a mutable store. The same mutable store can hold both ports and cells.
Then we define the operations NewCell and Exchange in terms of the mutable
store.

Extension of execution state

Next to the single-assignment store σ and the trigger store τ , we add a new store
µ called the mutable store. This store contains cells, which are pairs of the form
x : y, where x and y are variables of the single-assignment store. The mutable
store is initially empty. The semantics guarantees that x is always bound to a
name value that represents a cell. On the other hand, y can be any partial value.
The execution state becomes a triple (MST, σ, µ) (or a quadruple (MST, σ, µ, τ)
if the trigger store is considered).

The NewCell operation

The semantic statement ({NewCell 〈x〉 〈y〉} , E) does the following:

• Create a fresh cell name n.

• Bind E(〈y〉) and n in the store.

• If the binding is successful, then add the pair E(〈y〉) : E(〈x〉) to the mutable
store µ.

• If the binding fails, then raise an error condition.

Observant readers will notice that this semantics is almost identical to that of
ports. The principal difference is the type. Ports are identified by a port name
and cells by a cell name. Because of the type, we can enforce that cells can only
be used with Exchange and ports can only be used with Send.

The Exchange operation

The semantic statement ({Exchange 〈x〉 〈y〉 〈z〉} , E) does the following:

• If the activation condition is true (E(〈x〉) is determined), then do the fol-
lowing actions:

– If E(〈x〉) is not bound to the name of a cell, then raise an error condi-
tion.

– If the mutable store contains E(〈x〉) : w then do the following actions:

∗ Update the mutable store to be E(〈x〉) : E(〈z〉).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.3 The declarative model with explicit state 425

∗ Bind E(〈y〉) and w in the store.

• If the activation condition is false, then suspend execution.

Memory management

Two modifications to memory management are needed because of the mutable
store:

• Extending the definition of reachability: A variable y is reachable if the
mutable store contains x : y and x is reachable.

• Reclaiming cells: If a variable x becomes unreachable, and the mutable
store contains the pair x : y, then remove this pair.

The same modifications are needed independent of whether the mutable store
holds cells or ports.

6.3.3 Relation to declarative programming

In general, a stateful program is no longer declarative, since running the program
several times with the same inputs can give different outputs depending on the
internal state. It is possible, though, to write stateful programs that behave as
if they were declarative, i.e., to write them so they satisfy the definition of a
declarative operation. It is a good design principle to write stateful components
so that they behave declaratively.

A simple example of a stateful program that behaves declaratively is the
SumList function we gave earlier. Let us show a more interesting example, in
which the state is used as an intimate part of the function’s calculation. We
define a list reversal function by using a cell:

fun {Reverse Xs}
Rs={NewCell nil}

in
for X in Xs do Rs := X|@Rs end
@Rs

end

Since the cell is encapsulated inside the Reverse , there is no way to tell the
difference between this implementation and a declarative implementation. It is
often possible to take a declarative program and convert it to a stateful program
with the same behavior by replacing the declarative state with an explicit state.
The reverse direction is often possible as well. We leave it as an exercise for the
reader to take a declarative implementation of Reverse and to convert it to a
stateful implementation.

Another interesting example is memoization, in which a function remembers
the results of previous calls so that future calls can be handled quicker. Chapter 10
gives an example using a simple graphical calendar display. It uses memoization
to avoid redrawing the display unless it has changed.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

426 Explicit State

6.3.4 Sharing and equality

By introducing cells we have extended the concept of equality. We have to dis-
tinguish the equality of cells from the equality of their contents. This leads to
the concepts of sharing and token equality.

Sharing

Sharing, also known as aliasing, happens when two identifiers X and Y refer to
the same cell. We say that the two identifiers are aliases of each other. Changing
the content of X also changes the content of Y. For example, let us create a cell:

X={NewCell 0}

We can create a second reference Y to this cell:

declare Y in
Y=X

Changing the content of Y will change the content of X:

Y:=10
{Browse @X}

This displays 10. In general, when a cell’s content is changed, then all the cell’s
aliases see the changed content. When reasoning about a program, the program-
mer has to be careful to keep track of aliases. This can be difficult, since they
can easily be spread out through the whole program. This problem can be made
manageable by encapsulating the state, i.e., using it in just a small part of a pro-
gram and guaranteeing that it cannot escape from there. This is one of the key
reasons why abstract data types are an especially good idea when used together
with explicit state.

Token equality and structure equality

Two values are equal if they have the same structure. For example:

X=person(age:25 name:"George")
Y=person(age:25 name:"George")
{Browse X==Y}

This displays true . We call this structure equality. It is the equality we have
used up to now. With cells, though, we introduce a new notion of equality called
token equality. Two cells are not equal if they have the same content, rather they
are equal if they are the same cell! For example, let us create two cells:

X={NewCell 10}
Y={NewCell 10}

These are different cells with different identities. The following comparison:

{Browse X==Y}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 427

displays false . It is logical that the cells are not equal, since changing the
content of one cell will not change the content of the other. However, our two
cells happen to have the same content:

{Browse @X==@Y}

This displays true . This is a pure coincidence; it does not have to stay true
throughout the program. We conclude by remarking that aliases do have the
same identities. The following example:

X={NewCell 10}
Y=X
{Browse X==Y}

displays true because X and Y are aliases, i.e., they refer to the same cell.

6.4 Abstract data types

As we saw in Section 3.7, an abstract data type is a set of values together with
a set of operations on those values. Now that we have added explicit state to
the model, we can complete the discussion started in Section 3.7. That section
shows the difference between secure and open ADTs in the case of declarative
programming. State adds an extra dimension to the possibilities.

6.4.1 Eight ways to organize ADTs

An ADT with the same functionality can be organized in many different ways.
For example, in Section 3.7 we saw that a simple ADT like a stack can be either
open or secure. Here we will introduce two more axes, state and bundling, each
with two choices. Because these axes are orthogonal, this gives eight ways in all
to organize an ADT! Some are rarely used. Others are common. But each has
its advantages and disadvantages. We briefly explain each axis and give some
examples. In the examples later on in the book, we choose whichever of the eight
ways that is appropriate in each case.

Openness and security

An open ADT is one in which the internal representation is completely visible to
the whole program. Its implementation can be spread out over the whole program.
Different parts of the program can extend the implementation independently of
each other. This is most useful for small programs in which expressiveness is
more important than security.

A secure ADT is one in which the implementation is concentrated in one part
of the program and is inaccessible to the rest of the program. This is usually
what is desired for larger programs. It allows the ADT to be implemented and
tested independently of the rest of the program. We will see the different ways
to define a secure ADT. Perhaps surprisingly, we will see that a secure ADT can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

428 Explicit State

be defined completely in the declarative model with higher-order programming.
No additional concepts (such as names) are needed.

An ADT can be partially secure, e.g., the rights to look at its internal repre-
sentation can be given out in a controlled way. In the stack example of Section 3.7,
the Wrap and Unwrap functions can be given out to certain parts of the program,
for example to extend the implementation of stacks in a controlled way. This is
an example of programming with capabilities.

State

A stateless ADT, also known as a declarative ADT, is written in the declarative
model. Chapter 3 gives examples: a declarative stack, queue, and dictionary.
With this approach, ADT instances cannot be modified, but new ones must be
created. When passing an ADT instance to a procedure, you can be sure about
exactly what value is being passed. Once created, the instance never changes.
On the other hand, this leads to a proliferation of instances that can be difficult
to manage. The program is also less modular, since instances must be explicitly
passed around, even through parts that may not need the instance themselves.

A stateful ADT internally uses explicit state. Examples of stateful ADTs are
components and objects, which are usually stateful. With this approach, ADT
instances can change as a function of time. One cannot be sure about what value
is encapsulated inside the instance without knowing the history of all procedure
calls at the interface since its creation. In contrast to declarative ADTs, there
is only one instance. Furthermore, this one instance often does not have to be
passed as a parameter; it can be accessed inside procedures by lexical scoping.
This makes the program more concise. The program is also potentially more
modular, since parts that do not need the instance do not need to mention it.

Bundling

Next to security and state, a third choice to make is whether the data is kept
separate from the operations (unbundled) or whether they are kept together (bun-
dled). Of course, an unbundled ADT can always be bundled in a trivial way by
putting the data and operations in a record. But a bundled ADT cannot be
unbundled; the language semantics guarantees that it always stays bundled.

An unbundled ADT is one that can separate its data from its operations. It is
a remarkable fact that an unbundled ADT can still be secure. To achieve security,
each instance is created together with a “key”. The key is an authorization to
access the internal data of the instance (and update it, if the instance is stateful).
All operations of the ADT know the key. The rest of the program does not
know the key. Usually the key is a name, which is an unforgeable constant (see
Section B.2).

An unbundled ADT can be more efficient than a bundled one. For example,
a file that stores instances of an ADT can contain just the data, without any
operations. If the set of operations is very large, then this can take much less

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 429

Open, declarative,
and unbundled

Secure, declarative,
and unbundled

as it exists in Prolog and Scheme
The usual open declarative style,

secure by using wrappers
The declarative style is made

Secure, stateful,
and bundled

Secure, stateful,
and unbundled

as it exists in Smalltalk and Java
The usual object-oriented style,

usual object-oriented style

Secure, declarative,
and bundled flavor to the declarative style

Bundling gives an object-oriented

An unbundled variation of the

Figure 6.2: Five ways to package a stack

space than storing both the data and the operations. When the data is reloaded,
then it can be used as before as long as the key is available.

A bundled ADT is one that keeps together its data and its operations in such
a way that they cannot be separated by the user. As we will see in Chapter 7,
this is what object-oriented programming does. Each object instance is bundled
together with its operations, which are called “methods”.

6.4.2 Variations on a stack

Let us take the 〈Stack T〉 type from Section 3.7 and see how to adapt it to
some of the eight possibilities. We give five useful possibilities. We start from
the simplest one, the open declarative version, and then use it to build four
different secure versions. Figure 6.2 summarizes them. Figure 6.3 gives a graphic
illustration of the four secure versions and their differences. In this figure, the
boxes labeled “Pop” are procedures that can be invoked. Incoming arrows are
inputs and outgoing arrows are outputs. The boxes with keyholes are wrapped
data structures that are the inputs and outputs of the Pop procedures. The
wrapped data structures can only be unwrapped inside the Pop procedures. Two
of the Pop procedures (the second and third) themselves wrap data structures.

Open declarative stack

We set the stage for these secure versions by first giving the basic stack function-
ality in the simplest way:

fun {NewStack} nil end
fun {Push S E} E|S end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

430 Explicit State

Pop

[a b c]

Pop

[b c]

Declarative bundled

X=a

Pop

S1={Pop S X}

[b c]S1

S [a b c]

Declarative unbundled

S

S1={S.pop X}

X=a

S1

[b c]
[a b c]

C

(after)
(before)

X=a

Pop

X={S.pop}

Stateful bundled Stateful unbundled

X=a

[a b c]
[b c]

C

(before)

(after)

Pop

W

X={Pop W}

S

Figure 6.3: Four versions of a secure stack

fun {Pop S ?E}
case S of X|S1 then E=X S1 end

end
fun {IsEmpty S} S==nil end

This version is open, declarative, and unbundled.

Secure declarative unbundled stack

We make this version secure by using a wrapper/unwrapper pair, as seen in
Section 3.7:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|{Unwrap S}} end
fun {Pop S ?E}

case {Unwrap S} of X|S1 then E=X {Wrap S1} end
end
fun {IsEmpty S} {Unwrap S}==nil end

end

This version is secure, declarative, and unbundled. The stack is unwrapped when
entering the ADT and wrapped when exiting. Outside the ADT, the stack is
always wrapped.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 431

Secure declarative bundled stack

Let us now make a bundled version of the declarative stack. The idea is to hide
the stack inside the operations, so that it cannot be separated from them. Here
is how it is programmed:

local
fun {StackOps S}

fun {Push X} {StackOps X|S} end
fun {Pop ?E}

case S of X|S1 then E=X {StackOps S1} end
end
fun {IsEmpty} S==nil end

in ops(push:Push pop:Pop isEmpty:IsEmpty) end
in

fun {NewStack} {StackOps nil} end
end

This version is secure, declarative, and bundled. Note that it does not use wrap-
ping, since wrapping is only needed for unbundled ADTs. The function StackOps

takes a list S and returns a record of procedure values, ops(pop:Pop push:Push

isEmpty:IsEmpty) , in which S is hidden by lexical scoping. Using a record lets
us group the operations in a nice way. Here is an example use:

declare S1 S2 S3 X in
S1={NewStack}
{Browse {S1.isEmpty}}
S2={S1.push 23}
S3={S2.pop X}
{Browse X}

It is a remarkable fact that making an ADT secure needs neither explicit state
nor names. It can be done with higher-order programming alone. Because this
version is both bundled and secure, we can consider it as a declarative form of
object-oriented programming. The stack S1 is a declarative object.

Secure stateful bundled stack

Now let us construct a stateful version of the stack. Calling NewStack creates a
new stack with three operations Push , Pop, and IsEmpty :

fun {NewStack}
C={NewCell nil}
proc {Push X} C:=X|@C end
fun {Pop}

case @Cof X|S1 then C:=S1 X end
end
fun {IsEmpty} @C==nil end

in
ops(push:Push pop:Pop isEmpty:IsEmpty)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

432 Explicit State

end

This version is secure, stateful, and bundled. In like manner to the declarative
bundled version, we use a record to group the operations. This version provides
the basic functionality of object-oriented programming, namely a group of opera-
tions (“methods”) with a hidden internal state. The result of calling NewStack is
an object instance with three methods Push , Pop, and IsEmpty . Since the stack
value is always kept hidden inside the implementation, this version is already
secure even without names.

Comparing two popular versions

Let us compare the simplest secure versions in the declarative and stateful models,
namely the declarative unbundled and the stateful bundled versions. Each of
these two versions is appropriate for secure ADTs in its respective model. It pays
to compare them carefully and think about the different styles they represent:

• In the declarative unbundled version, each operation that changes the stack
has two arguments more than the stateful version: an input stack and an
output stack.

• The implementations of both versions have to do actions when entering and
exiting an operation. The calls of Unwrap and Wrap correspond to calls of
@and := , respectively.

• The declarative unbundled version needs no higher-order techniques to work
with many stacks, since all stacks work with all operations. On the other
hand, the stateful bundled version needs instantiation to create new versions
of Push , Pop and IsEmpty for each instance of the stack ADT.

Here is the interface of the declarative unbundled version:

〈fun {NewStack}: 〈Stack T〉〉
〈fun {Push 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {Pop 〈Stack T〉 T}: 〈Stack T〉〉
〈fun {IsEmpty 〈Stack T〉}: 〈Bool〉〉

Because it is declarative, the stack type 〈Stack T〉 appears in every operation.
Here is the interface of the stateful bundled version:

〈fun {NewStack}: 〈Stack T〉〉
〈proc {Push T} 〉
〈fun {Pop}: T〉
〈fun {IsEmpty}: 〈bool〉〉

In the stateful bundled version, we define the stack type 〈Stack T〉 as
〈op(push: 〈proc {$ T} 〉 pop: 〈fun {$}: T〉 isEmpty: 〈fun {$}: 〈Bool〉〉) 〉.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 433

Secure stateful unbundled stack

It is possible to combine wrapping with cells to make a version that is secure,
stateful, and unbundled. This style is little used in object-oriented programming,
but deserves to be more widely known. It does not need higher-order program-
ming. Each operation has one stack argument instead of two for the declarative
version:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap {NewCell nil}} end
proc {Push S X} C={Unwrap S} in C:=X|@C end
fun {Pop S}
C={Unwrap S} in

case @Cof X|S1 then C:=S1 X end
end
fun {IsEmpty S} @{Unwrap S}==nil end

end

In this version, NewStack only needs Wrap and the other functions only need
Unwrap .

6.4.3 Revocable capabilities

Using explicit state, it is possible to build secure ADTs that have controllable
security. As an example of this, let us show how to build revocable capabilities.
Chapter 3 introduced the concept of a capability, which gives its owner an irre-
vocable right to do something. Sometimes we would like to give a revocable right
instead, i.e., a right that can be removed. We can implement this with explicit
state. Without loss of generality, we assume the capability is represented as a
one-argument procedure.5 Here is a generic procedure that takes any capability
and returns a revocable version of that capability:

proc {Revocable Obj ?R ?RObj}
C={NewCell Obj}

in
proc {R}

C:= proc {$ M} raise revokedError end end
end
proc {RObj M}

{@C M}
end

end

Given any one-argument procedure Obj , the procedure returns a revoker R and
a revocable version RObj . At first, RObj forwards all its messages to Obj . After

5This is an important case because it covers the object system of Chapter 7.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

434 Explicit State

executing {R} , calling RObj invariably raises a revokedError exception. Here
is an example:

fun {NewCollector}
Lst={NewCell nil}

in
proc {$ M}

case M
of add(X) then T in {Exchange Lst T X|T}
[] get(L) then L={Reverse @Lst}
end

end
end

declare C R in
C={Revocable {NewCollector} R}

The function NewCollector creates an instance of an ADT that we call a col-
lector. It has two operations, add and get . With add , it can collect items into
a list in the order that they are collected. With get , the current value of the
list can be retrieved at any time. We make the collector revocable. When it has
finished its job, the collector can be made inoperable by calling R.

6.4.4 Parameter passing

Now that we have introduced explicit state, we are at a good point to investigate
the different ways that languages do parameter passing. This book almost always
uses call by reference. But many other ways have been devised to pass information
to and from a called procedure. Let us briefly define the most prominent ones.
For each mechanism, we give an example in a Pascal-like syntax and we code
the example in the stateful model of this chapter. This coding can be seen as a
semantic definition of the mechanism. We use Pascal because of its simplicity.
Java is a more popular language, but explaining its more elaborate syntax is not
appropriate for this section. Section 7.7 gives an example of Java syntax.

Call by reference

The identity of a language entity is passed to the procedure. The procedure can
then use this language entity freely. This is the primitive mechanism used by
the computation models of this book, for all language entities including dataflow
variables and cells.

Imperative languages often mean something slightly different by call by refer-
ence. They assume that the reference is stored in a cell local to the procedure. In
our terminology, this is a call by value where the reference is considered as a value
(see below). When studying a language that has call by reference, we recommend
looking carefully at the language definition to see exactly what is meant.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 435

Call by variable

This is a special case of call by reference. The identity of a cell is passed to the
procedure. Here is an example:

procedure sqr(var a:integer);

begin

a:=a*a

end

var c:integer;

c:=25;

sqr(c);

browse(c);

We code this example as follows:

proc {Sqr A}
A:=@A*@A

end

local
C={NewCell 0}

in
C:=25
{Sqr C}
{Browse @C}

end

For the call {Sqr C} , the A inside Sqr is a synonym of the C outside.

Call by value

A value is passed to the procedure and put into a cell local to the procedure.
The implementation is free either to copy the value or to pass a reference, as long
as the procedure cannot change the value in the calling environment. Here is an
example:

procedure sqr(a:integer);

begin

a:=a+1;

browse(a*a)

end;

sqr(25);

We code this example as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

436 Explicit State

proc {Sqr D}
A={NewCell D}

in
A:=@A+1
{Browse @A*@A}

end

{Sqr 25}

The cell A is initialized with the argument of Sqr . The Java language uses call
by value for both values and object references. This is explained in Section 7.7.

Call by value-result

This is a modification of call by variable. When the procedure is called, the
content of a cell (i.e., a mutable variable) is put into another mutable variable
local to the procedure. When the procedure returns, the content of the latter is
put into the former. Here is an example:

procedure sqr(inout a:integer);

begin

a:=a*a

end

var c:integer;

c:=25;

sqr(c);

browse(c);

This uses the keyword “inout” to indicate call by value-result, as is used in the
Ada language. We code this example as follows:

proc {Sqr A}
D={NewCell @A}

in
D:=@D*@D
A:=@D

end

local
C={NewCell 0}

in
C:=25
{Sqr C}
{Browse @C}

end

There are two mutable variables: one inside Sqr (namely D) and one outside
(namely C). Upon entering Sqr , D is assigned the content of C. Upon exiting, C

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.4 Abstract data types 437

is assigned the content of D. During the execution of Sqr , modifications to D are
invisible from the outside.

Call by name

This mechanism is the most complex. It creates a procedure value for each
argument. A procedure value used in this way is called a thunk. Each time the
argument is needed, the procedure value is evaluated. It returns the name of a
cell, i.e., the address of a mutable variable. Here is an example:

procedure sqr(callbyname a:integer);

begin

a:=a*a

end;

var c:integer;

c:=25;

sqr(c);

browse(c);

This uses the keyword “callbyname” to indicate call by name. We code this
example as follows:

proc {Sqr A}
{A}:=@{A}*@{A}

end

local C={NewCell 0} in
C:=25
{Sqr fun {$} C end }
{Browse @C}

end

The argument A is a function that when evaluated returns the name of a mutable
variable. The function is evaluated each time the argument is needed. Call by
name can give unintuitive results if array indices are used in the argument (see
Exercise).

Call by need

This is a modification of call by name in which the procedure value is evaluated
only once. Its result is stored and used for subsequent evaluations. Here is one
way to code call by need for the call by name example:

proc {Sqr A}
B={A}

in
B:=@B*@B

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

438 Explicit State

end

local C={NewCell 0} in
C:=25
{Sqr fun {$} C end }
{Browse @C}

end

The argument A is evaluated when the result is needed. The local variable B

stores its result. If the argument is needed again, then B is used. This avoids
reevaluating the function. In the Sqr example this is easy to implement since
the result is clearly needed three times. If it is not clear from inspection whether
the result is needed, then lazy evaluation can be used to implement call by need
directly (see Exercise).

Call by need is exactly the same concept as lazy evaluation. The term “call
by need” is more often used in a language with state, where the result of the
function evaluation can be the name of a cell (a mutable variable). Call by name
is lazy evaluation without memoization. The result of the function evaluation is
not stored, so it is evaluated again each time it is needed.

Discussion

Which of these mechanisms (if any) is “right” or “best”? This has been the
subject of much discussion (see, e.g., [116]). The goal of the kernel language
approach is to factorize programming languages into a small set of programmer-
significant concepts. For parameter passing, this justifies using call by reference
as the primitive mechanism which underlies the other mechanisms. Unlike the
others, call by reference does not depend on additional concepts such as cells or
procedure values. It has a simple formal semantics and is efficient to implement.
On the other hand, this does not mean that call by reference is always the right
mechanism for programs. Other parameter passing mechanisms can be coded
by combining call by reference with cells and procedure values. Many languages
offer these mechanisms as linguistic abstractions.

6.5 Stateful collections

An important kind of ADT is the collection, which groups together a set of partial
values into one compound entity. There are different kinds of collection depend-
ing on what operations are provided. Along one axis we distinguish indexed
collections and unindexed collections, depending on whether or not there is rapid
access to individual elements (through an index). Along another axis we distin-
guish extensible or inextensible collections, depending on whether the number of
elements is variable or fixed. We give a brief overview of these different kinds of
collections, starting with indexed collections.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.5 Stateful collections 439

Tuple

Dictionary

RecordArray

Add literal indices Add state

Add state Add literal indices

Indices are integers from 1 to N

Cannot be changed

Indices are integers or literals

Cannot be changedContent can be changed

Indices are integers from L to H

Indices are integers or literals

Content and size can be changed

Figure 6.4: Different varieties of indexed collections

6.5.1 Indexed collections

In the context of declarative programming, we have already seen two kinds of
indexed collection, namely tuples and records. We can add state to these two
data types, allowing them to be updated in certain ways. The stateful versions
of tuples and records are called arrays and dictionaries.

In all, this gives four different kinds of indexed collection, each with its partic-
ular trade-offs between expressiveness and efficiency (see Figure 6.4). With such
a proliferation, how does one choose which to use? Section 6.5.2 compares the
four and gives advice on how to choose among them.

Arrays

An array is a mapping from integers to partial values. The domain is a set of
consecutive integers from a lower bound to an upper bound. The domain is given
when the array is declared and cannot be changed afterwards. The range of the
mapping can be changed. Both accessing and changing an array element are done
in constant time. If you need to change the domain or if the domain is not known
when you declare the array, then you should use a dictionary instead of an array.
The Mozart system provides arrays as a predefined ADT in the Array module.
Here are some of the more common operations:

• A={NewArray L H I} returns a new array with indices from L to H, inclu-
sive, all initialized to I .

• {Array.put A I X} puts in A the mapping of I to X. This can also be
written A.I:=X .

• X={Array.get A I} returns from A the mapping of I . This can also be
written as X=A.I .

• L={Array.low A} returns the lower index bound of A.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

440 Explicit State

• H={Array.high A} returns the higher index bound of A.

• R={Array.toRecord L A} returns a record with label L and the same
items as the array A. The record is a tuple only if the lower index bound is
1.

• A={Tuple.toArray T} returns an array with bounds between 1 and {Width

T} , where the elements of the array are the elements of T.

• A2={Array.clone A} returns a new array with exactly the same indices
and contents as A.

There is a close relationship between arrays and tuples. Each of them maps one
of a set of consecutive integers to partial values. The essential difference is that
tuples are stateless and arrays are stateful. A tuple has fixed contents for its
fields, whereas in an array the contents can be changed. It is possible to create a
completely new tuple differing only on one field from an existing tuple, using the
Adjoin and AdjoinAt operations. These take time and memory proportional to
the number of features in the tuple. The put operation of an array is a constant
time operation, and therefore much more efficient.

Dictionaries

A dictionary is a mapping from simple constants (atoms, names, or integers) to
partial values. Both the domain and the range of the mapping can be changed.
An item is a pair of one simple constant and a partial value. Items can be ac-
cessed, changed, added, or removed during execution. All operations are efficient:
accessing and changing are done in constant time and adding/removal are done in
amortized constant time. By amortized constant time we mean that a sequence
of n add or removal operations is done in total time proportional to n, when n
becomes large. This means that each individual operation may not be constant
time, since occasionally the dictionary has to be reorganized internally, but re-
organizations are relatively rare. The active memory needed by a dictionary is
always proportional to the number of items in the mapping. Other than system
memory, there are no limits to the number of fields in the mapping. Section 3.7.3
gives some ballpark measurements comparing stateful dictionaries to declarative
dictionaries. The Mozart system provides dictionaries as a predefined ADT in
the Dictionary module. Here are some of the more common operations:

• D={NewDictionary} returns a new empty dictionary.

• {Dictionary.put D LI X} puts in D the mapping of LI to X. This can
also be written D.LI:=X .

• X={Dictionary.get D LI} returns from D the mapping of LI . This can
also be written X=D.LI , i.e., with the same notation as for records.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.5 Stateful collections 441

• X={Dictionary.condGet D LI Y} returns from D the mapping of LI , if
it exists. Otherwise, it returns Y. This is minor variation of get , but it
turns out to be extremely useful in practice.

• {Dictionary.remove D LI} removes from D the mapping of LI .

• {Dictionary.member D LI B} tests in D whether LI exists, and binds B

to the boolean result.

• R={Dictionary.toRecord L D} returns a record with label L and the
same items as the dictionary D. The record is a “snapshot” of the dictio-
nary’s state at a given moment in time.

• D={Record.toDictionary R} returns a dictionary with the same items
as the record R. This operation and the previous one are useful for saving
and restoring dictionary state in pickles.

• D2={Dictionary.clone D} returns a new dictionary with exactly the
same keys and items as D.

There is a close relationship between dictionaries and records. Each of them
maps simple constants to partial values. The essential difference is that records
are stateless and dictionaries are stateful. A record has a fixed set of fields and
their contents, whereas in a dictionary the set of fields and their contents can
be changed. Like for tuples, new records can be created with the Adjoin and
AdjoinAt operations, but these take time proportional to the number of record
features. The put operation of a dictionary is a constant time operation, and
therefore much more efficient.

6.5.2 Choosing an indexed collection

The different indexed collections have different trade-offs in possible operations,
memory use, and execution time. It is not always easy to decide which collection
type is the best one in any given situation. We examine the differences between
these collections to make this decision easier.

We have seen four types of indexed collections: tuples, records, arrays, and
dictionaries. All provide constant-time access to their elements by means of
indices, which can be calculated at run time. But apart from this commonality
they are quite different. Figure 6.4 gives a hierarchy that shows how the four
types are related to each other. Let us compare them:

• Tuples. Tuples are the most restrictive, but they are fastest and require
least memory. Their indices are consecutive positive integers from 1 to a
maximum N which is specified when the tuple is created. They can be used
as arrays when the contents do not have to be changed. Accessing a tuple
field is extremely efficient because the fields are stored consecutively.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

442 Explicit State

• Records. Records are more flexible than tuples because the indices can be
any literals (atoms or names) and integers. The integers do not have to
be consecutive. The record type, i.e., the label and arity (set of indices),
is specified when the record is created. Accessing record fields is nearly
as efficient as accessing tuple fields. To guarantee this, records fields are
stored consecutively, like for tuples. This implies that creating a new record
type (i.e., one for which no record exists yet) is much more expensive than
creating a new tuple type. A hash table is created when the record type
is created. The hash table maps each index to its offset in the record. To
avoid having to use the hash table on each access, the offset is cached in
the access instruction. Creating new records of an already-existing type is
as inexpensive as creating a tuple.

• Arrays. Arrays are more flexible than tuples because the content of each
field can be changed. Accessing an array field is extremely efficient because
the fields are stored consecutively. The indices are consecutive integers from
any lower bound to any upper bound. The bounds are specified when the
array is created. The bounds cannot be changed.

• Dictionaries. Dictionaries are the most general. They combine the flexibil-
ity of arrays and records. The indices can be any literals and integers and
the content of each field can be changed. Dictionaries are created empty.
No indices need to be specified. Indices can be added and removed efficient-
ly, in amortized constant time. On the other hand, dictionaries take more
memory than the other data types (by a constant factor) and have slower
access time (also by a constant factor). Dictionaries are implemented as
dynamic hash tables.

Each of these types defines a particular trade-off that is sometimes the right one.
Throughout the examples in the book, we select the right indexed collection type
whenever we need one.

6.5.3 Other collections

Unindexed collections

Indexed collections are not always the best choice. Sometimes it is better to use an
unindexed collection. We have seen two unindexed collections: lists and streams.
Both are declarative data types that collect elements in a linear sequence. The
sequence can be traversed from front to back. Any number of traversals can be
done simultaneously on the same list or stream. Lists are of finite, fixed length.
Streams are incomplete lists; their tails are unbound variables. This means they
can always be extended, i.e., they are potentially unbounded. The stream is one of
the most efficient extensible collections, in both memory use and execution time.
Extending a stream is more efficient than adding a new index to a dictionary and
much more efficient than creating a new record type.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.5 Stateful collections 443

fun {NewExtensibleArray L H Init}
A={NewCell {NewArray L H Init}}#Init
proc {CheckOverflow I}

Arr=@(A.1)
Low={Array.low Arr}
High={Array.high Arr}

in
if I>High then

High2=Low+{Max I 2*(High-Low)}
Arr2={NewArray Low High2 A.2}

in
for K in Low..High do Arr2.K:=Arr.K end
(A.1):=Arr2

end
end
proc {Put I X}

{CheckOverflow I}
@(A.1).I:=X

end
fun {Get I}

{CheckOverflow I}
@(A.1).I

end
in extArray(get:Get put:Put)
end

Figure 6.5: Extensible array (stateful implementation)

Streams are useful for representing ordered sequences of messages. This is an
especially appropriate representation since the message receiver will automatically
synchronize on the arrival of new messages. This is the basis of a powerful
declarative programming style called stream programming (see Chapter 4) and
its generalization to message passing (see Chapter 5).

Extensible arrays

Up to now we have seen two extensible collections: streams and dictionaries.
Streams are efficiently extensible but elements cannot be accessed efficiently (lin-
ear search is needed). Dictionaries are more costly to extend (but only by a
constant factor) and they can be accessed in constant time. A third extensible
collection is the extensible array. This is an array that is resized upon overflow.
It has the advantages of constant-time access and significantly less memory us-
age than dictionaries (by a constant factor). The resize operation is amortized
constant time, since it is only done when an index is encountered that is greater
than the current size.

Extensible arrays are not provided as a predefined type by Mozart. We can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

444 Explicit State

implement them using standard arrays and cells. Figure 6.5 shows one possible
version, which allows an array to increase in size but not decrease. The call
{NewExtensibleArray L H X} returns a secure extensible array A with initial
bounds L and Hand initial content X. The operation {A.put I X} puts X at index
I . The operation {A.get I} returns the content at index I . Both operations
extend the array whenever they encounter an index that is out of bounds. The
resize operation always at least doubles the array’s size. This guarantees that
the amortized cost of the resize operation is constant. For increased efficiency,
one could add “unsafe” put and get operations that do no bounds checking. In
that case, the responsibility would be on the programmer to ensure that indices
remain in bounds.

6.6 Reasoning with state

Programs that use state in a haphazard way are very difficult to understand.
For example, if the state is visible throughout the whole program then it can be
assigned anywhere. The only way to reason is to consider the whole program
at once. Practically speaking, this is impossible for big programs. This section
introduces a method, called invariant assertions, which allows to tame state. We
show how to use the method for programs that have both stateful and declarative
parts. The declarative part appears as logical expressions inside the assertions.
We also explain the role of abstraction (deriving new proof rules for linguistic
abstractions) and how to take dataflow execution into account.

The technique of invariant assertions is usually called axiomatic semantics,
following Floyd, Hoare, and Dijkstra, who initially developed it in the 1960’s and
1970’s. The correctness rules were called “axioms” and the terminology has stuck
ever since. Manna gave an early but still interesting presentation [118].

6.6.1 Invariant assertions

The method of invariant assertions allows to reason independently about parts of
programs. This gets back one of the strongest properties of declarative program-
ming. However, this property is achieved at the price of a rigorous organization of
the program. The basic idea is to organize the program as a hierarchy of ADTs.
Each ADT can use other ADTs in its implementation. This gives a directed
graph of ADTs.

A hierarchical organization of the program is good for more than just reason-
ing. We will see it many times in the book. We find it again in the component-
based programming of Section 6.7 and the object-oriented programming of Chap-
ter 7.

Each ADT is specified with a series of invariant assertions, also called invari-
ants. An invariant is a logical sentence that defines a relation among the ADT’s
arguments and its internal state. Each operation of the ADT assumes that some

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.6 Reasoning with state 445

invariant is true and, when it completes, assures the truth of another invariant.
The operation’s implementation guarantees this. In this way, using invariants
decouples an ADT’s implementation from its use. We can reason about each
separately.

To realize this idea, we use the concept of assertion. An assertion is a logical
sentence that is attached to a given point in the program, between two instruc-
tions. An assertion can be considered as a kind of boolean expression (we will see
later exactly how it differs from boolean expressions in the computation model).
Assertions can contain variable and cell identifiers from the program as well as
variables and quantifiers that do not occur in the program, but are used just for
expressing a particular relation. For now, consider a quantifier as a symbol, such
as ∀ (“for all”) and ∃ (“there exists”), that is used to express assertions that hold
true over all values of variables in a domain, not just for one value.

Each operation Oi of the ADT is specified by giving two assertions Ai and Bi.
The specification states that, if Ai is true just before Oi, then when Oi completes
Bi will be true. We denote this by:

{ Ai } Oi { Bi }
This specification is sometimes called a partial correctness assertion. It is partial
because it is only valid if Oi terminates normally. Ai is called the precondition
and Bi is called the postcondition. The specification of the complete ADT then
consists of partial correctness assertions for each of its operations.

6.6.2 An example

Now that we have some inkling of how to proceed, let us give an example of how
to specify a simple ADT and prove it correct. We use the stateful stack ADT we
introduced before. To keep the presentation simple, we will introduce the notation
we need gradually during the example. The notation is not complicated; it is just
a way of writing boolean expressions that allows us to express what we need to.
Section 6.6.3 defines the notation precisely.

Specifying an ADT

We begin by specifying the ADT independent of its implementation. The first
operation creates a stateful bundled instance of a stack:

Stack={NewStack}

The function NewStack creates a new cell c, which is hidden inside the stack by
lexical scoping. It returns a record of three operations, Push , Pop, and IsEmpty ,
which is bound to Stack . So we can say that the following is a specification of
NewStack :

{ true }
Stack={NewStack}
{ @c = nil ∧ Stack = ops(push:Push pop:Pop isEmpty:IsEmpty) }

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

446 Explicit State

The precondition is true , which means that there are no special conditions. The
notation @c denotes the content of the cell c.

This specification is incomplete since it does not define what the references
Push , Pop, and IsEmpty mean. Let us define each of them separately. We start
with Push . Executing {Stack.push X} is an operation that pushes X on the
stack. We specify this as follows:

{ @c = S }
{Stack.push X}
{ @c = X|S }

The specifications of NewStack and Stack.push both mention the internal cell
c. This is reasonable when proving correctness of the stack, but is not reasonable
when using the stack, since we want the internal representation to be hidden. We
can avoid this by introducing a predicate stackContent with following definition:

stackContent(Stack , S) ≡ @c = S

where c is the internal cell corresponding to Stack . This hides any mention of the
internal cell from programs using the stack. Then the specifications of NewStack

and Stack.push become:

{ true }
Stack={NewStack}
{ stackContent(Stack , nil) ∧

Stack = ops(push:Push pop:Pop isEmpty:IsEmpty) }

{ stackContent(Stack , S) }
{Stack.push X}
{ stackContent(Stack , X|S) }

We continue with the specifications of Stack.pop and Stack.isEmpty :

{ stackContent(Stack , X|S) }
Y={Stack.pop}
{ stackContent(Stack , S) ∧ Y = X }

{ stackContent(Stack , S) }
X={Stack.isEmpty}
{ stackContent(Stack , S) ∧ X = (S==nil) }

The full specification of the stack consists of these four partial correctness asser-
tions. These assertions do not say what happens if a stack operation raises an
exception. We will discuss this later.

Proving an ADT correct

The specification we gave above is how the stack should behave. But does our
implementation actually behave in this way? To verify this, we have to check
whether each partial correctness assertion is correct for our implementation. Here

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.6 Reasoning with state 447

is the implementation (to make things easier, we have unnested the nested state-
ments):

fun {NewStack}
C={NewCell nil}
proc {Push X} S in S=@C C:=X|S end
fun {Pop} S1 in

S1=@C
case S1 of X|S then C:=S X end

end
fun {IsEmpty} S in S=@C S==nil end

in
ops(push:Push pop:Pop isEmpty:IsEmpty)

end

With respect to this implementation, we have to verify each of the four partial
correctness assertions that make up the specification of the stack. Let us focus
on the specification of the Push operation. We leave the other three verifications
up to the reader. The definition of Push is:

proc {Push X}
S in

S=@C
C:=X|S

end

The precondition is { stackContent(Stack , s) }, which we expand to { @C= s },
where C refers to the stack’s internal cell. This means we have to prove:

{ @C= s }
S=@C
C:=X|S
{ @C= X| s }

The stack ADT uses the cell ADT in its implementation. To continue the proof,
we therefore need to know the specifications of the cell operations @and := . The
specification of @is:

{ P }
〈y〉 = @〈x〉
{ P ∧ 〈y〉 = @〈x〉 }

where 〈y〉 is an identifier, 〈x〉 is an identifier bound to a cell, and P is an assertion.
The specification of := is:

{ P (〈exp〉) }
〈x〉:= 〈exp〉
{ P (@〈x〉) }

where 〈x〉 is an identifier bound to a cell, P (@〈x〉) is an assertion that contains @〈x〉,
and 〈exp〉 is an expression that is allowed in an assertion. These specifications
are also called proof rules, since they are used as building blocks in a correctness

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

448 Explicit State

proof. When we apply each rule we are free to choose 〈x〉, 〈y〉, P , and 〈exp〉 to
be what we need.

Let us apply the proof rules to the definition of Push . We start with the
assignment statement and work our way backwards: given the postcondition, we
determine the precondition. (With assignment, it is often easier to reason in the
backwards direction.) In our case, the postcondition is @C= X| s. Matching this
to P (@〈x〉), we see that 〈x〉 is the cell C and P (@C) ≡ @C= X| s. Using the rule
for := , we replace @Cby X|S , giving X|S = X| s as the precondition.

Now let us reason forwards from the cell access. The precondition is @C= s.
From the proof rule, we see that the postcondition is (@C= s∧S = @C). Bringing
the two parts together gives:

{ @C= s }
S=@C
{ @C= s ∧ S = @C}
{ X|S = X| s }
C:=X|S
{ @C= X| s }

This is a valid proof because of two reasons. First, it strictly respects the proof
rules for @and := . Second, (@C= s ∧ S = @C) implies (X|S = X| s).

6.6.3 Assertions

An assertion 〈ass〉 is a boolean expression that is attached to a particular place in
a program, which we call a program point. The boolean expression is very similar
to boolean expressions in the computation model. There are some differences
because assertions are mathematical expressions used for reasoning, not program
fragments. An assertion can contain identifiers 〈x〉, partial values x, and cell
contents @〈x〉 (with the operator @). For example, we used the assertion @C= X| s
when reasoning about the stack ADT. An assertion can also contain quantifiers
and their dummy variables. Finally, it can contain mathematical functions. These
can correspond directly to functions written in the declarative model.

To evaluate an assertion it has to be attached to a program point. Program
points are characterized by the environment that exists there. Evaluating an as-
sertion at a program point means evaluating using this environment. We assume
that all dataflow variables are sufficiently bound so that the evaluation gives true

or false .
We use the notations ∧ for logical conjunction (and), ∨ for logical disjunction

(or), and ¬ for logical negation (not). We use the quantifiers for all (∀) and there
exists (∃):

∀x.〈type〉: 〈ass〉 〈ass〉 is true when x has any value of type 〈type〉.
∃x.〈type〉: 〈ass〉 〈ass〉 is true for at least one value x of type 〈type〉.

In each of these quantified expressions, 〈type〉 is a legal type of the declarative
model as defined in Section 2.3.2.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.6 Reasoning with state 449

The reasoning techniques we introduce here can be used in all stateful lan-
guages. In many of these languages, e.g., C++ and Java, it is clear from the
declaration whether an identifier refers to a mutable variable (a cell or attribute)
or a value (i.e., a constant). Since there is no ambiguity, the @symbol can safely
be left out for them. In our model, we keep the @because we can distinguish
between the name of a cell (C) and its content (@C).

6.6.4 Proof rules

For each statement S in the kernel language, we have a proof rule that shows all
possible correct forms of { A } S { B }. This proof rule is just a specification of
S. We can prove the correctness of the rule by using the semantics. Let us see
what the rules are for the stateful kernel language.

Binding

We have already shown one rule for binding, in the case 〈y〉 = @〈x〉, where the
right-hand side is the content of a cell. The general form of a binding is 〈x〉 =
〈exp〉, where 〈exp〉 is a declarative expression that evaluates to a partial value.
The expression may contain cell accesses (calls to @). This gives the following
proof rule:

{ P }
〈x〉 = 〈exp〉
{ P ∧ 〈x〉 = 〈exp〉 }

where P is an assertion.

Assignment

The following proof rule holds for assignment:

{ P (〈exp〉) }
〈x〉:= 〈exp〉
{ P (@〈x〉) }

where 〈x〉 refers to a cell, P (@〈x〉) is an assertion that contains @〈x〉, and 〈exp〉 is
a declarative expression.

Conditional (if statement)

The if statement has the form:

if 〈x〉 then 〈stmt〉1 else 〈stmt〉2 end

The behavior depends on whether 〈x〉 is bound to true or false . If we know:

{ P ∧ 〈x〉 = true } 〈stmt〉1 { Q }

and also:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

450 Explicit State

{ P ∧ 〈x〉 = false } 〈stmt〉2 { Q }

then we can conclude:

{ P } if 〈x〉 then 〈stmt〉1 else 〈stmt〉2 end { Q }.

Here P and Q are assertions and 〈stmt〉1 and 〈stmt〉2 are statements in the kernel
language. We summarize this rule with the following notation:

{ P ∧ 〈x〉 = true } 〈stmt〉1 { Q }
{ P ∧ 〈x〉 = false } 〈stmt〉2 { Q }

{ P } if 〈x〉 then 〈stmt〉1 else 〈stmt〉2 end { Q }

In this notation, the premises are above the horizontal line and the conclusion is
below it. To use the rule, we first have to prove the premises.

Procedure without external references

Assume the procedure has the following form:

proc { 〈p〉 〈x〉1 ... 〈x〉n}
〈stmt〉

end

where the only external references of 〈stmt〉 are {〈x〉1, ..., 〈x〉n}. Then the follow-
ing rule holds:

{ P (〈x〉) } 〈stmt〉 { Q(〈x〉) }

{ P (〈y〉) } { 〈p〉 〈y〉1 ... 〈y〉n } { Q(〈y〉) }

where P and Q are assertions and the notation 〈x〉 means 〈x〉1, ..., 〈x〉n.

Procedure with external references

Assume the procedure has the following form:

proc { 〈p〉 〈x〉1 ... 〈x〉n}
〈stmt〉

end

where the external references of 〈stmt〉 are {〈x〉1, ..., 〈x〉n, 〈z〉1, ..., 〈z〉k}. Then
the following rule holds:

{ P (〈x〉, 〈z〉) } 〈stmt〉 { Q(〈x〉, 〈z〉) }

{ P (〈y〉, 〈z〉) } { 〈p〉 〈y〉1 ... 〈y〉n } { Q(〈y〉, 〈z〉) }

where P and Q are assertions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.6 Reasoning with state 451

While loops

The previous rules are sufficient to reason about programs that use recursion to
do looping. For stateful loops it is convenient to add another basic operation: the
while loop. Since we can define the while loop in terms of the kernel language,
it does not add any new expressiveness. Let us therefore define the while loop
as a linguistic abstraction. We introduce the new syntax:

while 〈expr〉 do 〈stmt〉 end

We define the semantics of the while loop by translating it into simpler opera-
tions:

{While fun {$} 〈expr〉 end proc {$} 〈stmt〉 end }

proc {While Expr Stmt}
if {Expr} then {Stmt} {While Expr Stmt} end

end

Let us add a proof rule specifically for the while loop:

{ P ∧ 〈expr〉 } 〈stmt〉 { P }

{ P } while 〈expr〉 do 〈stmt〉 end { P ∧ ¬〈expr〉 }
We can prove that the rule is correct by using the definition of the while loop
and the method of invariant assertions. It is usually easier to use this rule than
to reason directly with recursive procedures.

For loops

In Section 3.6.3 we saw another loop construct, the for loop. In its simplest
form, this loops over integers:

for 〈x〉 in 〈y〉.. 〈z〉 do 〈stmt〉 end

This is also a linguistic abstraction, which we define as follows:

{For 〈y〉 〈z〉 proc {$ 〈x〉} 〈stmt〉 end }

proc {For I H Stmt}
if I=<H then {Stmt I} {For I+1 H Stmt} else skip end

end

We add a proof rule specifically for the for loop:

∀i.〈y〉 ≤ i ≤ 〈z〉 : { Pi−1 ∧ 〈x〉 = i } 〈stmt〉 { Pi }

{ P〈y〉−1
} for 〈x〉 in 〈y〉.. 〈z〉 do 〈stmt〉 end { P〈z〉 }

Watch out for the initial index of P ! Because a for loop starts with 〈y〉, the
initial index of P has to be 〈y〉 − 1, which expresses that we have not yet started
the loop. Just like for the while loop, we can prove that this rule is correct by
using the definition of the for loop. Let us see how this rule works with a simple
example. Consider the following code which sums the elements of an array:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

452 Explicit State

local C={NewCell 0} in
for I in 1..10 do C:=@C+A.I end

end

where A is an array with indices from 1 to 10. Let us choose an invariant:

Pi ≡ @C=
∑i

j=1 Aj

where Aj is the j-th element of A. This invariant simply defines an intermediate
result of the loop calculation. With this invariant we can prove the premise of
the for rule:

{ @C=
∑i−1

j=1 Aj ∧ I = i }
C:=@C+A.I
{ @C=

∑i
j=1 Aj }

This follows immediately from the assignment rule. Since P0 is clearly true just
before the loop, it follows from the for rule that P10 is true. Therefore C contains
the sum of all array elements.

Reasoning at higher levels of abstraction

The while and for loops are examples of reasoning at a higher level of ab-
straction than the kernel language. For each loop, we defined the syntax and its
translation into the kernel language, and then gave a proof rule. The idea is to
verify the proof rule once and for all and then to use it as often as we like. This
approach, defining new concepts and their proof rules, is the way to go for prac-
tical reasoning about stateful programs. Always staying at the kernel language
level is much too verbose for all but toy programs.

Aliasing

The proof rules given above are correct if there is no aliasing. They need to
be modified in obvious ways if aliasing can occur. For example, assume that C

and D both reference the same cell and consider the assignment C:=@C+1. Say
the postcondition is @C= 5 ∧@D= 5 ∧ C = D. The standard proof rule lets us
calculate the precondition by replacing @Cby @C+ 1. This gives an incorrect
result because it does not take into account that D is aliased to C. The proof rule
can be corrected by doing the replacement for @Das well.

6.6.5 Normal termination

Partial correctness reasoning does not say anything about whether or not a pro-
gram terminates normally. It just says, if a program terminates normally, then
such and such is true. This makes reasoning simple, but it is only part of the
story. We also have to prove termination. There are three ways that a program
can fail to terminate normally:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 453

• Execution goes into an infinite loop. This is a programmer error due to the
calculation not making progress towards its goal.

• Execution blocks because a dataflow variable is not sufficiently bound inside
an operation. This is a programmer error due to overlooking a calculation
or a deadlock situation.

• Execution raises an exception because of an error. The exception is an
abnormal exit. In this section we consider only one kind of error, a type
error, but similar reasoning can be done for other kinds of errors.

Let us see how to handle each case.

Progress reasoning

Each time there is a loop, there is the danger that it will not terminate. To
show that a loop terminates, it suffices to show that there is a function that is
nonnegative and that always decreases upon successive iterations.

Suspension reasoning

It suffices to show that all variables are sufficiently bound before they are used.
For each use of the variable, tracing back all possible execution paths should
always come across a binding.

Type checking

To show that there are no type errors, it suffices to show that all variables are of
the correct type. This is called type checking. Other kinds of errors need other
kinds of checking.

6.7 Program design in the large

“Good software is good in the large and in the small, in its high-level
architecture and in its low-level details.”
– Object-oriented software construction, 2nd ed., Bertrand Meyer
(1997)

“An efficient and a successful administration manifests itself equally
in small as in great matters.”
– Memorandum, August 8, 1943, Winston Churchill (1874–1965)

Programming in the large is programming by a team of people. It involves
all aspects of software development that require communication and coordination
between people. Managing a team so they work together efficiently is difficult
in any area–witness the difficulty of training football teams. For programming,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

454 Explicit State

it is especially difficult since programs are generally quite unforgiving of small
errors. Programs demand an exactness which is hard for human beings to satisfy.
Programming in the large is often called software engineering.

This section builds on Section 3.9’s introduction to programming in the small.
We explain how to develop software in small teams. We do not explain what to
do for larger teams (with hundreds or thousands of members)–that is the topic
of another book.

6.7.1 Design methodology

Many things both true and false have been said about the correct design method-
ology for programming in the large. Much of the existing literature consists of
extrapolation based on limited experiments, since rigorous validation is so diffi-
cult. To validate a new idea, several otherwise identical teams would have to work
in identical circumstances. This has rarely been done and we do not attempt it
either.

This section summarizes the lessons we have learned from our own systems-
building experience. We have designed and built several large software sys-
tems [198, 29, 129]. We have thought quite a bit about how to do good program
design in a team and looked at how other successful developer teams work. We
try to isolate the truly useful principles from the others.

Managing the team

The first and most important task is to make sure that the team works together
in a coordinated fashion. There are three ideas for achieving this:

• Compartmentalize the responsibility of each person. For example, each com-
ponent can be assigned to one person, who is responsible for it. We find that
responsibilities should respect component boundaries and not overlap. This
avoids interminable discussions about who should have fixed a problem.

• In contrast to responsibility, knowledge should be freely exchanged, not com-
partmentalized. Team members should frequently exchange information
about different parts of the system. Ideally, there should be no team
member who is indispensable. All major changes to the system should
be discussed among knowledgeable team members before being implement-
ed. This greatly improves the system’s quality. It is important also that
a component’s owner have the last word on how the component should be
changed. Junior team members should be apprenticed to more senior mem-
bers to learn about the system. Junior members become experienced by
being given specific tasks to do, which they do in as independent a fashion
as possible. This is important for the system’s longevity.

• Carefully document each component interface, since it is also the interface
between the component’s owner and other team members. Documentation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 455

is especially important, much more so than for programming in the small.
A good documentation is a pillar of stability that can be consulted by all
team members.

Development methodology

There are many ways to organize software development. The techniques of top-
down, bottom-up, and even “middle-out” development have been much discussed.
None of these techniques is really satisfactory, and combining them does not help
much. The main problem is that they all rely on the system’s requirements and
specification to be fairly complete to start with, i.e., that the designers anticipated
most of the functional and non-functional requirements. Unless the system is
very well understood, this is almost impossible to achieve. In our experience, an
approach that works well is the thin-to-thick approach:

• Start with a small set of requirements, which is a subset of the complete set,
and build a complete system that satisfies them. The system specification
and architecture are “empty shells”: they are just complete enough so that
a running program can be built, but they do not solve the user problems.

• Then continuously extend the requirements, extending the other layers as
needed to satisfy them. Using an organic metaphor, we say the application
is “grown” or “evolved”. This is sometimes called an evolutionary approach.
At all times, there is a running system that satisfies its specification and
that can be evaluated by its potential users.

• Do not optimize during the development process. That is, do not make the
design more complex just to increase performance. Use simple algorithms
with acceptable complexity and keep a simple design with the right abstrac-
tions. Do not worry about the overhead of these abstractions. Performance
optimization can be done near the end of development, but only if there are
performance problems. Profiling should then be used to find those parts of
the system (usually very small) that should be rewritten.

• Reorganize the design as necessary during development, to keep a good
component organization. Components should encapsulate design decisions
or implement common abstractions. This reorganization is sometimes called
“refactoring”. There is a spectrum between the extremes of completely
planning a design and completely relying on refactoring. The best approach
is somewhere in the middle.

The thin-to-thick approach has many advantages:

• Bugs of all sizes are detected early and can be fixed quickly.

• Deadline pressure is much relieved, since there is always a working applica-
tion.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

456 Explicit State

world
External

(with internal structure)
Component instance

Interface

Figure 6.6: A system structured as a hierarchical graph

• Developers are more motivated, because they have quick feedback on their
efforts.

• Users are more likely to get what they really need, because they have a
chance to use the application during the development process.

• The architecture is more likely to be good, since it can be corrected early
on.

• The user interface is more likely to be good, since it is continuously improved
during the development process.

For most systems, even very small ones, we find that it is almost impossible to
determine in advance what the real requirements are, what a good architecture
is to implement them, and what the user interface should be. The thin-to-thick
approach works well partly because it makes very few assumptions up front. For
a complementary view, we recommend studying extreme programming, which is
another approach that emphasizes the trade-off between planning and refactor-
ing [185].

6.7.2 Hierarchical system structure

How should the system be structured to support teamwork and thin-to-thick de-
velopment? One way that works in practice is to structure the application as
a hierarchical graph with well-defined interfaces at each level (see Figure 6.6).
That is, the application consists of a set of nodes where each node interacts with
some other nodes. Each node is a component instance. Each node is itself a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 457

small application, and can itself be decomposed into a graph. The decomposi-
tion bottoms out when we reach primitive components that are provided by the
underlying system.

Component connection

The first task when building the system is to connect the components together.
This has both a static and a dynamic aspect:

• Static structure. This consists of the component graph that is known
when the application is designed. These components can be linked as soon
as the application starts up. Each component instance corresponds roughly
to a bundle of functionality that is sometimes known as a library or a
package. For efficiency, we would like each component instance to exist
at most once in the system. If a library is needed by different parts of
the application, then we want the instances to share this same library.
For example, a component may implement a graphics package; the whole
application can get by with just one instance.

• Dynamic structure. Often, an application will do calculations with com-
ponents at run time. It may want to link new components, which are known
only at run time. Or it may want to calculate a new component and store
it. Component instances need not be shared; perhaps several instances
of a component are needed. For example, a component may implement a
database interface. Depending on whether there are one or more external
databases, one or more instances of the component should be loaded. This
is determined at run time, whenever a database is added.

Figure 6.7 shows the resulting structure of the application, with some components
linked statically and others linked dynamically.

Static structure To support the static structure, it is useful to make compo-
nents into compilation units stored in files. We call these components functors
and their instances modules. A functor is a component that can be stored in a
file. It is a compilation unit because the file can be compiled independently of
other functors. The functor’s dependencies are given as filenames. In order to
be accessible by other functors, the functor must be stored in a file. This allows
other functors to specify that they need it by giving the filename.

A functor has two representations: a source form, which is just a text, and a
compiled form, which is a value in the language. If the source form is in a file
foo.oz, whose entire content is of the form functor ... end , then it can be
compiled to give another file, foo.ozf, that contains the compiled form. The
content of file foo.oz looks like this:

functor
import OtherComp1 at File1

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

458 Explicit State

Sharing boundary

Dependency

Component instance

Static application structure

Dynamic structure Dynamic structure
(call to Module.apply)

Figure 6.7: System structure – static and dynamic

OtherComp2 at File2
...
OtherCompN at FileN

export op1:X1 op2:X2 ... opK:Xk
define

% Define X1, ..., Xk
...

end

This component depends on the other components OtherComp1 , ..., OtherCompN ,
stored respectively in files File1 , ..., FileN . It defines a module with fields op1 ,
..., opK, referenced by X1, ..., Xk and defined in the functor body.

An application is just one compiled functor. To run the application, all the
other compiled functors that it needs, directly or indirectly, must be brought
together and instantiated. When the application is run, it loads its components
and links them. Linking a component means to evaluate it with its imported
modules as arguments and to give the result to the modules that need it. Linking
can be done when the application starts up (static linking), or by need, i.e., one by
one as they are needed (dynamic linking). We have found that dynamic linking is
usually preferable, as long as all the compiled functors are quickly accessible (e.g.,
exist on the local system). With this default the application starts up quickly
and it takes up only as much memory space as it needs.

Dynamic structure In terms of the language, a functor is just another lan-
guage entity. If a program contains a statement of the form X=functor ...

end then X will be bound to the functor value. Like a procedure, the functor

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 459

may have external references. Instantiating a functor gives a module, which is
the set of language entities created by initializing the functor. An interface is a
record giving the externally-visible language entities of the module. In a conve-
nient abuse of notation, this record is sometimes called the module. There exists
a single operation to instantiate functors:

• Ms={Module.apply Fs} . Given a list Fs of functors (as language entities),
this instantiates all the functors and creates a list Ms of modules. Within
the scope of a Module.apply call, functors are shared. That is, if the same
functor is mentioned more than once, then it is only linked once.

Each call to Module.apply results in a new, fresh set of modules. This operation
is part of the module Module . If the functor is stored in a file it must be loaded
first before calling Module.apply .

Component communication

Once the components are connected together, they have to communicate with
each other. Here are six of the most popular protocols for component communi-
cation. We give them in increasing order of component independence:

1. Procedure. The first organization is where the application is sequential
and where one component calls the other like a procedure. The caller is not
necessarily the only initiator; there can be nested calls where the locus of
control passes back and forth between components. But there is only one
global locus of control, which strongly ties together the two components.

2. Coroutine. A second organization is where two components each evolve
independently, but still in a sequential setting. This introduces the concept
of a coroutine (see Section 4.4.2). A component calls another, which contin-
ues where it left off. There are several loci of control, one for each coroutine.
This organization is looser than the previous one, but the components are
still dependent because they execute in alternation.

3. Concurrent and synchronous. A third organization is one in which each
component evolves independently of the others and can initiate and termi-
nate communications with another component, according to some protocol
that both components agree on. The components execute concurrently.
There are several loci of control, called threads, which evolve independently
(see Chapters 4 and 8). Each component still calls the others synchronously,
i.e., each call waits for a response.

4. Concurrent and asynchronous. A fourth organization is a set of concur-
rent components that communicate through asynchronous channels. Each
component sends messages to others, but does not have to wait for a re-
sponse. The channels can have FIFO order (messages received in order of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

460 Explicit State

sending) or be unordered. The channels are called streams in Chapter 4
and ports in Chapter 8. In this organization each component still knows
the identity of the component with which it communicates.

5. Concurrent mailbox. A fifth organization is a variation of the fourth.
The asynchronous channels behave like mailboxes. That is, it is possible to
do pattern matching to extract messages from the channels, without dis-
turbing the messages that remain. This is very useful for many concurrent
programs. It is a basic operation in the Erlang language, which has FIFO
mailboxes (see Chapter 5). Unordered mailboxes are also possible.

6. Coordination model. A sixth organization is where the components can
communicate without the senders and receivers knowing each other’s iden-
tities. An abstraction called tuple space lives at the interface. The compo-
nents are concurrent and interact solely through the common tuple space.
One component can insert a message asynchronously and another can re-
trieve the message. Section 8.3.2 defines one form of tuple space abstraction
and shows how to implement it.

The model independence principle

Each component of the system is written in a particular computation model.
Section 4.7.6 has summarized the most popular computation models used to
program components. During development, a component’s internal structure may
change drastically. It is not uncommon for its computation model to change. A
stateless component can become stateful (or concurrent, or distributed, etc.), or
vice versa. If such a change happens inside a component, then it is not necessary
to change its interface. The interface needs to change only if the externally-
visible functionality of the component changes. This is an important modularity
property of the computation models. As long as the interface is the same, this
property guarantees that it is not necessary to change anything else in the rest
of the system. We consider this property as a basic design principle for the
computation models:

Model independence principle

The interface of a component should be independent of
the computation model used to implement the compo-
nent. The interface should depend only on the externally-
visible functionality of the component.

A good example of this principle is memoization. Assume the component is a
function that calculates its result based on one argument. If the calculation is
time consuming, then keeping a cache of argument-result pairs can greatly reduce
the execution time. When the function is called, check whether the argument is
in the cache. If so, return the result directly without doing the calculation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 461

If not, do the calculation and add the new argument-result pair to the cache.
Section 10.3.2 has an example of memoization. Since the memoization cache is
stateful, changing a component to do memoization means that the component
may change from using the declarative model to using the stateful model. The
model independence principle implies that this can be done without changing
anything else in the program.

Efficient compilation versus efficient execution

A component is a compilation unit. We would like to compile a component
as quickly and efficiently as possible. This means we would like to compile a
component separately, i.e., without knowing about other components. We would
also like the final program, in which all components are assembled, to be as
efficient and compact as possible. This means we would like to do compile-time
analysis, e.g., type checking, Haskell-style type inference, or global optimization.

There is a strong tension between these two desires. If the compilation is
truly separate then analysis cannot cross component boundaries. To do a truly
global analysis, the compiler must in general be able to look at the whole program
at once. This means that for many statically-typed languages, compiling large
programs (more than, say, a million lines of source code) requires much time and
memory.

There are many clever techniques that try to get the best of both worlds.
Ideally, these techniques should not make the compiler too complicated. This is
a difficult problem. After five decades of experience in language and compiler
design, it is still an active research topic.

Commercial-quality systems span the whole spectrum from completely sepa-
rate compilation to sophisticated global analysis. Practical application develop-
ment can be done at any point of the spectrum. The Mozart system is at one
extreme of the spectrum. Since it is dynamically typed, components can be com-
piled without knowing anything about each other. This means that compilation
is completely scalable: compiling a component takes the same time, independent
of whether it is used in a million-line program or in a thousand-line program. On
the other hand, there are disadvantages: less optimization is possible and type
mismatches can only be detected at run-time. Whether or not these issues are
critical depends on the application and the experience of the developer.

6.7.3 Maintainability

Once the system is built and works well, we have to make sure that it keeps
working well. The process of keeping a system working well after it is deployed is
called maintenance. What is the best way to structure systems so they are main-
tainable? From our experience, here are some of the most important principles.
We look at this from the viewpoint of single components and from the viewpoint
of the system.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

462 Explicit State

Component design

There are good ways and bad ways to design components. A bad way is to make
a flowchart and carve it up into pieces, where each piece is a component. Much
better is to think of a component as an abstraction. For example, assume that
we are writing a program that uses lists. Then it is almost always a good idea
to gather all list operations into a component, which defines the list abstraction.
With this design, lists can be implemented, debugged, changed, and extended
without touching the rest of the program. For example, say we want to use the
program with lists that are too big for main memory. It is enough to change the
list component to store them on files instead of in main memory.

Encapsulate design decisions More generally, we can say that a component
should encapsulate a design decision.6 That way, when the design decision is
changed, only that component has to be changed. This a very powerful form
of modularity. The usefulness of a component can be evaluated by seeing what
changes it accommodates. For example, consider a program that calculates with
characters, such as the word frequency example of Section 3.9.4. Ideally, the
decision which character format to use (for example, ASCII, Latin-1, or Unicode)
should be encapsulated in one component. This makes it simple to change from
one format to another.

Avoid changing component interfaces A component can be changed by
changing its implementation or by changing its interface. Changing the interface
is problematic since all components that depend on the changed interface have to
be rewritten or recompiled. Therefore, changing the interface should be avoided.
But in practice, interface changes cannot be avoided during the design of a com-
ponent. All we can do is minimize their frequency. To be precise, the interfaces
of often-needed components should be designed as carefully as possible from the
start.

Let us give a simple example to make this clear. Consider a component
that sorts lists of character strings. It can change its sorting algorithm without
changing its interface. This can often be done without recompiling the rest of
the program, simply by linking in the new component. On the other hand,
if the character format is changed then the component might require a different
interface. For example, characters can change size from one to two bytes (if ASCII
is replaced with Unicode). This requires recompiling all the components that use
the changed component (directly or indirectly), since the compiled code may
depend on the character format. Recompilation can be onerous; changing a 10-
line component might require recompiling most of the program, if the component
is used often.

6More romantically, it is sometimes said that the component has a “secret”.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 463

System design

Fewest possible external dependencies A component that depends on an-
other, i.e., it requires the other for its operation, is a source of maintenance
problems. If the other is changed, then the first must be changed as well. This is
a major source of “software rot”, i.e., once-working software that stops working.
For example, LaTeX is a popular document preparation system in the scientific
community that is noted for its high-quality output [108]. A LaTeX document
can have links to other files, to customize and extend its abilities. Some of these
other files, called packages, are fairly standardized and stable. Others are simply
local customizations, called style files. In our experience, it is very bad for LaTeX
documents to have links to style files in other, perhaps global, directories. If these
are changed, then the documents can often no longer be pageset. To aid main-
tenance, it is much preferable to have copies of the style files in each document
directory. This satisfies a simple invariant: each document is guaranteed to be
pagesettable at all times (“working software keeps working”). This invariant is
an enormous advantage that far outweighs the two disadvantages: (1) the extra
memory needed for the copies and (2) the possibility that a document may use
an older style file. If a style file is updated, the programmer is free to use the new
version in the document, but only if necessary. Meanwhile, the document stays
consistent. A second advantage is that it is easy to send the document from one
person to another, since it is self-contained.

Fewest possible levels of indirection This is related to the previous rule.
When A points to B, then updating B requires updating A. Any indirection
is a kind of “pointer”. The idea is to avoid the pointer becoming dangling,
i.e., its destination no longer makes sense to the source. An action at B may
cause A’s pointer to become dangling. B doesn’t know about A’s pointer and so
cannot prevent such a thing. A stop-gap is never to change B, but only to make
modified copies. This can work well if the system does automatic global memory
management.

Two typical examples of problematic pointers are symbolic links in a Unix file
system and URLs. Symbolic links are pernicious for system maintenance. They
are convenient because they can refer to other mounted directory trees, but in fact
they are a big cause of system problems. URLs are known to be extremely flaky.
They are often referenced in printed documents, but their lifetime is usually much
less than that of the document. This is both because they can quickly become
dangling and because the Internet has a low quality of service.

Dependencies should be predictable For example, consider a ‘localize’ com-
mand that is guaranteed to retrieve a file over a network and make a local copy.
It has simple and predictable behavior, unlike the “page caching” done by Web
browsers. Page caching is a misnomer, because a true cache maintains coherence
between the original and the copy. For any such “cache”, the replacement policy

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

464 Explicit State

should be clearly indicated.

Make decisions at the right level For example, time outs are bad. A time
out is an irrevocable decision made at a low level in the system (a deeply-nested
component) that propagates all the way to the top level without any way for the
intermediate components to intervene. This behavior short-circuits any efforts
the application designer may do to mask the problem or solve it.

Documented violations Whenever one of the previous principles is violated,
perhaps for a good reason (e.g., physical constraints such as memory limitations or
geographic separation force a pointer to exist), then this should be documented!
That is, all external dependencies, all levels of indirection, all non-predictable
dependencies, and all irrevocable decisions, should be documented.

Simple bundling hierarchy A system should not be stored in a dispersed
way in a file system, but should be together in one place as much as possible. We
define a simple hierarchy of how to bundle system components. We have found
this hierarchy to be useful for documents as well as applications. The easiest-to-
maintain design is first. For example, if the application is stored in a file system
then we can define the following order:

1. If possible, put the whole application in one file. The file may be structured
in sections, corresponding to components.

2. If the above is not possible (for example, there are files of different types
or different people are to work on different parts simultaneously), then put
the whole application in one directory.

3. If the above is not possible (for example, the application is to be compiled
for multiple platforms), put the application in a directory hierarchy with
one root.

6.7.4 Future developments

Components and the future of programming

The increased use of components is changing the programming profession. We
see two major ways this change is happening. First, components will make pro-
gramming accessible to application users, not just professional developers. Given
a set of components at a high level of abstraction and an intuitive graphical user
interface, a user can do many simple programming tasks by himself or herself.
This tendency has existed for a long time in niche applications such as statistics
packages, signal processing packages, and packages for control of scientific ex-
periments. The tendency will eventually encompass applications for the general
public.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.7 Program design in the large 465

Second, programming will change for professional developers. As more and
more useful components are developed, the granularity of programming will in-
crease. That is, the basic elements used by programmers will more often be large
components instead of fine-grained language operations. This trend is visible in
programming tools such as Visual Basic and in component environments such as
Enterprise Java Beans. The main bottleneck limiting this evolution is the speci-
fication of component behavior. Current components tend to be overcomplicated
and have vague specifications. This limits their possible uses. The solution, in
our view, is to make components simpler, better factorize their functionalities,
and improve how they can be connected together.

Compositional versus noncompositional design

Hierarchical composition may seem like a very natural way to structure a system.
In fact, it’s not “natural” at all! Nature uses a very different approach, which
might be called noncompositional. Let us compare the two. Let us first compare
their component graphs. A component graph is one in which each component is
a node and there is an edge between components if they know of each other. In
a compositional system, the graph is hierarchical. Each component is connected
only to its siblings, its children, and its parents. As a result, the system can
be decomposed in many ways into independent parts, such that the interface
between the parts is small.

In a noncompositional system, the component graph does not have this struc-
ture. The graph tends to be bushy and nonlocal. Bushy means that each com-
ponent is connected to many others. Nonlocal means that each component is
connected to widely different parts of the graph. Decomposing the system into
parts is more arbitrary. The interfaces between the parts tend to be larger. This
makes it harder to understand the components without taking into account their
relation with the rest of the system. One example of a noncompositional graph is
a Small World graph, which has the property that the graph’s diameter is small
(each component is within a few hops of any other component).

Let us see why hierarchical composition is suitable for system design by hu-
mans. The main constraint for humans is the limited size of human short-term
memory. A human being can only keep a small number of concepts in his or her
mind simultaneously. A large design must therefore be chopped up into parts
that is each small enough to be kept in a single individual’s mind. Without ex-
ternal aid, this leads humans to build compositional systems. On the other hand,
design by nature has no such limitation. It works through the principle of natural
selection. New systems are built by combining and modifying existing systems.
Each system is judged as a whole by how well it performs in the natural environ-
ment. The most successful systems are those with the most offspring. Therefore
natural systems tend to be noncompositional.

It seems that each approach, in its pure form, is a kind of extreme. Human
design is goal-oriented and reductionistic. Natural design is exploratory and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

466 Explicit State

y z

x

y z

x

Figure 6.8: A directed graph and its transitive closure

holistic. Is it a meaningful question to try to get the best of both worlds? We
can imagine building tools to let human beings use a more “natural” approach to
system design. In this book, we do not consider this direction further. We focus
on the compositional approach.

6.7.5 Further reading

There are many books on program design and software engineering. We suggest
[150, 154] as general texts and [185] for a view on how to balance design and
refactoring. The Mythical Man-Month by Frederick Brooks dates from 1975 but
is still good reading [25, 26]. Software Fundamentals is a collection of papers by
Dave Parnas that spans his career and is also good reading [144]. The Cathedral
and the Bazaar by Eric Raymond is an interesting account of how to develop
open source software [156].

Component Software: Beyond Object-Oriented Programming

For more information specifically about components, we recommend the book
Component Software: Beyond Object-Oriented Programming by Clemens Szyper-
ski [187]. This book gives an overview of the state-of-the-art in component
technology as of 1997. The book combines a discussion of the fundamentals
of components together with an overview of what exists commercially. The fun-
damentals include the definition of “component”, the concepts of interface and
polymorphism, the difference between inheritance, delegation, and forwarding,
the trade-offs in using composition versus inheritance, and how to connect com-
ponents together. The three main commercial platforms discussed are the OMG
with its CORBA standard, Microsoft with COM and its derivatives DCOM, OLE,
and ActiveX, and Sun with Java and JavaBeans. The book gives a reasonably
well-balanced technical overview of these platforms.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 467

z

yn

x

b

a

...

...

...

Figure 6.9: One step in the transitive closure algorithm

6.8 Case studies

6.8.1 Transitive closure

Calculating the transitive closure is an example of a graph problem that can be
solved reasonably well both with and without state. We define a directed graph
G = (V, E) as a set of nodes (or vertices) V and a set of edges E represented as
pairs (x, y) with x, y ∈ V , such that (x, y) ∈ E iff there is an edge from x to y.
Then we can state the problem as follows:

Consider any directed graph. Calculate a new directed graph, called
the transitive closure, that has an edge between two nodes whenev-
er the original graph has a path (a sequence of one or more edges)
between those same two nodes.

Figure 6.8 shows an example graph and its transitive closure. We start with
an abstract description of an algorithm that is independent of any particular
computation model. Depending on how we represent the graph, this description
will lead naturally to a declarative and a stateful implementation of the algorithm.

The algorithm successively adds edges according to the following strategy: for
each node in the graph, add edges to connect all the node’s predecessors to all
its successors. Let us see how this works on an example. Figure 6.9 shows part
of a directed graph. Here the node n has predecessors a and b and successors x,
y, and z. When the algorithm encounters node n, it adds the six edges a → x,
a → y, a → z, b → x, b → y, and b → z. After the algorithm has treated all
nodes in this fashion, it is finished. We can state this algorithm as follows:

For each node x in the graph G:
for each node y in pred(x, G):

for each node z in succ(x, G):
add the edge (y, z) to G.

We define the function pred(x, G) as the set of predecessor nodes of x, i.e., the
nodes with edges finishing in x, and the function succ(x, G) as the set of successor
nodes of x, i.e., the nodes with edges starting in x.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

468 Explicit State

Why does this algorithm work? Consider any two nodes a and b with a path
between them: a → n1 → n2 → ... → nk → b (where k ≥ 0). We have to
show that the final graph has an edge from a to b. The nodes n1 through nk are
encountered in some order by the algorithm. When the algorithm encounters a
node ni, it “short circuits” the node, i.e., it creates a new path from a to b that
avoids the node. Therefore when the algorithm has encountered all nodes, it has
created a path that avoids all of them, i.e., it has an edge directly from a to b.

Representing a graph

To write up the algorithm as a program, we first have to choose a representation
for directed graphs. Let us consider two possible representations:

• The adjacency list representation. The graph is a list with elements of
the form I#Ns where I identifies a node and Ns is an ordered list of its
immediate successors. As we will see below, ordered lists of successors are
more efficient to calculate with than unordered lists.

• The matrix representation. The graph is a two-dimensional array. The
element with coordinates (I ,J) is true if there is an edge from node I to
node J . Otherwise, the element is false.

We find that the choice of representation strongly influences what is the best
computation model. In what follows, we assume that all graphs have at least
one node and that the nodes are consecutive integers. We first give a declarative
algorithm that uses the adjacency list representation [139]. We then give an in-
place stateful algorithm that uses the matrix representation [41]. We then give
a second declarative algorithm that also uses the matrix representation. Finally,
we compare the three algorithms.

Converting between representations

To make comparing the two algorithms easier, we first define routines to convert
from the adjacency list representation to the matrix representation and vice versa.
Here is the conversion from adjacency list to matrix:

fun {L2M GL}
M={Map GL fun {$ I#_} I end }
L={FoldL M Min M.1}
H={FoldL M Max M.1}
GM={NewArray L H unit }

in
for I#Ns in GL do

GM.I:={NewArray L H false }
for J in Ns do GM.I.J:= true end

end
GM

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 469

fun {DeclTrans G}
Xs={Map G fun {$ X#_} X end }

in
{FoldL Xs

fun {$ InG X}
SX={Succ X InG} in

{Map InG
fun {$ Y#SY}

Y#if {Member X SY} then
{Union SY SX} else SY end

end }
end G}

end

Figure 6.10: Transitive closure (first declarative version)

In this routine, as in all following routines, we use GL for the adjacency list
representation and GMfor the matrix representation. Here is the conversion from
matrix to adjacency list:

fun {M2L GM}
L={Array.low GM}
H={Array.high GM}

in
for I in L..H collect:C do

{C I# for J in L..H collect:D do
if GM.I.J then {D J} end

end }
end

end

This uses the loop syntax including the accumulation procedure collect:C to
good advantage.

Declarative algorithm

We first give a declarative algorithm for transitive closure. The graph is repre-
sented as an adjacency list. The algorithm needs two utility routines, Succ , which
returns the succesor list of a given node, and Union , which calculates the union
of two ordered lists. We develop the algorithm by successive transformation of
the abstract algorithm. This design method is known as stepwise refinement.

The outermost loop in the abstract algorithm transforms the graph in suc-
cessive steps. Our declarative algorithm does the same by using FoldL , which
defines a loop with accumulator. This means we can define the main function
DeclTrans as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

470 Explicit State

fun {DeclTrans G}

Xs={Nodes G} in

{FoldL Xs

fun {$ InG X}

SX={Succ X InG} in

for each node Y in pred(X, InG):
for each node Z in SX:

add edge (Y, Z)
end G}

end

The next step is to implement the two inner loops:

for each node Y in pred(X, InG):
for each node Z in SX:

add edge (Y, Z)

These loops transform one graph into another, by adding edges. Since our graph
is represented by a list, a natural choice is to use Map, which transforms one
list into another. This gives the following code, where Union is used to add the
successor list of X to that of Y:

{Map InG
fun {$ Y#SY}

Y#if “Y in pred(X, InG)” then
{Union SY SX} else SY end

end }

We finish up by noticing that Y is in pred(X, InG) if and only if X is in succ(Y, InG).
This means we can write the if condition as follows:

{Map InG
fun {$ Y#SY}

Y#if {Member X SY} then
{Union SY SX} else SY end

end }

Putting everything together we get the final definition in Figure 6.10. This uses
Map to calculate {Nodes G} . We conclude by remarking that FoldL , Map, and
other routines such as Member, Filter , etc., are basic building blocks that must
be mastered when writing declarative algorithms.

To finish up our presentation of the declarative algorithm, we give the defini-
tions of the two utility routines. Succ returns the list of successors of a node:

fun {Succ X G}
case G of Y#SY|G2 then

if X==Y then SY else {Succ X G2} end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 471

proc {StateTrans GM}
L={Array.low GM}
H={Array.high GM}

in
for K in L..H do

for I in L..H do
if GM.I.K then

for J in L..H do
if GM.K.J then GM.I.J:= true end

end
end

end
end

end

Figure 6.11: Transitive closure (stateful version)

Succ assumes that X is always in the adjacency list, which is true in our case.
Union returns the union of two sets, where all sets are represented as ordered
lists:

fun {Union A B}
case A#B
of nil#B then B
[] A#nil then A
[] (X|A2)#(Y|B2) then

if X==Y then X|{Union A2 B2}
elseif X<Y then X|{Union A2 B}
elseif X>Y then Y|{Union A B2}
end

end
end

Union ’s execution time is proportional to the length of the smallest input list
because its input lists are ordered. If the lists were not ordered, its execution
time would be proportional to the product of their lengths (why?), which is
usually much larger.

Stateful algorithm

We give a stateful algorithm for transitive closure. The graph is represented as
a matrix. This algorithm assumes that the matrix contains the initial graph. It
then calculates the transitive closure in-place, i.e., by updating the input matrix
itself. Figure 6.11 gives the algorithm. For each node K, this looks at each
potential edge (I , J) and adds it if there is both an edge from I to K and from K

to J . We show now the stepwise transformation that leads to this algorithm. We
first restate the abstract algorithm with the proper variable names:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

472 Explicit State

fun {DeclTrans2 GT}
H={Width GT}
fun {Loop K InG}

if K=<H then
G={MakeTuple g H} in

for I in 1..H do
G.I={MakeTuple g H}
for J in 1..H do

G.I.J=InG.I.J orelse (InG.I.K andthen InG.K.J)
end

end
{Loop K+1 G}

else InG end
end

in
{Loop 1 GT}

end

Figure 6.12: Transitive closure (second declarative version)

For each node k in the graph G:
for each node i in pred(k, G):

for each node j in succ(k, G):
add the edge (i, j) to G.

This leads to the following refinement:

proc {StateTrans GM}

L={Array.low GM}

H={Array.high GM}

in

for K in L..H do

for I in L..H do

if GM.I.K then

for each J in succ(K, GM) add GM.I.J:= true

end

end

end

end

We note that J is in succ(K, GM) if GM.K.J is true. This means we can replace
the inner loop by:

for J in L..H do
if GM.K.J then GM.I.J:= true end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 473

Second declarative algorithm

Inspired by the stateful algorithm, we develop a second declarative algorithm.
The second algorithm uses a series of tuples to store the successive approximations
of the transitive closure. We use the variable GT instead of GMto emphasize this
change in representation. A tuple is a record with fields numbered consecutively
from 1 to a maximum value. So this algorithm is restricted to nodes whose
numbering starts from 1. Note that MakeTuple creates a tuple with unbound
variables. Figure 6.12 gives the algorithm.

This is somewhat more complicated than the stateful version. Each iteration
of the outer loop uses the result of the previous iteration (InG) as input to cal-
culate the next iteration (G). The recursive function Loop passes the result from
one iteration to the next. While this may seem a bit complicated, it has the ad-
vantages of the declarative model. For example, it is straightforward to convert
it into a concurrent algorithm for transitive closure using the model of Chapter 4.
The concurrent algorithm can run efficiently on a parallel processor. We just
add thread ... end to parallelize the two outer loops as shown in Figure 6.13.
This gives a parallel dataflow implementation of the algorithm. Synchronization
is done through the tuples which initially contain unbound variables. The tuples
behave like I-structures in a dataflow machine (see Section 4.9.5). It is an inter-
esting exercise to draw a picture of an executing program, with data structures
and threads.

Example executions

Let us calculate the transitive closure of the graph [1#[2 3] 2#[1] 3#nil] .
This is the same graph we showed before in Figure 6.8 except that we use integers
to represent the nodes. Here is how to use the declarative algorithms:

{Browse {DeclTrans [1#[2 3] 2#[1] 3#nil]}}

Here is how to use the stateful algorithm:

declare GM in
{StateTrans GM={L2M [1#[2 3] 2#[1] 3#nil]}}
{Browse {M2L GM}}

This is slightly more complicated because of the calls to L2M and M2L, which we
use to give both the input and output as an adjacency list. All three algorithms
give the result [1#[1 2 3] 2#[1 2 3] 3#nil] .

Discussion

Both the declarative and stateful algorithms are actually variations of the same
conceptual algorithm, which is called the Floyd-Warshall algorithm. All three
algorithms have an asymptotic running time of O(n3) for a graph of n nodes. So
which algorithm is better? Let us explore different aspects of this question:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

474 Explicit State

fun {DeclTrans2 GT}
H={Width GT}
fun {Loop K InG}

if K=<H then
G={MakeTuple g H} in

thread
for I in 1..H do

thread
G.I={MakeTuple g H}
for J in 1..H do

G.I.J=InG.I.J orelse
(InG.I.K andthen InG.K.J)

end
end

end
end
{Loop K+1 G}

else InG end
end

in
{Loop 1 GT}

end

Figure 6.13: Transitive closure (concurrent/parallel version)

• A first aspect is ease of understanding and reasoning. Perhaps surprising-
ly, the stateful algorithm has the simplest structure. It consists of three
simple nested loops that update a matrix in a straightforward way. Both
declarative algorithms have a more complex structure:

– The first one takes an adjacency list and passes it through a sequence
of stages in pipelined fashion. Each stage takes an input list and
incrementally creates an output list.

– The second one has a similar structure as the stateful algorithm, but
creates a sequence of tuples in pipelined fashion.

Programming in the declarative model forces the algorithm to be structured
as a pipeline, written with small, independent components. Programming
in the stateful model encourages (but does not force) the algorithm to be
structured as a monolithic block, which is harder to decompose. The state-
ful model gives more freedom in how to write the program. Depending on
one’s point of view, this can be a good or bad thing.

• A second aspect is performance: running time and memory use. Both
algorithms asymptotically have the same running time and active memory
sizes. We have measured the running times of both algorithms on several

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 475

large random graphs. Given a random graph of 200 nodes in which there is
an edge between any node pair with probability p. For p greater than about
0.05, the first declarative algorithm takes about 10 seconds, the second
about 12 seconds, and the stateful algorithm about 15 seconds. For p
tending to 0, the first declarative algorithm tends towards 0 seconds and the
other algorithms increase slightly, to 16 and 20 seconds, respectively.7 We
conclude that the first declarative algorithm always has better performance
than the two others. The adjacency list representation is better than the
matrix representation when the graph is sparse.

Of course, the conclusions of this particular comparison are by no means defini-
tive. We have chosen simple and clean versions of each style, but many variations
are possible. For example, the first declarative algorithm can be modified to use
a stateful Union operation. The stateful algorithm can be modified to stop loop-
ing when no more new edges are found. What then can we conclude from this
comparison?

• Both the declarative and stateful models are reasonable for implementing
transitive closure.

• The choice of representation (adjacency list or matrix) can be more impor-
tant than the choice of computation model.

• Declarative programs tend to be less readable than stateful programs, be-
cause they must be written in pipelined fashion.

• Stateful programs tend to be more monolithic than declarative programs,
because explicit state can be modified in any order.

• It can be easier to parallelize a declarative program, because there are fewer
dependencies between its parts.

6.8.2 Word frequencies (with stateful dictionary)

In Section 3.7.3 we showed how to use dictionaries to count the number of dif-
ferent words in a text file. We compared the execution times of three versions of
the word frequency counter, each one with a different implementation of dictio-
naries. The first two versions use declarative dictionaries (implemented lists and
binary trees, respectively) and the third uses the built-in definition of dictionaries
(implemented with state). The version using stateful dictionaries, shown in Fig-
ure 6.14, is slightly different from the one using declarative dictionaries, shown
in Figure 3.29:

7All measurements using Mozart 1.1.0 under Red Hat Linux release 6.1 on a Dell Latitude
CPx notebook computer with Pentium III processor at 500 MHz.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

476 Explicit State

fun {WordChar C} ... end

fun {WordToAtom PW} ... end

fun {CharsToWords PW Cs} ... end

Put=Dictionary.put
CondGet=Dictionary.condGet

proc {IncWord D W}
{Put D W {CondGet D W 0}+1}

end

proc {CountWords D Ws}
case Ws
of W|Wr then

{IncWord D W}
{CountWords D Wr}

[] nil then skip
end

end

fun {WordFreq Cs}
D={NewDictionary}

in
{CountWords D {CharsToWords nil Cs}}
D

end

Figure 6.14: Word frequencies (with stateful dictionary)

• The stateful version needs to pass just one argument as input to each pro-
cedure that uses a dictionary.

• The declarative version has to use two arguments to these procedures: one
for the input dictionary and one for the output dictionary. In Figure 3.29,
the second output is realized by using functional notation.

The difference shows up in the operations Put , IncWords , CountWords , and
WordFreq . For example, Figure 6.14 uses the stateful {Put D LI X} , which
updates D. Figure 3.29 uses the declarative {Put D1 LI X D2} , which reads D1

and returns a new dictionary D2.

6.8.3 Generating random numbers

A very useful primitive operation is a random number generator. It lets the
computer “throw dice”, so to speak. How do we generate random numbers in a

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 477

computer? Here we give the main insights; see Knuth [101] for a deep discus-
sion of the theory underlying random number generators and of the concept of
randomness itself.

Different approaches

One could imagine the following ways to generate random numbers:

• A first technique would be to use unpredictable events in the computer
itself, e.g., related to concurrency, as explained in the previous chapter.
Alas, their unpredictability does not follow simple laws. For example, using
the thread scheduler as a source of randomness will give some fluctuations,
but they do not have a useful probability distribution. Furthermore, they
are intimately linked with the computation in nonobvious ways, so even if
their distribution was known, it would be dependent on the computation.
So this is not a good source of random numbers.

• A second technique would be to rely on a source of true randomness. For
example, electronic circuits generate noise, which is a completely unpre-
dictable signal whose approximate probability distribution is known. The
noise comes from the depths of the quantum world, so for all practical pur-
poses it is truly random. But there are two problems. First, the probability
distribution is not exactly known: it might vary slightly from one circuit to
the next or with the ambient temperature. The first problem is not serious;
there are ways to “normalize” the random numbers so that their distribu-
tion is a constant, known one. There is a second, more serious problem:
the randomness cannot be reproduced except by storing the random num-
bers and replaying them. It might seem strange to ask for reproducibility
from a source of randomness, but it is perfectly reasonable. For exam-
ple, the randomness might be input to a simulator. We would like to vary
some parameter in the simulator such that any variation in the simulator
depends only on the parameter, and not on any variation in the random
numbers. For this reason, computers are not usually connected to truly
random sources.

• It might seem that we have carefully worked ourselves into a tight corner.
We would like true randomness and we would like it to be reproducible.
How can we resolve this dilemma? The solution is simple: we calculate
the random numbers. How can this generate truly random numbers? The
simple answer is, it cannot. But the numbers can appear random, for all
practical purposes. They are called pseudorandom numbers. What does this
mean? It is not simple to define. Roughly, the generated numbers should
give the same behavior as truly random numbers, for the use we make of
them.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

478 Explicit State

The third solution, calculating random numbers, is the one that is almost always
implemented. The question is, what algorithm do we use? Certainly not an
algorithm chosen at random! Knuth [101] shows the pitfalls of this approach.
It almost always gives bad results. We need an algorithm that has known good
properties. We cannot guarantee that the random numbers will be good enough,
but we can try to get what we can. For example, the generated random numbers
should satisfy strong statistical properties, have the right distribution, and their
period should be sufficiently long. The last point is worth expanding on: since a
random number generator does a calculation with finite information, eventually
it will repeat itself. Clearly, the period of repetition should be very long.

Uniformly distributed random numbers

A random number generator stores an internal state, with which it calculates
the next random number and the next internal state. The state should be large
enough to allow a long period. The random number is initialized with a number
called its seed. Initializing it again with the same seed should give the same
sequence of random numbers. If we do not want the same sequence, we can
initialize it with information that will never be the same, such as the current
date and time. Modern computers almost always have an operation to get the
time information. Now we can define the abstract data type of a random number
generator:

• {NewRand ?Rand ?Init ?Max} returns three references: a random number
generator Rand, its initialization procedure Init , and its maximum value
Max. Each generator has its own internal state. For best results, Max should
be large. This allows the program to reduce the random numbers to the
smaller domains it needs for its own purposes.

• {Init Seed} initializes the generator with integer seed Seed, that should
be in the range 0, 1, ..., Max. To give many possible sequences, Max should
be large. Initialization can be done at any time.

• X={Rand} generates a new random number X and updates the internal state.
X is an integer in the range 0, 1, ..., Max-1 and has a Uniform distribution,
i.e., all integers have the same probability of appearing.

How do we calculate a new random number? It turns out that a good simple
method is the linear congruential generator. If x is the internal state and s is the
seed, then the internal state is updated as follows:

x0 = s
xn = (axn−1 + b) mod m

The constants a, b, and m have to be carefully chosen so that the sequence x0,
x1, x2, ..., has good properties. The internal state xi is a uniformly distributed
integer from 0 to m− 1. It is easy to implement this generator:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 479

local
A=333667
B=213453321
M=1000000000

in
proc {NewRand ?Rand ?Init ?Max}

X={NewCell 0}
in

proc {Init Seed} X:=Seed end
fun {Rand} X:=(A*@X+B) mod M in @Xend
Max=M

end
end

This is one of the simplest methods that has reasonably good behavior. More
sophisticated methods are possible that are even better.

Using laziness instead of state

The linear congruential algorithm can be packaged in a completely different way,
as a lazy function. To get the next random number, it suffices to read the next
element of the stream. Here is the definition:

local
A=333667
B=213453321
M=1000000000

in
fun lazy {RandList S0}

S1=(A*S0+B) mod M
in

S1|{RandList S1}
end

end

Instead of using a cell, the state is stored in a recursive argument of RandList .
Instead of calling Rand explicitly to get the next number, RandList is called
implicitly when the next number is needed. Laziness acts as a kind of brake,
making sure that the computation advances only as rapidly as its results are
needed. A third difference is that higher-order programming is not needed, since
each call to RandList generates a new sequence of random numbers.

Nonuniform distributions

A good technique to generate random numbers of any distribution is to start with
a uniformly distributed random number. From this, we calculate a number with
another distribution. Using this technique we explain how to generate Gaussian
and Exponential distributions. We first define a new generator:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

480 Explicit State

declare Rand Init Max in {NewRand Rand Init Max}

Now we define functions to generate a Uniform distribution from 0 to 1 and a
Uniform integer distribution from A to B inclusive:

FMax={IntToFloat Max}
fun {Uniform}

{IntToFloat {Rand}}/FMax
end

fun {UniformI A B}
A+{FloatToInt {Floor {Uniform}*{IntToFloat B-A+1}}}

end

We will use Uniform to generate random variables with other distributions. First,
let us generate random variables with an Exponential distribution. For this dis-
tribution, the probability that X ≤ x is D(x) = 1− e−λx, where λ is a parameter
called the intensity. Since X ≤ x iff D(X) ≤ D(x), it follows that the probability
that D(X) ≤ D(x) is D(x). Writing y = D(x), it follows that the probability that
D(X) ≤ y is y. Therefore D(X) is uniformly distributed. Say D(X) = U where
U is a uniformly distributed random variable. Then we have X = − ln(1−U)/λ.
This gives the following function:

fun {Exponential Lambda}
˜{Log 1.0-{Uniform}}/Lambda

end

Now let us generate a Normal distribution with mean 0 and variance 1. This is
also called a Gaussian distribution. We use the following technique. Given two
variables U1 and U2, uniformly distributed from 0 to 1. Let R =

√
−2 ln U1 and

φ = 2πU2. Then X1 = R cos φ and X2 = R sin φ are independent variables with
a Gaussian distribution. The proof of this fact is beyond the scope of the book;
it can be found in [101]. This gives the following function:

TwoPi=4.0*{Float.acos 0.0}
fun {Gauss}

{Sqrt ˜2.0*{Log {Uniform}}} * {Cos TwoPi*{Uniform}}
end

Since each call can give us two Gaussian variables, we can use a cell to remember
one result for the next call:

local GaussCell={NewCell nil} in
fun {Gauss}

Prev={Exchange GaussCell $ nil}
in

if Prev\=nil then Prev
else R Phi in

R={Sqrt ˜2.0*{Log {Uniform}}}
Phi=TwoPi*{Uniform}
GaussCell:=R*{Cos Phi}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 481

R*{Sin Phi}
end

end
end

Each call of Gauss calculates two independent Gaussian variables; we return
one and store the other in a cell. The next call returns it without doing any
calculation.

6.8.4 “Word of Mouth” simulation

Let us simulate how Web users “surf” on the Internet. To “surf” between Web
sites means to successively load different Web sites. To keep our simulator simple,
we will only look at one aspect of a Web site, namely its performance. This can
be reasonable when surfing between Web portals, which each provide a large and
similar set of services. Assume there are n Web sites with equal content and a
total of m users. Each Web site has constant performance. Each user would like
to get to the Web site with highest performance. But there is no global measure
of performance; the only way a user can find out about performance is by asking
other users. We say that information passes by “word of mouth”. This gives us
the following simulation rules:

• Each site has a constant performance. Assume the constants are uniformly
distributed.

• Each user knows which site it is on.

• Each site knows how many users are on it.

• Each user tries to step to a site with higher performance. The user asks a
few randomly-picked users about the performance at their site. The user
then goes to the site with highest performance. However, the performance
information is not exact: it is perturbed by Gaussian noise.

• One round of the simulation consists of all users doing a single step.

With these rules, we might expect users eventually to swarm among the sites
with highest performance. But is it really so? A simulation can give us answer.

Let us write a small simulation program. First, let us set up the global
constants. We use the functions Init , UniformI , and Gauss defined in the
previous section. There are n sites, m users, and we do t simulation rounds.
We initialize the random number generator and write information to the file
´ wordofmouth.txt ´ during the simulation. We use the incremental write op-
erations defined in the File module on the book’s Web site. With 10000 sites,
500000 users, and 200 rounds, this gives the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

482 Explicit State

declare
N=10000 M=500000 T=200
{Init 0}
{File.writeOpen ´ wordofmouth.txt ´ }
proc {Out S}

{File.write {Value.toVirtualString S 10 10}#"\n"}
end

Next, we decide how to store the simulation information. We would like to store
it in records or tuples, because they are easy to manipulate. But they cannot
be modified. Therefore, we will store the simulation information in dictionaries.
Dictionaries are very similar to records except that they can be changed dynam-
ically (see Section 6.5.1). Each site picks its performance randomly. It has a
dictionary giving its performance and the number of users on it. The following
code creates the initial site information:

declare
Sites={MakeTuple sites N}
for I in 1..N do

Sites.I={Record.toDictionary
o(hits:0 performance:{IntToFloat {UniformI 1 80000}})}

end

Each user picks its site randomly. It has a dictionary giving its current site.
It updates the Sites information. The following code creates the initial user
information:

declare
Users={MakeTuple users M}
for I in 1..M do

S={UniformI 1 N}
in

Users.I={Record.toDictionary o(currentSite:S)}
Sites.S.hits := Sites.S.hits + 1

end

Now that we have all the data structures, let us do one user step in the simulation.
The function {UserStep I} does one step for user I , i.e., the user asks three
other users for the performance of their sites, it calculates its new site, and then
it updates all the site and user information.

proc {UserStep I}
U = Users.I
% Ask three users for their performance information
L = {List.map [{UniformI 1 M} {UniformI 1 M} {UniformI 1 M}]

fun {$ X}
(Users.X.currentSite) #
Sites.(Users.X.currentSite).performance

+ {Gauss}*{IntToFloat N}
end }

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.8 Case studies 483

% Calculate the best site
MS#MP = {List.foldL L

fun {$ X1 X2} if X2.2>X1.2 then X2 else X1 end end
U.currentSite #
Sites.(U.currentSite).performance

+ {Abs {Gauss}*{IntToFloat N}}
}

in
if MS\=U.currentSite then

Sites.(U.currentSite).hits :=
Sites.(U.currentSite).hits - 1

U.currentSite := MS
Sites.MS.hits := Sites.MS.hits + 1

end
end

Now we can do the whole simulation:

for J in 1..N do
{Out {Record.adjoinAt {Dictionary.toRecord site Sites.J}

name J}}
end
{Out endOfRound(time:0 nonZeroSites:N)}
for I in 1..T do

X = {NewCell 0}
in

for U in 1..M do {UserStep U} end
for J in 1..N do

H=Sites.J.hits in
if H\=0 then

{Out {Record.adjoinAt
{Dictionary.toRecord site Sites.J} name J}}

X:=1+@X
end

end
{Out endOfRound(time:I nonZeroSites:@X)}

end
{File.writeClose}

To make the simulator self-contained, we put all the above code in one procedure
with parameters N, M, T, and the output filename.

What is the result of the simulation? Will users cluster around the sites with
highest performance, even though they have only a very narrow and inaccurate
view of what is going on? Running the above simulation shows that the number of
nonzero sites (with at least one user) decreases smoothly in inverse exponential
fashion from 10000 initially to less than 100 after 83 rounds. Average perfor-
mance of user sites increases from about 40000 (half of the maximum) to more
than 75000 (within 6% of maximum) after just 10 rounds. So we can make a pre-

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

484 Explicit State

liminary conclusion that the best sites will quickly be found and the worst sites
will quickly be abandoned, even by word-of-mouth propagation of very approxi-
mate information. Of course, our simulation has some simplifying assumptions.
Feel free to change the assumptions and explore. For example, the assumption
that a user can pick any three other users is unrealistic–it assumes that each user
knows all the others. This makes convergence too fast. See the Exercises of this
chapter for a more realistic assumption on user knowledge.

6.9 Advanced topics

6.9.1 Limitations of stateful programming

Stateful programming has some strong limitations due to its use of explicit state.
Object-oriented programming is a special case of stateful programming, so it
suffers from the same limitations.

The real world is parallel

The main limitation of the stateful model is that programs are sequential. In
the real world, entities are both stateful and act in parallel. Sequential stateful
programming does not model the parallel execution.

Sometimes this limitation is appropriate, e.g., when writing simulators where
all events must be coordinated (stepping from one global state to another in a
controlled way). In other cases, e.g., when interacting with the real world, the
limitation is an obstacle. To remove the limitation, the model needs to have both
state and concurrency. We have seen one simple way to achieve this in Chapter 5.
Another way is given in Chapter 8. As Section 4.7.6 explains, concurrency in the
model can model parallelism in the real world.

The real world is distributed

Explicit state is hard to use well in a distributed system. Chapter 11 explains this
limitation in depth. Here we give just the main points. In a distributed system,
the store is partitioned into separate parts. Within one part, the store behaves
efficiently as we have seen. Between parts, communication is many orders of
magnitude more expensive. The parts coordinate with one another to maintain
the desired level of global consistency. For cells this can be expensive because cell
contents can change at any time in any part. The programmer has to decide on
both the level of consistency and the coordination algorithm used. This makes it
tricky to do distributed programming with state.

The declarative model and its extension to concurrent message passing in
Chapter 5 are much easier to use. As Chapter 5 explains, a system can be de-
composed into independent components that communicate with messages. This

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.9 Advanced topics 485

fits very well with the partitioned store of a distributed system. When program-
ming a distributed system, we recommend to use the message-passing model
whenever possible for coordinating the parts. Chapter 11 explains how to pro-
gram a distributed system and when to use the different computation models in
a distributed setting.

6.9.2 Memory management and external references

As explained in Section 2.4.7, garbage collection is a technique for automatic
memory management that recovers memory for all entities inside the computation
model that no longer take part in the computation. This is not good enough for
entities outside the computation model. Such entities exist because there is a
world outside of the computation model, which interacts with it. How can we do
automatic memory management for them? There are two cases:

• From inside the computation model, there is a reference to an entity outside
it. We call such a reference a resource pointer. Here are some examples:

– A file descriptor, which points to a data structure held by the operating
system. When the file descriptor is no longer referenced, we would like
to close the file.

– A handle to access an external database. When the handle is no longer
referenced, we would like to close the connection to the database.

– A pointer to a block of memory allocated through the Mozart C++
interface. When the memory is no longer referenced, we would like it
to be freed.

• From the external world, there is a reference to inside the computation
model. We call such a reference a ticket. Tickets are used in distributed
programming as a means to connect processes together (see Chapter 11).

In the second case, there is no safe way in general to recover memory. By safe
we mean not to release memory as long as external references exist. The external
world is so big that the computation model cannot know whether any reference
still exists or not. One pragmatic solution is to add the language entity to the root
set for a limited period of time. This is known as a time-lease mechanism. The
time period can be renewed when the language entity is accessed. If the time
period expires without a renewal, we assume that there are no more external
references. The application has to be designed to handle the rare case when this
assumption is wrong.

In the first case, there is a simple solution based on parameterizing the garbage
collector. This solution, called finalization, gives the ability to perform a user-
defined action when a language entity has become unreachable. This is imple-
mented by the System module Finalize . We first explain how the module works.
We then give some examples of how it is used.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

486 Explicit State

Finalization

Finalization is supported by the Finalize module. The design of this module
is inspired by the guardian concept of [51]. Finalize has the following two
operations:

• {Finalize.register X P} registers a reference X and a procedure P.
When X becomes otherwise unreachable (otherwise than through finaliza-
tion), {P X} is eventually executed in its own thread. During this execution,
X is reachable again until its reference is no longer accessible.

• {Finalize.everyGC P} registers a procedure P to be invoked eventually
after every garbage collection.

In both of these operations, you cannot rely on how soon after the garbage collec-
tion the procedure P will be invoked. It is in principle possible that the call may
only be scheduled several garbage collections late if the system has very many
live threads and generates garbage at a high rate.

There is no limitation on what the procedure P is allowed to do. This is
because P is not executed during garbage collection, when the system’s internal
data structures can be temporarily inconsistent, but is scheduled for execution
after garbage collection. P can even reference X and itself call Finalize .

An interesting example is the everyGC operation itself, which is defined in
terms of register :

proc {EveryGC P}
proc {DO _} {P} {Finalize.register DO DO} end

in
{Finalize.register DO DO}

end

This creates a procedure DOand registers it using itself as its own handler. When
EveryGC exits, the reference to DO is lost. This means that DOwill be invoked
after the next garbage collection. When invoked, it calls P and registers itself
again.

Laziness and external resources

To make lazy evaluation practical for external resources like files, we need to use
finalization to release the external resources when they are no longer needed. For
example, in Section 4.5.5 we defined a function ReadListLazy that reads a file
lazily. This function closes the file after it is completely read. But this is not good
enough: even if only part of the file is needed, the file should also be closed. We
can implement this with finalization. We extend the definition of ReadListLazy

to close the file when it becomes inaccessible:

fun {ReadListLazy FN}
{File.readOpen FN}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 487

fun lazy {ReadNext}
L T I in

{File.readBlock I L T}
if I==0 then T=nil {File.readClose} else T={ReadNext} end
L

end
in

{Finalize.register F proc {$ F} {File.readClose} end }
{ReadNext}

end

This requires just one call to Finalize .

6.10 Exercises

1. What is state. Section 6.1 defines the function SumList , which has a
state encoded as the successive values of two arguments at recursive calls.
For this exercise, rewrite SumList so that the state is no longer encoded in
arguments, but by cells.

2. Emulating state with concurrency. This exercise explores whether
concurrency can be used to obtain explicit state.

(a) First use concurrency to create an updatable container. We create a
thread that uses a recursive procedure to read a stream. The stream
has two possible commands: access(X) , which binds X to the con-
tainer’s current content, and assign(X) , which assigns X as the new
content. Here is how it is done:

fun {MakeState Init}
proc {Loop S V}

case S of access(X)|S2 then
X=V {Loop S2 V}

[] assign(X)|S2 then
{Loop S2 X}

else skip end
end
S

in
thread {Loop S Init} end
S

end

S={MakeState 0}

The call {MakeState Init} creates a new container with initial con-
tent Init . We use the container by putting commands on the stream.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

488 Explicit State

For example, here is a sequence of three commands for the container
S:

declare S1 X Y in
S=access(X)|assign(3)|access(Y)|S1

This binds X to 0 (the initial content), puts 3 in the container, and
then binds Y to 3.

(b) Now rewrite SumList to use this container to count the number of
calls. Can this container be encapsulated, i.e., can it be added without
changing the arguments of SumList ? Why or why not? What happens
when we try to add the function SumCount like in Section 6.1.2?

3. Implementing ports. In Chapter 5 we introduced the concept of port,
which is a simple communication channel. Ports have the operations {NewPort

S P} , which returns a port P with stream S, and {Send P X} , which sends
message X on port P. From these operations, it is clear that ports are a
stateful unbundled ADT. For this exercise, implement ports in terms of
cells, using the techniques of Section 6.4.

4. Explicit state and security. Section 6.4 gives four ways to construct
secure ADTs. From these constructions, it seems that the ability to make
ADTs secure is a consequence of using one or both of the following concepts:
procedure values (which provide hiding through lexical scoping) and name
values (which are unforgeable and unguessable). In particular, explicit state
seems to have no role with respect to security. For this exercise, think
carefully about this assertion. Is it true? Why or why not?

5. Declarative objects and identity. Section 6.4.2 shows how to build a
declarative object, which combines value and operations in a secure way.
However, the implementation given misses one aspect of objects, namely
their identity. That is, an object should keep the same identity after state
changes. For this exercise, extend the declarative objects of Section 6.4.2
to have an identity.

6. Revocable capabilities. Section 6.4.3 defines the three-argument proce-
dure Revocable , which takes a capability and uses explicit state to cre-
ate two things: a revocable version of that capability and a revoker. For
Revocable , the capability is represented as a one-argument procedure and
the revoker is a zero-argument procedure. For this exercise, write a version
of Revocable that is a one-argument procedure and where the revoker is
also a one-argument procedure. This allows Revocable to be used recur-
sively on all capabilities including revokers and itself. For example, the
ability to revoke a capability can then be made revocable.

7. Abstractions and memory management. Consider the following ADT
which allows to collect information together into a list. The ADT has three

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 489

operations. The call C={NewCollector} creates a new collector C. The
call {Collect C X} adds X to C’s collection. The call L={EndCollect}

returns the final list containing all collected items in the order they were
collected. Here are two ways to implement collectors that we will compare:

• C is a cell that contains a pair H|T , where H is the head of the collected
list and T is its unbound tail. Collect is implemented as:

proc {Collect C X}
H T in

{Exchange C H|(X|T) H|T}
end

Implement the NewCollector and EndCollect operations with this
representation.

• C is a pair H|T , where H is the head of the collected list and T is a cell
that contains its unbound tail. Collect is implemented as:

proc {Collect C X}
T in

{Exchange C.2 X|T T}
end

Implement the NewCollector and EndCollect operations with this
representation.

• We compare the two implementations with respect to memory man-
agement. Use the table of Section 3.5.2 to calculate how many words
of memory are allocated by each version of Collect . How many of
these words immediately become inactive in each version? What does
this imply for garbage collection? Which version is best?

This example is taken from the Mozart system. Collection in the for loop
was originally implemented with one version. It was eventually replaced by
the other. (Note that both versions work correctly in a concurrent setting,
i.e., if Collect is called from multiple threads.)

8. Call by name. Section 6.4.4 shows how to code call by name in the stateful
computation model. For this exercise, consider the following example taken
from [56]:

procedure swap(callbyname x,y:integer);

var t:integer;

begin

t:=x; x:=y; y:=t

end;

var a:array [1..10] of integer;

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

490 Explicit State

var i:integer;

i:=1; a[1]:=2; a[2]=1;

swap(i, a[i]);

writeln(a[1], a[2]);

This example shows a curious behavior of call by name. Running the exam-
ple does not swap i and a[i], as one might expect. This shows an undesir-
able interaction between destructive assignment and the delayed evaluation
of an argument.

• Explain the behavior of this example using your understanding of call
by name.

• Code the example in the stateful computation model. Use the following
encoding of array[1..10]:

A={MakeTuple array 10}
for J in 1..10 do A.J={NewCell 0} end

That is, code the array as a tuple of cells.

• Explain the behavior again in terms of your coding.

9. Call by need. With call by name, the argument is evaluated again each
time it is needed.

• For this exercise, redo the swap example of the previous exercise with
call by need instead of call by name. Does the counterintuitive be-
havior still occur? If not, can similar problems still occur with call by
need by changing the definition of swap?

• In the code that implements call by need, Sqr will always call A. This
is fine for Sqr , since we can see by inspection that the result is needed
three times. But what if the need cannot be determined by inspection?
We do not want to call A unnecessarily. One possibility is to use lazy
functions. Modify the coding of call by need given in Section 6.4.4
so that it uses laziness to call A only when needed, even if that need
cannot be determined by inspection. A should be called at most once.

10. Evaluating indexed collections. Section 6.5.1 presents four indexed col-
lection types, namely tuples, records, arrays, and dictionaries, with different
performance/expressiveness trade-offs. For this exercise, compare these four
types in various usage scenarios. Evaluate their relative performance and
usefulness.

11. Extensible arrays. The extensible array of Section 6.5 only extends the
array upwards. For this exercise, modify the extensible array so it extends
the array in both directions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

6.10 Exercises 491

12. Generalized dictionaries. The built-in dictionary type only works for
literal keys, i.e., numbers, atoms, or names. For this exercise, implement a
dictionary that can use any value as a key. One possible solution uses the
fact that the == operation can compare any values. Using this operation,
the dictionary could store entries as an association list, which is a list of
pairs Key#Value , and do simple linear search.

13. Loops and invariant assertions. Use the method of invariant asser-
tions to show that the proof rules for the while and for loops given in
Section 6.6.4 are correct.

14. The break statement. A block is a set of statements with a well-defined
entry point and exit point. Many modern imperative programming lan-
guages, such as Java and C++, are based on the concept of block. These
languages allow defining nested blocks and provide an operation to jump
immediately from within a block to the block’s exit point. This operation
is called break. For this exercise, define a block construct with a break
operation that can be called as follows:

{Block proc {$ Break} 〈stmt〉 end }

This should have exactly the same behavior as executing 〈stmt〉, except
that executing {Break} inside 〈stmt〉 should immediately exit the block.
Your solution should work correctly for nested blocks and exceptions raised
within blocks. If 〈stmt〉 creates threads, then these should not be affected
by the break operation. Hint: use the exception handling mechanism.

15. “Small World” simulation. The “Word of Mouth” simulation of Sec-
tion 6.8.4 makes some strong simplifying assumptions. For example, the
simulation assumes that each user can choose any three users at random
to ask them about their performance. This is much too strong an assump-
tion. The problem is that the choice ranges over all users. This gives each
user a potentially unbounded amount of knowledge. In actuality, each user
has bounded knowledge: a small network of acquaintances that changes
but slowly. Each user asks only members of his network of acquaintances.
Rewrite the simulation program to take this assumption into account. This
can make convergence much slower. With this assumption, the simulation
is called a “Small World” simulation [203].

16. Performance effects in “Word of Mouth” simulation. The “Word
of Mouth” simulation of Section 6.8.4 assumes that site performance is
constant. A better way to take performance into account is to assume that
it is constant up to a given threshold number of users, which is fixed for each
site. Beyond this threshold, performance goes down in inverse proportion
to the number of users. This is based on the premise that for small numbers
of users, Internet performance is the bottleneck, and for large numbers of
users, site performance is the bottleneck.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

492 Explicit State

17. Word frequency application. Section 6.8.2 gives a version of the word
frequency algorithm that uses stateful dictionaries. Rewrite the word fre-
quency application of Section 3.9.4 to use the stateful version.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 7

Object-Oriented Programming

“The fruit is too well known to need any
description of its external characteristics.”
– From entry “Apple”, Encyclopaedia Britannica (11th edition)

This chapter introduces a particularly useful way of structuring stateful pro-
grams called object-oriented programming. It introduces one new concept over
the last chapter, namely inheritance, which allows to define ADTs in incremen-
tal fashion. However, the computation model is the same stateful model as in
the previous chapter. We can loosely define object-oriented programming as
programming with encapsulation, explicit state, and inheritance. It is often sup-
ported by a linguistic abstraction, the concept of class, but it does not have to
be. Object-oriented programs can be written in almost any language.

From a historical viewpoint, the introduction of object-oriented programming
made two major contributions to the discipline of programming. First, it made
clear that encapsulation is essential. Programs should be organized as collec-
tions of ADTs. This was first clearly stated in the classic article on “information
hiding” [142], reprinted in [144]. Each module, component, or object has a “se-
cret” known only to itself. Second, it showed the importance of building ADTs
incrementally, using inheritance. This avoids duplicated code.

Object-oriented programming is one of the most successful and pervasive ar-
eas in informatics. From its timid beginnings in the 1960’s it has invaded every
area of informatics, both in scientific research and technology development. The
first object-oriented language was Simula 67, developed in 1967 as a descendant
of Algol 60 [130, 137, 152]. Simula 67 was much ahead of its time and had little
immediate influence. Much more influential in making object-oriented program-
ming popular was Smalltalk-80, released in 1980 as the result of research done in
the 1970’s [60]. The currently most popular programming languages, Java and
C++, are object-oriented [186, 184]. The most popular “language-independent”
design aids, the Unified Modeling Language (UML) and Design Patterns, both
implicitly assume that the underlying language is object-oriented [58, 159]. With

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

494 Object-Oriented Programming

all this exposure, one might feel that object-oriented programming is well under-
stood (see the chapter quote). Yet, this is far from being the case.

Structure of the chapter

The purpose of this chapter is not to cover all of object-oriented programming
in 100 pages or less. This is impossible. Instead, we give an introduction that
emphasizes areas where other programming books are weak: the relationship with
other computation models, the precise semantics, and the possibilities of dynamic
typing. The chapter is structured as follows:

• Motivations (Section 7.1). We give the principal motivation for object-
oriented programming, namely to support inheritance, and how its features
relate to this.

• An object-oriented computation model (Sections 7.2 and 7.3). We
define an object system that takes advantage of dynamic typing to combine
simplicity and flexibility. This allows us to explore better the limits of
the object-oriented abstraction and situate existing languages within them.
We single out three areas: controlling encapsulation, single and multiple
inheritance, and higher-order programming techniques. We give the object
system syntactic and implementation support to make it easier to use and
more efficient.

• Programming with inheritance (Section 7.4). We explain the basic
principles and techniques for using inheritance to construct object-oriented
programs. We illustrate them with realistic example programs. We give
pointers into the literature on object-oriented design.

• Relation to other computation models (Section 7.5). From the view-
point of multiple computation models, we show how and when to use and
not use object-oriented programming. We relate it to component-based pro-
gramming, object-based programming, and higher-order programming. We
give additional design techniques that become possible when it is used to-
gether with other models. We explain the pros and cons of the oft-repeated
principle stating that every language entity should be an object. This prin-
ciple has guided the design of several major object-oriented languages, but
is often misunderstood.

• Implementing the object system (Section 7.6). We give a simple and
precise semantics of our object system, by implementing it in terms of the
stateful computation model. Because the implementation uses a compu-
tation model with a precise semantics, we can consider it as a semantic
definition.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.1 Motivations 495

• The Java language (Section 7.7). We give an overview of the sequential
part of Java, a popular object-oriented programming language. We show
how the concepts of Java fit in the object system of the chapter.

• Active objects (Section 7.8). An active object extends a port object of
Chapter 5 by using a class to define its behavior. This combines the abilities
of object-oriented programming with message-passing concurrency.

After reading this chapter, you will have a better view of what object-oriented
programming is about, how to situate it among other computation models, and
how to use the expressiveness it offers.

Object-Oriented Software Construction

For more information on object-oriented programming techniques and principles,
we recommend the book Object-Oriented Software Construction, Second Edition,
by Bertrand Meyer [122]. This book is especially interesting for its detailed
discussion of inheritance, including multiple inheritance.

7.1 Motivations

7.1.1 Inheritance

As we saw in the previous chapter, stateful abstract data types are a very useful
concept for organizing a program. In fact, a program can be built in a hierarchical
structure as ADTs that depend on other ADTs. This is the idea of component-
based programming.

Object-oriented programming takes this idea one step further. It is based on
the observation that components frequently have much in common. Take the
example of sequences. There are many different ADTs that are “sequence-like”.
Sometimes we want them to behave like stacks (adding and deleting at the same
end). Sometimes we want them to behave like queues (adding and deleting at
opposite ends). And so forth, with dozens of possibilities. All of these sequences
share the basic, linear-order property of the concept of sequence. How can we
implement them without duplicating the common parts?

Object-oriented programming answers this question by introducing the addi-
tional concept of inheritance. An ADT can be defined to “inherit” from other
ADTs, that is, to have substantially the same functionality as the others, with
possibly some modifications and extensions. Only the differences between the
ADT and its ancestors have to be specified. Such an incremental definition of an
ADT is called a class.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

496 Object-Oriented Programming

Stateful model with inheritance

Inheritance is the essential difference between object-oriented programming and
most other kinds of stateful programming. It is important to emphasize that
inheritance is a programming technique; the underlying computation model of
object-oriented programming is simply the stateful model (or the shared-state
concurrent model, for concurrent object-oriented programming). Object-oriented
languages provide linguistic support for inheritance by adding classes as a lin-
guistic abstraction.

Caveats

It turns out that inheritance is a very rich concept that can be rather tricky.
There are many ways that an ADT can be built by modifying other ADTs.
The primary approach used in object-oriented programming is syntactic: a new
ADT is defined by doing simple syntactic manipulations of an existing ADT.
Because the resulting changes in semantics are not always easy to infer, these
manipulations must be done with great care.

The component approach to building systems is much simpler. A component
groups together any set of entities and treats them as a unit from the viewpoint
of use dependency. A component is built from subcomponents, respecting their
specifications.

Potential

Despite the difficulties of using inheritance, it has a great potential: it increases
the possibilities of factoring an application, i.e., to make sure that each abstrac-
tion is implemented just once. Having more than one implementation of an
abstraction does not just make the program longer. It is an invitation to dis-
aster: if one implementation is changed, then the others must also be changed.
What’s more, the different implementations are usually slightly different, which
makes nonobvious the relationships among all the changes. This “code duplica-
tion” of an abstraction is one of the biggest sources of errors. Inheritance has the
potential to remove this duplication.

The potential to factor an application is a two-edged sword. It comes at
the price of “spreading out” an ADT’s implementation over large parts of the
program. The implementation of an ADT does not exist in one place; all the
ADTs that are part of it have to be considered together. Even stronger, part of
the implementation may exist only as compiled code, with no access to the source
code.

Early on, it was believed that inheritance would solve the problem of software
reuse. That is, it would make it easier to build libraries that can be distributed
to third parties, for use in other applications. This has not worked out in prac-
tice. The failure of inheritance as a reuse technique is clear from the success of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.1 Motivations 497

other techniques such as components, frameworks, and design patterns. Inheri-
tance remains most useful within a single application or closely-related family of
applications.

Inheritance is not an unmixed blessing, but it takes its place next to higher-
order programming as one of the most important techniques for structuring a
program.

7.1.2 Encapsulated state and inheritance

The combination of encapsulating explicit state and inheritance has led to the
field of object-oriented programming, which is presented in this chapter. This
field has developed a rich theory and practice on how to write stateful programs
with inheritance. Unfortunately, this theory tends to consider everything as be-
ing an object and to mix the notions of state and encapsulation. The advantages
to be gained by considering other entities than objects and by using encapsula-
tion without state are often ignored. Chapters 3 and 4 explain well how to use
these two ideas. The present chapter follows the object-oriented philosophy and
emphasizes how to build ADTs with both explicit state and inheritance.

Most object-oriented programming languages consider that ADTs should have
explicit state by default. For example, Smalltalk, C++, and Java all consider
variables to be stateful, i.e., mutable, by default. In Java it is possible to make
variables immutable by declaring them as final, but it is not the default. This
goes against the rule of thumb given in Section 4.7.6, and in our view it is a
mistake. Explicit state is a complex notion which should not be the first one
that students are taught. There are simpler ways to program, e.g., using variable
identifiers to refer to values or dataflow variables. These simpler ways should be
considered first before moving to explicit state.

7.1.3 Objects and classes

An object is an entity that encapsulates a state so that it can only be accessed
in a controlled way from outside the object. The access is provided by means of
methods, which are procedures that are accessible from the outside and that can
directly access the internal state. The only way to modify the state is by calling
the methods. This means that the object can guarantee that the state always
satisfies some invariant property.

A class is an entity that specifies an object in an incremental way, by defining
the classes that the object inherits from (its direct ancestors) and defining how
the class is different from the direct ancestors. Most modern languages support
classes as a linguistic abstraction. We will do the same in this chapter. To make
the concepts precise we will add a simple yet powerful class construct.

This chapter only talks about objects that are used sequentially, i.e., that are
used in a single thread. Chapter 8 explains how to use objects in a concurrent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

498 Object-Oriented Programming

class Counter
attr val
meth init(Value)

val:=Value
end
meth browse

{Browse @val}
end
meth inc(Value)

val:=@val+Value
end

end

Figure 7.1: An example class Counter (with class syntax)

setting, when multiple threads use the objects. In particular, object locking is
explained there.

7.2 Classes as complete ADTs

The heart of the object concept is controlled access to encapsulated data. The
behavior of an object is specified by a class. In the most general case, a class
is an incremental definition of an ADT, that defines the ADT as a modification
of other ADTs. There is a rich set of concepts for defining classes. We classify
these concepts into two sets, according as they permit the class to define an ADT
completely or incrementally:

• Complete ADT definition. These are all the concepts that permit a
class, taken by itself, to define an ADT. There are two sets of concepts:

– Defining the various elements that make up a class (Section 7.2.3),
namely methods, attributes, and properties. Attributes can be initial-
ized in several ways, per object or per class (Section 7.2.4).

– Taking advantage of dynamic typing. This gives first-class messages
(Section 7.2.5) and first-class attributes (Section 7.2.6). This allows
powerful forms of polymorphism that are difficult or impossible to do
in statically-typed languages. This increased freedom comes with an
increased responsibility of the programmer to use it correctly.

• Incremental ADT definition. These are all the concepts related to in-
heritance, that is, they define how a class is related to existing classes. They
are given in Section 7.3.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 499

local
proc {Init M S}

init(Value)=M in (S.val):=Value
end
proc {Browse2 M S}

{Browse @(S.val)}
end
proc {Inc M S}

inc(Value)=M in (S.val):=@(S.val)+Value
end

in
Counter=c(attrs:[val]

methods:m(init:Init browse:Browse2 inc:Inc))
end

Figure 7.2: Defining the Counter class (without syntactic support)

7.2.1 An example

To see how classes and objects work in the object system, let us define an example
class and use it to create an object. We assume that the language has a new
construct, the class declaration. We assume that classes are first-class values
in the language. This lets us use a class declaration as either statement or
expression, in similar manner to a proc declaration. Later on in the chapter, we
will see how to define classes in the kernel language of the stateful model. This
would let us define class as a linguistic abstraction.

Figure 7.1 defines a class referred to by the variable Counter . This class has
one attribute, val , that holds a counter’s current value, and three methods, init ,
browse , and inc , for initializing, displaying, and incrementing the counter. The
attribute is assigned with the := operator and accessed with the @operator. This
seems quite similar to how other languages would do it, modulo a different syntax.
But appearances can be deceiving!

The declaration of Figure 7.1 is actually executed at run time, i.e., it is a
statement that creates a class value and binds it to Counter . Replace “Counter ”
by “$” and the declaration can be used in an expression. Putting this declaration
at the head of a program will declare the class before executing the rest, which is
familiar behavior. But this is not the only possibility. The declaration can be put
anywhere that a statement can be. For example, putting the declaration inside a
procedure will create a new and distinct class each time the procedure is called.
Later on we will use this possibility to make parameterized classes.

Let us create an object of class Counter and do some operations with it:

C={New Counter init(0)}
{C inc(6)} {C inc(6)}
{C browse}

This creates the counter object C with initial value 0, increments it twice by 6,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

500 Object-Oriented Programming

fun {New Class Init}
Fs={Map Class.attrs fun {$ X} X#{NewCell _} end }
S={List.toRecord state Fs}
proc {Obj M}

{Class.methods.{Label M} M S}
end

in
{Obj Init}
Obj

end

Figure 7.3: Creating a Counter object

and then displays the counter’s value. The statement {C inc(6)} is called an
object application. The message inc(6) is sent to the object, which invokes the
corresponding method. Now try the following:

local X in {C inc(X)} X=5 end
{C browse}

This displays nothing at all! The reason is that the object application

{C inc(X)}

blocks inside the method inc . Can you see exactly where? Now try the following
variation:

declare S in
local X in thread {C inc(X)} S= unit end X=5 end
{Wait S} {C browse}

Things now work as expected. We see that dataflow execution keeps its familiar
behavior when used with objects.

7.2.2 Semantics of the example

Before going on to describe the additional abilities of classes, let us give the
semantics of the Counter example. It is a simple application of higher-order
programming with explicit state. The semantics we give here is slightly simplified;
it leaves out the abilities of class that are not used in the example (such as
inheritance and self). Section 7.6 gives the full semantics.

Figure 7.2 shows what Figure 7.1 does by giving the definition of the class
Counter in the stateful model without any class syntax. We can see that
according to this definition, a class is simply a record containing a set of attribute
names and a set of methods. An attribute name is a literal. A method is a
procedure that has two arguments, the message and the object state. In each
method, assigning to an attribute (“val:= ”) is done with a cell assignment and
accessing an attribute (“@val”) is done with a cell access.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 501

〈statement〉 ::= class 〈variable〉 { 〈classDescriptor〉 }
{ meth 〈methHead〉 [´ =´ 〈variable〉]

(〈inExpression〉 | 〈inStatement〉) end }
end

| lock [〈expression〉 then] 〈inStatement〉 end

| 〈expression〉 ´ := ´ 〈expression〉
| 〈expression〉 ´ , ´ 〈expression〉
| ...

〈expression〉 ::= class ´ $´ { 〈classDescriptor〉 }
{ meth 〈methHead〉 [´ =´ 〈variable〉]

(〈inExpression〉 | 〈inStatement〉) end }
end

| lock [〈expression〉 then] 〈inExpression〉 end

| 〈expression〉 ´ := ´ 〈expression〉
| 〈expression〉 ´ , ´ 〈expression〉
| ´ @́ 〈expression〉
| self

| ...
〈classDescriptor〉 ::= from { 〈expression〉 }+ | prop { 〈expression〉 }+

| attr { 〈attrInit〉 }+
〈attrInit〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ : ´ 〈expression〉]
〈methHead〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ (´ { 〈methArg〉 } [´ ... ´] ´) ´]
[´ =´ 〈variable〉]

〈methArg〉 ::= [〈feature〉 ´ : ´] (〈variable〉 | ´ _´ | ´ $´) [´ <=´ 〈expression〉]

Table 7.1: Class syntax

Figure 7.3 defines the function Newwhich is used to create objects from classes.
This function creates the object state, defines a one-argument procedure Obj that
is the object, and initializes the object before returning it. The object state S

is a record holding one cell for each attribute. The object state is hidden inside
Obj by lexical scoping.

7.2.3 Defining classes

A class is a data structure that defines an object’s internal state (attributes), its
behavior (methods), the classes it inherits from, and several other properties and
operations that we will see later on. More generally, a class is a data structure
that describes an ADT and gives its partial or total implementation. Table 7.1
gives the syntax of classes. There can be any number of objects of a given class.
They are called instances of the class. These objects have different identities

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

502 Object-Oriented Programming

and can have different values for their internal state. Otherwise, all objects of a
given class behave according to the class definition. An object Obj is called with
the syntax {Obj M} , where M is a record that defines the message. Calling an
object is also called sending a message to the object. This terminology exists for
historical reasons; we do not recommend it since it is easily confused with sending
a message on a communication channel. An object invocation is synchronous,
like a procedure’s. The invocation returns only when the method has completely
executed.

A class defines the constituent parts that each instance will have. In object-
oriented terminology, these parts are often called members. There are three kinds
of members:

• Attributes (declared with the keyword “attr ”). An attribute, is a cell
that contains part of the instance’s state. In object-oriented terminology, an
attribute is often called an instance variable. The attribute can contain any
language entity. The attribute is visible only in the class definition and all
classes that inherit from it. Every instance has a separate set of attributes.
The instance can update an attribute with the following operations:

– An assignment statement: 〈expr〉1:= 〈expr〉2. This assigns the result of
evaluating 〈expr〉2 to the attribute whose name is obtained by evalu-
ating 〈expr〉1.

– An access operation: @〈expr〉. This accesses the attribute whose name
is obtained by evaluating 〈expr〉. The access operation can be used in
any expression that is lexically inside the class definition. In particular,
it can be used inside of procedures that are defined inside the class.

– An exchange operation. If the assignment 〈expr〉1:= 〈expr〉2 is used as
an expression, then it has the effect of an exchange. For example,
consider the statement 〈expr〉3=〈expr〉1:= 〈expr〉2. This first evaluates
the three expressions. Then it it unifies 〈expr〉3 with the content of the
attribute 〈expr〉1 and atomically sets the new content to 〈expr〉2.

• Methods (declared with the keyword “meth ”). A method is a kind of
procedure that is called in the context of a particular object and that can
access the object’s attributes. The method consists of a head and body.
The head consists of a label, which must be an atom or a name, and a set
of arguments. The arguments must be distinct variables, otherwise there
is a syntax error. For increased expressiveness, method heads are similar
to patterns and messages are similar to records. Section 7.2.5 explains the
possibilities.

• Properties (declared with the keyword “prop ”). A property modifies how
an object behaves. For example:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 503

– The property locking creates a new lock with each object instance.
The lock can be accessed inside the class with the lock ... end con-
struct. Locking is explained in Chapter 8.

– The property final makes the class be a final class, i.e., it cannot be
extended with inheritance. Inheritance is explained in Section 7.3.

Attributes and methods are literals. If they are defined with atom syntax, then
they are atoms. If they are defined with identifier syntax (e.g., capitalized), then
the system will create new names for them. The scope of these names is the class
definition. Using names gives a fine-grained control over object security, as we
will see. Section 7.2.4 shows how to initialize attributes.

In addition to having these kinds of members, Section 7.3 shows how a class
can inherit members from other classes. An instance of a class is created with
the operation New:

MyObj={New MyClass init}

This creates a new object MyObj of class MyClass and passes init as the first
message to the object. This message is used to initialize the object.

7.2.4 Initializing attributes

Attributes can be initialized in two ways: per instance or per class.

• Per instance. An attribute can be given a different initial value per in-
stance. This is done by not initializing it in the class definition. For exam-
ple:

class OneApt
attr streetName
meth init(X) @streetName=X end

end
Apt1={New OneApt init(drottninggatan)}
Apt2={New OneApt init(rueNeuve)}

Each instance, including Apt1 and Apt2 , will initially reference a different
unbound variable. Each variable can be bound to a different value.

• Per class. An attribute can be given a value that is the same for all
instances of a class. This is done by initializing it with “: ” in the class
definition. For example:

class YorkApt
attr

streetName:york
streetNumber:100
wallColor:_
floorSurface:wood

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

504 Object-Oriented Programming

meth init skip end
end
Apt3={New YorkApt init}
Apt4={New YorkApt init}

All instances, including Apt3 and Apt4 , have the same initial values for
all four attributes. This includes wallColor , even though the initial value
is an unbound variable. All instances refer to the same unbound variable. It
can be bound by binding it in one of the instances, e.g., @wallColor=white .
Then all instances will see this value. Be careful not to confuse the two op-
erations @wallColor=white and wallColor:=white .

• Per brand. This is another way to use the per-class initialization. A brand
is a set of classes that are related in some way, but not by inheritance. An
attribute can be given a value that is the same for all members of a brand
by initializing with the same variable for all members. For example:1

L=linux
class RedHat

attr ostype:L
end
class SuSE

attr ostype:L
end
class Debian

attr ostype:L
end

Each instance of each class will be initialized to the same value.

Since an attribute is stateful, its initial reference can be changed.

7.2.5 First-class messages

The principle is simple: messages are records and method heads are patterns that
match a record. As a consequence, the following possibilities exist for object calls
and method definitions:

• In the object call {Obj M} , the following is possible:

1. Static record as message. In the simplest case, M is a record
that is known at compile time, e.g., like in the object call {Counter

inc(X)} .

2. Dynamic record as message. It is possible to call {Obj M} where
M is a variable that references a record that is calculated at run time.

1With apologies to all omitted Linux distributions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.2 Classes as complete ADTs 505

Because of dynamic typing, it is possible to create new record types
at run time (e.g., with Adjoin or List.toRecord).

• In the method definition, the following is possible:

1. Fixed argument list. The method head is a pattern consisting of a
label followed by a series of arguments in parentheses. For example:

meth foo(a:A b:B c:C)
% Method body

end

The method head foo(a:A b:B c:C) is a pattern that must match
the message exactly, i.e., the label foo and arity [a,b,c] must match.
The features (a, b, and c) can be given in any order. A class can only
have one method definition with a given label, otherwise there is a
syntax error.

2. Flexible argument list. The method head is the same as in the fixed
argument list except it ends in “... ”. For example:

meth foo(a:A b:B c:C ...)
% Method body

end

The “... ” in the method head means that any message is accepted
if it has at least the listed arguments. This means the same as the
“... ” in patterns, e.g., in a case statement. The given label must
match the message label and the given arity must be a subset of the
message arity.

3. Variable reference to method head. The whole method head
is referenced by a variable. This is particularly useful with flexible
argument lists, but it can also be used with a fixed argument list. For
example:

meth foo(a:A b:B c:C ...)=M
% Method body

end

The variable Mreferences the full message as a record. The scope of M

is the method body.

4. Optional argument. A default is given for an argument. The default
is used if the argument is not in the message. For example:

meth foo(a:A b:B<=V)
% Method body

end

The “<=V” in the method head means that the field b is optional
in the object call. That is, the method can be called either with or

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

506 Object-Oriented Programming

without the field. With the field, an example call is foo(a:1 b:2) ,
which ignores the expression V. Without the field, an example call is
foo(a:1) , for which the actual message received is foo(a:1 b:V) .

5. Private method label. We said that method labels can be names.
This is denoted by using a variable identifier:

meth A(bar:X)
% Method body

end

The method A is bound to a fresh name when the class is defined. A

is initially visible only in the scope of the class definition. If it has to
be used elsewhere in the program, it must be passed explicitly.

6. Dynamic method label. It is possible to calculate a method label at
run time, by using an the escaped variable identifier. This is possible
because class definitions are executed at run time. The method label
has to be known when the class definition is executed. For example:

meth !A(bar:X)
% Method body

end

causes the method label to be whatever the variable A was bound to.
The variable must be bound to an atom or a name. By using names,
this technique can make methods secure (see Section 7.3.3).

7. The otherwise method. The method head with label otherwise is
a catchall that accepts any message for which no other method exists.
For example:

meth otherwise(M)
% Method body

end

A class can only have one method with head otherwise , otherwise
there is a syntax error. This method must have just one argument,
otherwise a run-time “arity mismatch” error is given. If this method
exists, then the object accepts any message. If no method is defined
for the message, then the otherwise(M) method is called with the
full message in M as a record. This mechanism allows to implement
delegation, an alternative to inheritance explained in Section 7.3.4.
This mechanism also allows making wrappers around method calls.

All these possibilities are covered by the syntax of Table 7.1. In general, for
the call {Obj M} , the compiler tries to determine statically what the object Obj

and the method M are. If it can, then it compiles a very fast specialized call
instruction. If it cannot, then it compiles a general object call instruction. The
general instruction uses caching. The first call is slower, because it looks up the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 507

method and caches the result. Subsequent calls find the method in the cache and
are almost as fast as the specialized call.

7.2.6 First-class attributes

Attribute names can be calculated at run time. For example, it is possible to
write methods to access and assign any attributes:

class Inspector
meth get(A ?X)

X=@A
end
meth set(A X)

A:=X
end

end

The get method can access any attribute and the set method can assign any
attribute. Any class that has these methods will open up its attributes for pub-
lic use. This ability is dangerous for programming but can be very useful for
debugging.

7.2.7 Programming techniques

The class concept we have introduced so far gives a convenient syntax for defining
ADTs with encapsulated state and multiple operations. The class statement
defines a class value, which can be instantiated to give objects. In addition to
having a convenient syntax, class values as defined here keep all the advantages of
procedure values. All of the programming techniques for procedures also apply for
classes. Classes can have external references just like procedure values. Classes
are compositional: classes can be nested within classes. They are compatible
with procedure values: classes can be nested within procedures and vice versa.
Classes are not this flexible in all object-oriented languages; usually some limits
are imposed, as explained in Section 7.5.

7.3 Classes as incremental ADTs

As explained before, the main addition that object-oriented programming adds
to component-based programming is inheritance. Object-oriented programming
allows to define a class incrementally, by extending existing classes. It is not
enough to say which classes are extended; to properly define a new ADT more
concepts are needed. Our model includes three sets of concepts:

• The first is inheritance itself (Section 7.3.1), which defines which preexisting
classes are extended.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

508 Object-Oriented Programming

A1 B1

BA

C

A1 B1

BA

C

Illegal class hierarchy Legal class hierarchy

m m m

m

(two ‘‘m’’ visible from C) (one ‘‘m’’ visible from C)

Method m

Figure 7.4: Illegal and legal class hierarchies

• The second is method access control (Section 7.3.2), which defines how
to access particular methods both in the new class and in the preexisting
classes. It is done with static and dynamic binding and the concept of self .

• The third is encapsulation control (Section 7.3.3), which defines what part
of a program can see a classes’ attributes and methods.

In addition, the model can use first-class messages to implement delegation, a
completely different way to define ADTs incrementally (see Section 7.3.4).

7.3.1 Inheritance

Inheritance is a way to construct new classes from existing classes. It defines
what attributes and methods are available in the new class. We will restrict our
discussion of inheritance to methods. The same rules apply to attributes. The
methods available in a class C are defined through a precedence relation on the
methods that appear in the class hierarchy. We call this relation the overriding
relation:

• A method in class C overrides any method with the same label in all of C’s
superclasses.

Classes may inherit from one or more classes, which appear after the keyword
from in the class declaration. A class that inherits from exactly one class is said
to use single inheritance (sometimes called simple inheritance). Inheriting from
more than one class is called multiple inheritance. A class B is a superclass of a
class A if:

• B appears in the from declaration of A, or

• B is a superclass of a class appearing in the from declaration of A.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 509

compilation execution
Class declaration

in source code class declaration
Compiled Class value

(in byte code)

Figure 7.5: A class declaration is an executable statement

A class hierarchy with the superclass relation can be seen as a directed graph with
the current class being the root. The edges are directed towards the subclasses.
There are two requirements for the inheritance to be legal. First, the inheritance
relation is directed and acyclic. So the following is not allowed:

class A from B ... end
class B from A ... end

Second, after striking out all overridden methods, each remaining method should
have a unique label and is defined in only one class in the hierarchy. Hence, class
C in the following example is illegal because the two methods labeled mremain:

class A1 meth m(...) ... end end
class B1 meth m(...) ... end end
class A from A1 end
class B from B1 end
class C from A B end

Figure 7.4 shows this hierarchy and a slightly different one that is legal. The class
C below is also illegal, since two methods mare available in C:

class A meth m(...) ... end end
class B meth m(...) ... end end
class C from A B end

Run time is all there is

If a program containing the declaration of class C is compiled in Mozart then the
system will not complain. It is only when the program executes the declaration
that the system will raise an exception. If the program does not execute the
declaration then no exception is raised. For example, a program that contains
the following source code:

fun {StrangeClass}
class A meth foo(X) X=a end end
class B meth foo(X) X=b end end
class C from A B end

in C end

can be successfully compiled and executed. Its execution has the effect of defining
the function StrangeClass . It is only during the call {StrangeClass} that an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

510 Object-Oriented Programming

class Account
attr balance:0
meth transfer(Amt)

balance:=@balance+Amt
end
meth getBal(Bal)

Bal=@balance
end
meth batchTransfer(AmtList)

for A in AmtList do { self transfer(A)} end
end

end

Figure 7.6: An example class Account

exception will be raised. This “late error detection” is not just a property of class
declarations. It is a general property of the Mozart system that is a consequence
of the dynamic nature of the language. Namely, there is no distinction between
compile time and run time. The object system shares this dynamic nature. For
example, it is possible to define classes whose method labels are calculated at run
time (see Section 7.2.5).

The Mozart system blurs the distinction between run time and compile time,
to the point where everything is run time. The compiler is part of the run-time
system. A class declaration is an executable statement. Compiling and executing
it creates a class, which is a value in the language (see Figure 7.5). The class
value can be passed to New to create an object.

A programming system does not strictly need to distinguish between compile
time and run time. The distinction is simply a way to help the compiler perform
certain kinds of optimization. Most mainstream languages, including C++ and
Java, make this distinction. Typically, a few operations (like declarations) can
be executed only at compile time, and all other operations can be executed only
at run time. The compiler can then execute all declarations at the same time,
without any interference from the program’s execution. This allows it to do
more powerful optimizations when generating code. But it greatly reduces the
flexibility of the language. For example, genericity and instantiation are no longer
available to the programmer as general tools.

Because of Mozart’s dynamic nature, the role of the compiler is very small.
Since the compiler does not actually execute any declarations (it just converts
them to executable statements), it needs very little knowledge of the language
semantics. The compiler does in fact have some knowledge of language semantics,
but this is an optimization that allows earlier detection of some errors and more
efficient compiled code. More knowledge could be added to the compiler, for
example to detect class hierarchy errors when it can deduce what the method
labels are.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 511

7.3.2 Static and dynamic binding

When executing inside an object, we often want to call another method in the
same object, i.e., do a kind of recursive invocation. This seems simple enough, but
it becomes slightly more complicated when inheritance is involved. A common
use of inheritance is to define a new ADT that extends an existing ADT. To
implement this correctly, it turns out that we need two ways to do a recursive
call. They are called static and dynamic binding. We explain them by means of
an example.

Consider the class Account defined in Figure 7.6. This class models a simple
bank account with a balance. We can transfer money to it with transfer , inspect
the balance with getBal , and do a series of transfers with batchTransfer . Note
that batchTransfer calls transfer for each transfer.

Let us extend Account to do logging, i.e., to keep a record of all transactions
it does. One way is to use inheritance, by overriding the transfer method:

class LoggedAccount from Account
meth transfer(Amt)

{LogObj addentry(transfer(Amt))}
...

end
end

where LogObj is an object that keeps the log. Let us create a logged account
with an initial balance of 100:

LogAct={New LoggedAccount transfer(100)}

Now the question is, what happens when we call batchTransfer ? Does it call
the old transfer in Account or the new transfer in LoggedAccount ? We
can deduce what the answer must be, if we assume that a class is an ADT. Every
ADT has a set of methods that define what it does. For LoggedAccount , this
set consists of the getBal and batchTransfer methods defined in Account

as well as the new transfer defined in LoggedAccount itself. Therefore, the
answer is that batchTransfer must call the new transfer in LoggedAccount .
This is called dynamic binding. It is written as a call to self , i.e., as { self

transfer(A)} .

When Account was defined, there was no LoggedAccount yet. Using dy-
namic binding keeps open the possibility that Account can be extended with
inheritance, while ensuring that the new class is an ADT that correctly extends
the old ADT. That is, it keeps all the functionality of the old ADT while adding
some new functionality.

However, dynamic binding is usually not enough to implement the extended
ADT. To see why, let us investigate closer how the new transfer is defined.
Here is the full definition:

class LoggedAccount from Account
meth transfer(Amt)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

512 Object-Oriented Programming

{LogObj addentry(transfer(Amt))}
Account,transfer(Amt)

end
end

Inside the new transfer , we have to call the old transfer . We cannot use
dynamic binding, since this would always call the new transfer . Instead, we
use another technique called static binding. In static binding, we call a method
by pinpointing the method’s class. Here the notation Account,transfer(Amt)

pinpoints the method transfer in the class Account .
Both static and dynamic binding are needed when using inheritance to over-

ride methods. Dynamic binding allows the new ADT to correctly extend the old
ADT by letting old methods call new methods, even though the new method did
not exist when the old method was defined. Static binding allows new methods
to call old methods when they have to. We summarize the two techniques:

• Dynamic binding. This is written { self M}. This chooses the method
matching Mthat is visible in the current object. This takes into account the
overriding that has been done.

• Static binding. This is written C, M (with a comma), where C is a class
that defines a method matching M. This chooses the method matching M

that is visible in the class C. This takes overriding into account from the
root class up to class C, but no further. If the object is of a subclass of C

that has overridden Magain, then this is not taken into account.

Dynamic binding is the only possible behavior for attributes. Static binding is
not possible for them since the overridden attributes simply do not exist, neither
in a logical sense (the only object that exists is the instance of the final class) nor
in a practical sense (the implementation allocates no memory for them).

7.3.3 Controlling encapsulation

The principle of controlling encapsulation in an object-oriented language is to
limit access to class members, namely attributes and methods, according to the
requirements of the application architecture. Each member is defined with a
scope. The scope is that part of the program text in which the member is visible,
i.e., can be accessed by mentioning its name. Usually, the scope is statically
defined, by the structure of the program. It can also be dynamically defined,
namely during execution, if names are used (see below).

Programming languages usually give a default scope to each member when
it is declared. This default can be altered with special keywords. Typical key-
words used are public, private, and protected. Unfortunately, different languages
use these terms to define slightly different scopes. Visibility in programming lan-
guages is a tricky concept. In the spirit of [54], we will try to bring order to this
chaos.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 513

SubSubC

I3I2 ... In

SubC

C

...

I1

to Smalltalk and Oz
‘‘private’’ according

Class hierarchy

Instances

Region of visibility for
object I3: all private
attributes in this region
are visible to I3

=

to C++ and Java
‘‘private’’ according

Figure 7.7: The meaning of “private”

Private and public scopes (in the ADT sense)

The two most basic scopes are private and public, with the following meanings:

• A private member is one which is only visible in the object instance. The
object instance can see all members defined in its class and its superclasses.
Thus private defines a kind of vertical visibility.

• A public member is one which is visible anywhere in the program.

In both Smalltalk and Oz, attributes are private and methods are public according
to this definition.

These definitions of private and public are natural if classes are used to con-
struct ADTs. Let us see why:

• First of all, a class is not the same thing as the ADT it defines! The class
is an increment; it defines an ADT as an incremental modification of its
superclasses. The class is only needed during the ADT’s construction. The
ADT is not an increment; it stands on its own, with all its own attributes
and methods. Many of these may come from the superclasses and not from
the class.

• Second, attributes are internal to the ADT and should be invisible from the
outside. This is exactly the definition of private.

• Finally, methods make up the external interface of the ADT, so they should
be visible to all entities that reference the ADT. This is exactly the definition
of public.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

514 Object-Oriented Programming

Constructing other scopes

Techniques for writing programs to control encapsulation are based essentially on
two concepts: lexical scoping and name values. The private and public scopes
defined above can be implemented with these two concepts. However, many other
scopes can also be expressed using name values and lexical scoping. For example,
it is possible to express the private and protected scopes of C++ and Java, as well
as write programs that have much more elaborate security policies. The basic
technique is to let method heads be name values instead of atoms. A name is
an unforgeable constant; the only way to know a name is if someone gives you a
reference to it (see Section 3.7.5 and Appendix B.2). In this way, a program can
pass the reference in a controlled way, to exactly those areas of the program in
which it should be visible.

In the examples of the previous sections, we have used atoms as method labels.
But atoms are not secure: if a third party finds out the atom’s print representation
(either by guessing or by some other way) then he can call the method too. Names
are a simple way to plug this kind of security leak. This is important for a software
development project with well-defined interfaces between different components.
It is even more important for open distributed programs, where code written at
different times by different groups can coexist (see Chapter 11).

Private methods (in the C++ and Java sense)

When a method head is a name value, then its scope is limited to all instances
of the class, but not to subclasses or their instances. This is exactly private in
the sense of C++ and Java. Because of its usefulness, the object system of this
chapter gives syntactic support for this technique. There are two ways to write
it, depending on whether the name is defined implicitly inside the class or comes
from the outside:

• By using a variable identifier as the method head. This implicitly creates a
name when the class is defined and binds it to the variable. For example:

class C
meth A(X)

% Method body
end

end

Method head A is bound to a name. The variable A is only visible inside the
class definition. An instance of C can call method A in any other instance of
C. Method A is invisible to subclass definitions. This is a kind of horizontal
visibility. It corresponds to the concept of private method as it exists in C++
and Java (but not in Smalltalk). As Figure 7.7 shows, private in C++ and
Java is very different from private in Smalltalk and Oz. In Smalltalk and
Oz, private is relative to an object and its classes, e.g., I3 in the figure. In

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 515

C++ and Java, private is relative to a class and its instances, e.g., SubSubC
in the figure.

• By using an escaped variable identifier as the method head. This syntax
indicates that we will declare and bind the variable identifier outside of the
class. When the class is defined then the method head is bound to whatever
the variable is bound to. This is a very general mechanism that can be used
to protect methods in many ways. It can also be used for other purposes
than security (see Section 7.2.5). Here is an example that does exactly the
same as the previous case:

local
A={NewName}

in
class C

meth !A(X)
% Method body

end
end

end

This creates a name at class definition time, just like in the previous case,
and binds the method head to it. In fact, the previous definition is just a
short-hand for this example.

Letting the programmer determine the method label allows to define a security
policy at a very fine grain. The program can pass the method label to exactly
those entities who need to know it.

Protected methods (in the C++ sense)

By default, methods in the object system of this chapter are public. Using names,
we can construct the concept of a protected method, including both the C++
version and the Java version. In C++, a method is protected if it is accessible
only in the class it is defined or in descendant classes (and all instance objects
of these classes). The protected concept is a combination of the Smalltalk notion
of private with the C++/Java notion of private: it has both a horizontal and
vertical component. Let us show how to express the C++ notion of protected.
The Java notion of protected is somewhat different; we leave it to an exercise. In
the following class, method A is protected:

class C
attr pa:A
meth A(X) skip end
meth foo(...) { self A(5)} end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

516 Object-Oriented Programming

It is protected because the attribute pa stores a reference to A. Now create a
subclass C1 of C. We can access method A as follows in the subclass:

class C1 from C
meth b(...) A=@pa in { self A(5)} end

end

Method b accesses the method with label A through the attribute pa , which exists
in the subclass. The method label can be stored in the attribute because it is
just a value.

Attribute scopes

Attributes are always private. The only way to make them public is by means of
methods. Because of dynamic typing, it is possible to define generic methods that
give read and write access to all attributes. The class Inspector in Section 7.2.6
shows one way to do this. Any class that inherits from Inspector will have all
its attributes potentially be public. Atom attributes are not secure since they
can be guessed. Name attributes are secure even when using Inspector , since
they cannot be guessed.

Atoms or names as method heads?

When should one use an atom or a name as a method head? By default, atoms
are visible throughout the whole program and names are visible only in the lexical
scope of their creation. We can give a simple rule when implementing ADTs: for
internal methods use names and for external methods use atoms.

Most popular object-oriented programming languages (e.g., Smalltalk, C++,
and Java) support only atoms as method heads, not names. These languages
make atoms usable by adding special operations to restrict their visibility (e.g.,
private and protected declarations). On the other hand, names are practical
too. Their visibility can be extended by passing around references. But the
capability-based approach exemplified by names has not yet become popular.
Let us look more closely at the trade-offs in using names versus atoms.

Atoms are uniquely identified by their print representations. This means they
can be stored in program source files, in emails, on Web pages, etc. In particular,
they can be stored in the programmer’s head! When writing a large program, a
method can be called from anywhere by just giving its print representation. On
the other hand, with names this is more awkward: the program itself has somehow
to pass the name to the caller. This adds some complexity to the program as
well as being a burden for the programmer. So atoms win out both for program
simplicity and for the psychological comfort factor during development.

Names have other advantages. First, it is impossible to have conflicts with
inheritance (either single or multiple). Second, encapsulation can be better man-
aged, since an object reference does not necessarily have the right to call all the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 517

Inheritance

‘‘Static’’ approach:
at class definition time

‘‘Dynamic’’ approaches:
at object creation time

Loose bindingTight binding between original object/class
and derived object/class

common self no common selfcommon self

defined on classes defined on objects defined on objects

ForwardingDelegation

Figure 7.8: Different ways to extend functionality

object’s methods. Therefore, the program as a whole can be made less error-
prone and better structured. A final point is that names can be given syntactic
support to simplify their use. For example, in the object system of this chapter
it suffices to capitalize the method head.

7.3.4 Forwarding and delegation

Inheritance is one way to reuse already-defined functionality when defining new
functionality. Inheritance can be tricky to use well, because it implies a tight
binding between the original class and its extension. Sometimes it is better to
use looser approaches. Two such approaches are forwarding and delegation. Both
are defined at the level of objects: if object Obj1 does not understand message
M, then M is passed transparently to object Obj2 . Figure 7.8 compares these
approaches with inheritance.

Forwarding and delegation differ in how they treat self . In forwarding, Obj1

and Obj2 keep their separate identities. A self call in Obj2 will stay in Obj2 . In
delegation, there is just one identity, namely that of Obj1 . A self call in Obj2

will call Obj1 . We say that delegation, like implementation inheritance, implies
a common self. Forwarding does not imply a common self.

Let us show how to express forwarding and delegation. We define special
object creation functions, NewF and NewD, for forwarding and delegation. We
are helped in this by the flexibility of our object system: we use the otherwise

method, messages as values, and the dynamic creation of classes. We start with
forwarding since it is the simplest.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

518 Object-Oriented Programming

Forwarding

An object can forward to any other object. In the object system of this chapter,
this can be implemented with the otherwise(M) method (see Section 7.2.5).
The argument Mis a first-class message that can be passed to another object. Let
us define NewF, a version of New that creates objects that can forward:

local
class ForwardMixin

attr Forward:none
meth setForward(F) Forward:=F end
meth otherwise(M)

if @Forward==none then raise undefinedMethod end
else {@Forward M} end

end
end

in
fun {NewF Class Init}

{New class $ from Class ForwardMixin end Init}
end

end

Objects created with NewF have a method setForward(F) that lets them set
dynamically the object to which they will forward messages they do not under-
stand. Let us create two objects Obj1 and Obj2 such that Obj2 forwards to
Obj1 :

class C1
meth init skip end
meth cube(A B) B=A*A*A end

end

class C2
meth init skip end
meth square(A B) B=A*A end

end

Obj1={NewF C1 init}
Obj2={NewF C2 init}
{Obj2 setForward(Obj1)}

Doing {Obj2 cube(10 X)} will cause Obj2 to forward the message to Obj1 .

Delegation

Delegation is a powerful way to structure a system dynamically [113]. It lets us
build a hierarchy among objects instead of among classes. Instead of an object
inheriting from a class (at class definition time), we let an object delegate to
another object (at object creation time). Delegation can achieve the same effects

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 519

local
SetSelf={NewName}
class DelegateMixin

attr this Delegate:none
meth !SetSelf(S) this:=S end
meth set(A X) A:=X end
meth get(A ?X) X=@A end
meth setDelegate(D) Delegate:=D end
meth Del(M S) SS in

SS=@this this:=S
try { self M} finally this:=SS end

end
meth call(M) SS in

SS=@this this:= self
try { self M} finally this:=SS end

end
meth otherwise(M)

if @Delegate==none then
raise undefinedMethod end

else
{@Delegate Del(M @this)}

end
end

end
in

fun {NewD Class Init}
Obj={New class $ from Class DelegateMixin end Init}

in
{Obj SetSelf(Obj)}
Obj

end
end

Figure 7.9: Implementing delegation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

520 Object-Oriented Programming

as inheritance, with two main differences: the hierarchy is between objects, not
classes, and it can be changed at any time.

Given any two objects Obj1 and Obj2 , we suppose there exists a method
setDelegate such that {Obj2 setDelegate(Obj1)} sets Obj2 to delegate to
Obj1 . In other words, Obj1 behaves as the “superclass” of Obj2 . Whenever a
method is invoked that is not defined in Obj2 , the method call will be retried
at Obj1 . The delegation chain can grow to any length. If there is an Obj3 that
delegates to Obj2 , then calling Obj3 can climb up the chain all the way to Obj1 .

An important property of the delegation semantics is that self is always pre-
served: it is the self of the original object that initiated the delegation chain. It
follows that the object state (the attributes) is also the state of the original object.
In that sense, the other objects play the role of classes: in a first instance, it is
their methods that are important in delegation, not the values of their attributes.

Let us implement delegation using our object system. Figure 7.9 gives the
implementation of NewD, which is used instead of Newto create objects. In order
to use delegation, we impose the following syntactic constraints on how the object
system must be used:

Operation Original syntax Delegation syntax
Object call { 〈obj〉 M} { 〈obj〉 call(M)}

Self call { self M} {@this M}

Get attribute @〈attr〉 {@this get(〈attr〉 $)}

Set attribute 〈attr〉:=X {@this set(〈attr〉 X)}

Set delegate { 〈obj〉1 setDelegate(〈obj〉2)}

These syntactic constraints could be eliminated by an appropriate linguistic ab-
straction. Now let us give a simple example of how delegation works. We define
two objects Obj1 and Obj2 and let Obj2 delegate to Obj1 . We give each object
an attribute i and a way to increment it. With inheritance this would look as
follows:

class C1NonDel
attr i:0
meth init skip end
meth inc(I) i:=@i+I end
meth browse { self inc(10)} {Browse c1#@i} end
meth c { self browse} end

end

class C2NonDel from C1NonDel
attr i:0
meth init skip end
meth browse { self inc(100)} {Browse c2#@i} end

end

With our delegation implementation we can get the same effect by using the code
of Figure 7.10. It is more verbose, but that is only because the system has no

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 521

class C1
attr i:0
meth init skip end
meth inc(I)

{@this set(i {@this get(i $)}+I)}
end
meth browse

{@this inc(10)}
{Browse c1#{@this get(i $)}}

end
meth c {@this browse} end

end
Obj1={NewD C1 init}

class C2
attr i:0
meth init skip end
meth browse

{@this inc(100)}
{Browse c2#{@this get(i $)}}

end
end
Obj2={NewD C2 init}
{Obj2 setDelegate(Obj1)}

Figure 7.10: An example of delegation

syntactic support for delegation. It is not due to the concept itself. Note that
this just scratches the surface of what we could do with delegation. For example,
by calling setDelegate again we could change the hierarchy of the program at
run-time. Let us now call Obj1 and Obj2 :

{Obj2 call(c)}
{Obj1 call(c)}

Doing these calls several times shows that each object keeps its own local state,
that Obj2 “inherits” the inc and c methods from object Obj1 , and that Obj2

“overrides” the browse method. Let us make the delegation chain longer:

class C2b
attr i:0
meth init skip end

end
ObjX={NewD C2b init}
{ObjX setDelegate(Obj2)}

ObjX inherits all its behavior from Obj2 . It is identical to Obj2 except that it
has a different local state. The delegation hierarchy now has three levels: ObjX ,
Obj2 , and Obj1 . Let us change the hierarchy by letting ObjX delegate to Obj1 :

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

522 Object-Oriented Programming

{ObjX setDelegate(Obj1)}
{ObjX call(c)}

In the new hierarchy, ObjX inherits its behavior from Obj1 . It uses the browse

method of Obj1 , so it will increment by 10 instead of by 100.

7.3.5 Reflection

A system is reflective if it can inspect part of its execution state while it is
running. Reflection can be purely introspective (only reading the internal state,
without modifying it) or intrusive (both reading and modifying the internal state).
Reflection can be done at a high or low level of abstraction. One example of
reflection at a high level would be the ability to see the entries on the semantic
stack as closures. It can be explained simply in terms of the abstract machine.
On the other hand, the ability to read memory as an array of integers is reflection
at a low level. There is no simple way to explain it in the abstract machine.

Meta-object protocols

Object-oriented programming, because of its richness, is a particularly fertile area
for reflection. For example, the system could make it possible to examine or even
change the inheritance hierarchy, while a program is running. This is possible
in Smalltalk. The system could make it possible to change how objects execute
at a basic level, e.g., how inheritance works (how method lookup is done in the
class hierarchy) and how methods are called. The description of how an object
system works at a basic level is called a meta-object protocol. The ability to
change the meta-object protocol is a powerful way to modify an object system.
Meta-object protocols are used for many purposes: debugging, customizing, and
separation of concerns (e.g., transparently adding encryption or format changes
to method calls). Meta-object protocols were originally invented in the context
of the Common Lisp Object System (CLOS) [100, 140]. They are an active area
of research in object-oriented programming.

Method wrapping

A common use of meta-object protocols is to do method wrapping, that is, to
intercept each method call, possibly performing a user-defined operation before
and after the call and possibly changing the arguments to the call itself. In our
object system, we can implement this in a simple way by taking advantage of
the fact that objects are one-argument procedures. For example, let us write a
tracer to track the behavior of an object-oriented program. The tracer should
display the method label whenever we enter a method and exit a method. Here
is a version of New that implements this:

fun {TraceNew Class Init}
Obj={New Class Init}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.3 Classes as incremental ADTs 523

proc {TracedObj M}
{Browse entering({Label M})}
{Obj M}
{Browse exiting({Label M})}

end
in TracedObj end

An object created with TraceNew behaves identically to an object created with
New, except that method calls (except for calls to self) are traced. The defi-
nition of TraceNew uses higher-order programming: the procedure TracedObj

has the external reference Obj . This definition can easily be extended to do more
sophisticated wrapping. For example, the message M could be transformed in
some way before being passed to Obj .

A second way to implement TraceNew is to do the wrapping with a class
instead of a procedure. This traces all method calls including calls to self . This
gives the following definition:

fun {TraceNew2 Class Init}
Obj={New Class Init}
TInit={NewName}
class Tracer

meth !TInit skip end
meth otherwise(M)

{Browse entering({Label M})}
{Obj M}
{Browse exiting({Label M})}

end
end

in {New Tracer TInit} end

This uses dynamic class creation, the otherwise method, and a fresh name
TInit for the initialization method to avoid conflicts with other method labels.

Reflection of object state

Let us show a simple but useful example of reflection in object-oriented program-
ming. We would like to be able to read and write the whole state of an object,
independent of the object’s class. The Mozart object system provides this ability
through the class ObjectSupport.reflect . Inheriting from this class gives the
following three additional methods:

• clone(X) creates a clone of self and binds it to X. The clone is a new
object with the same class and the same values of attributes.

• toChunk(X) binds to X a protected value (a “chunk”) that contains the
current values of the attributes.

• fromChunk(X) sets the object state to X, where X was obtained from a
previous call of toChunk .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

524 Object-Oriented Programming

A chunk is like a record but with a restricted set of operations. It is protected in
the sense that only authorized programs can look inside it (see Appendix B.4).
Chunks can be implemented with procedure values and names, as explained in
Section 3.7.5. Let us extend the Counter class we saw before to do state reflec-
tion:

class Counter from ObjectSupport.reflect
attr val
meth init(Value)

val:=Value
end
meth browse

{Browse @val}
end
meth inc(Value)

val:=@val+Value
end

end

We can define two objects:

C1={New Counter init(0)}
C2={New Counter init(0)}

and then transfer state from one to the other:

{C1 inc(10)}
local X in {C1 toChunk(X)} {C2 fromChunk(X)} end

At this point C2 also has the value 10. This is a simplistic example, but state
reflection is actually a very powerful tool. It can be used to build generic ab-
stractions on objects, i.e., abstractions that work on objects of any class.

7.4 Programming with inheritance

All the programming techniques of stateful programming and declarative pro-
gramming are still possible in the object system of this chapter. Particularly use-
ful are techniques that are based on encapsulation and state to make programs
modular. See the previous chapter, and especially the discussion of component-
based programming, which relies on encapsulation.

This section focuses on the new techniques that are made possible by object-
oriented programming. All these techniques center around the use of inheritance:
first, using it correctly, and then, taking advantage of its power.

7.4.1 The correct use of inheritance

There are two ways to view inheritance:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 525

VerboseAccount

Account

AccountWithFee

Figure 7.11: A simple hierarchy with three classes

• The type view. In this view, classes are types and subclasses are subtypes.
For example, take a LabeledWindow class that inherits from a Window

class. All labeled windows are also windows. The type view is consistent
with the principle that classes should model real-world entities or some
abstract versions of them. In the type view, classes satisfy the substitution
property: every operation that works for an object of class C also works for
objects of a subclass of C. Most object-oriented languages, such as Java and
Smalltalk, are designed for the type view [63, 60]. Section 7.4.1 explores
what happens if we do not respect the type view.

• The structure view. In this view, inheritance is just another program-
ming tool that is used to structure programs. This view is strongly dis-
couraged because classes no longer satisfy the substitution property. The
structure view is an almost unending source of bugs and bad designs. Ma-
jor commercial projects, which shall here remain anonymous, have failed for
this reason. A few object-oriented languages, notably Eiffel, are designed
from the start to allow both the type and structure views [122].

In the type view, each class stands on its own two feet, so to speak, as a bona fide
ADT. This is even true for classes that have subclasses; from the viewpoint of
the subclass, the class is an ADT, with sole access through the methods and its
attributes hidden. In the structure view, classes are sometimes just scaffolding,
which exists only for its role in structuring the program.

In the vast majority of cases, inheritance should respect the type view. Doing
otherwise gives subtle and pernicious bugs that can poison a whole system. Let
us give an example. We take as base class the Account class we saw before,
which is defined in Figure 7.6. We will extend it in two ways. The first extension
is conservative, i.e., it respects the type view:

class VerboseAccount from Account

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

526 Object-Oriented Programming

meth verboseTransfer(Amt)
{ self transfer(Amt)}
{Browse ´ Balance: ´ #@balance}

end
end

We simply add a new method verboseTransfer . Since the existing methods
are not changed, this implies that a VerboseAccount object will work correctly
in all cases where an Account object works. Let us now do a second, more
dangerous extension:

class AccountWithFee from VerboseAccount
attr fee:5
meth transfer(Amt)

VerboseAccount,transfer(Amt-@fee)
end

end

Figure 7.11 shows the resulting hierarchy. The open arrowhead in this figure is
the usual notation to represent an inheritance link. AccountWithFree overrides
the method transfer . Overriding is not a problem in of itself. The problem
is that an AccountWithFee object does not work correctly when viewed as an
Account object. They do not satisfy the same invariant. Consider the sequence
of three calls:

{A getBalance(B)}
{A transfer(S)}
{A getBalance(B2)}

If A is an Account object, this implies B+S=B2. If A is an AccountWithFee

object, this implies B+S-@fee=B2 . This will break any program that relies on
the behavior of Account objects. Typically, the origin of the break will not
be obvious, since it is carefully hidden inside a method somewhere in a large
application. It will appear long after the change was made, as a slight imbalance
in the books. Debugging such “slight” problems is amazingly difficult and time-
consuming.

The rest of this section primarily considers the type view. Almost all uses
of inheritance should respect the type view. However, the structure view is oc-
casionally useful. Its main use is in changing the behavior of the object system
itself. For this purpose, it should be used only by expert language implementors
who clearly understand the ramifications of what they are doing. A simple ex-
ample is method wrapping (see Section 7.3.5), which requires using the structure
view. For more information, we recommend [122] for a deeper discussion of the
type view versus the structure view.

A cautionary tale

We end the discussion on the correct use of inheritance with a cautionary tale.
Some years ago, a well-known company initiated an ambitious project based

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 527

NilClass ConsClass

ListClass

Figure 7.12: Constructing a hierarchy by following the type

on object-oriented programming. Despite a budget of several billion dollars, the
project failed. Among many reasons for the failure was an incorrect use of object-
oriented programming, in particular concerning inheritance. Two major mistakes
were made:

• The substitution property was regularly violated. Routines that worked
correctly with objects of a given class did not work with objects of a sub-
class. This made it much more difficult to use objects: instead of one
routine being sufficient for many classes, many routines were needed.

• Classes were subclassed to fix small problems. Instead of fixing the class
itself, a subclass was defined to patch the class. This was done so frequently
that it gave layers upon layers of patches. Object invocations were slowed
down by an order of magnitude. The class hierarchy became unnecessarily
deep, which increased complexity of the system.

The lesson to heed is to be careful to use inheritance in a correct way. Respect the
substitution property whenever possible. Use inheritance to add new functionality
and not to patch a broken class. Study common design patterns to learn the
correct use of inheritance.

Reengineering At this point, we should mention the discipline of reengineer-
ing, which can be used to fix architectural problems like these two incorrect uses
of inheritance [44, 15]. The general goal of reengineering is to take an existing sys-
tem and attempt to improve some of its properties by changing the source code.
Many properties can be improved in this way: system architecture, modularity,
performance, portability, quality of documentation, and use of new technology.
However, reengineering cannot resurrect a failed project. It is more like curing a
disease. If the designer has a choice, the best approach remains to prevent the
disease, i.e., to design a system so that it can be adapted to changing require-
ments. In Section 6.7 and throughout the book, we give design principles that
work towards this goal.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

528 Object-Oriented Programming

class ListClass
meth isNil(_) raise undefinedMethod end end
meth append(_ _) raise undefinedMethod end end
meth display raise undefinedMethod end end

end

class NilClass from ListClass
meth init skip end
meth isNil(B) B= true end
meth append(T U) U=T end
meth display {Browse nil} end

end

class ConsClass from ListClass
attr head tail
meth init(H T) head:=H tail:=T end
meth isNil(B) B= false end
meth append(T U)

U2={@tail append(T $)}
in

U={New ConsClass init(@head U2)}
end
meth display {Browse @head} {@tail display} end

end

Figure 7.13: Lists in object-oriented style

7.4.2 Constructing a hierarchy by following the type

When writing programs with recursion, we saw in Section 3.4.2 that it is a good
idea to define first the type of the data structure, and then to construct the
recursive program by following the type. We can use a similar idea to construct
inheritance hierarchies. For example, consider the list type 〈List T〉, which is
defined as:

〈List T〉 ::= nil

| T ´ | ´ 〈List T〉

This says that a list is either nil or a list pair. Let us implement the list ADT
in the class ListClass . Following the type definition means that we define two
other classes that inherit from ListClass , which we can call NilClass and
ConsClass . Figure 7.12 shows the hierarchy. This hierarchy is a natural design
to respect the substitution principle. An instance of NilClass is a list, so it is
easy to use it wherever a list is required. The same holds for ConsClass .

Figure 7.13 defines a list ADT that follows this hierarchy. In this figure,
ListClass is an abstract class: a class in which some methods are left unde-
fined. Trying to call the methods isNil , append , and display will raise an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 529

class GenericSort
meth init skip end
meth qsort(Xs Ys)

case Xs
of nil then Ys = nil
[] P|Xr then S L in

{ self partition(Xr P S L)}
{Append { self qsort(S $)}

P|{ self qsort(L $)} Ys}
end

end
meth partition(Xs P Ss Ls)

case Xs
of nil then Ss=nil Ls=nil
[] X|Xr then Sr Lr in

if { self less(X P $)} then
Ss=X|Sr Ls=Lr

else
Ss=Sr Ls=X|Lr

end
{ self partition(Xr P Sr Lr)}

end
end

end

Figure 7.14: A generic sorting class (with inheritance)

exception. Abstract classes are not intended to be instantiated, since they lack
some methods. The idea is to define another class that inherits from the ab-
stract class and that adds the missing methods. This gives a concrete class,
which can be instantiated since it defines all the methods it calls. NilClass and
ConsClass are concrete classes. They define the methods isNil , append , and
display . The call {L1 append(L2 L3)} binds L3 to the concatenation of L1

and L2 , without changing L1 or L2 . The call {L display} displays the list. Let
us now do some calculations with lists:

L1={New ConsClass
init(1 {New ConsClass

init(2 {New NilClass init})})}
L2={New ConsClass init(3 {New NilClass init})}
L3={L1 append(L2 $)}
{L3 display}

This creates two lists L1 and L2 and concatenates them to form L3 . It then
displays the contents of L3 in the browser, as 1, 2, 3, nil .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

530 Object-Oriented Programming

class IntegerSort from GenericSort
meth less(X Y B)

B=(X<Y)
end

end

class RationalSort from GenericSort
meth less(X Y B)

´ / ´ (P Q)=X
´ / ´ (R S)=Y

in B=(P*S<Q*R) end
end

Figure 7.15: Making it concrete (with inheritance)

IntegerSort RationalSort

GenericSort

Figure 7.16: A class hierarchy for genericity

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 531

fun {MakeSort Less}
class $

meth init skip end
meth qsort(Xs Ys)

case Xs
of nil then Ys = nil
[] P|Xr then S L in

{ self partition(Xr P S L)}
{Append { self qsort(S $)}

P|{ self qsort(L $)} Ys}
end

end
meth partition(Xs P Ss Ls)

case Xs
of nil then Ss=nil Ls=nil
[] X|Xr then Sr Lr in

if {Less X P} then
Ss=X|Sr Ls=Lr

else
Ss=Sr Ls=X|Lr

end
{ self partition(Xr P Sr Lr)}

end
end

end
end

Figure 7.17: A generic sorting class (with higher-order programming)

7.4.3 Generic classes

A generic class is one that only defines part of the functionality of an ADT. It has
to be completed before it can be used to create objects. Let us look at two ways to
define generic classes. The first way, often-used in object-oriented programming,
uses inheritance. The second way uses higher-order programming. We will see
that the first way is just a syntactic variation of the second. In other words,
inheritance can be seen as a programming style that is based on higher-order
programming.

Using inheritance

A common way to make classes more generic in object-oriented programming
is to use abstract classes. For example, Figure 7.14 defines an abstract class
GenericSort for sorting a list. This class uses the quicksort algorithm, which
needs a boolean comparison operation. The boolean operation’s definition de-
pends on the type of data that is sorted. Other classes can inherit from GenericSort

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

532 Object-Oriented Programming

IntegerSort = {MakeSort fun {$ X Y} X<Y end }

RationalSort = {MakeSort fun {$ X Y}
´ / ´ (P Q) = X
´ / ´ (R S) = Y

in P*S<Q*R end }

Figure 7.18: Making it concrete (with higher-order programming)

and add definitions of less , for example, for integers, rationals, or strings. In this
case, we specialize the abstract class to form a concrete class, i.e., a class in which
all methods are defined. Figure 7.15 defines the concrete classes IntegerSort

and RationalSort , which both inherit from GenericSort . Figure 7.16 shows
the resulting hierarchy.

Using higher-order programming

There is a second natural way to create generic classes, namely by using higher-
order programming directly. Since classes are first-class values, we can define a
function that takes some arguments and returns a class that is specialized with
these arguments. Figure 7.17 defines the function MakeSort that takes a boolean
comparison as its argument and returns a sorting class specialized with this com-
parison. Figure 7.18 defines two classes, IntegerSort and RationalSort , that
can sort lists of integers and lists of rational numbers (the latter represented as
pairs with label ´ / ´). Now we can execute the following statements:

ISort={New IntegerSort init}
RSort={New RationalSort init}

{Browse {ISort qsort([1 2 5 3 4] $)}}
{Browse {RSort qsort([´ / ´ (23 3) ´ / ´ (34 11) ´ / ´ (47 17)] $)}}

Discussion

It is clear that we are using inheritance to “plug in” one operation into another.
This is just a form of higher-order programming, where the first operation is
passed to the second. What is the difference between the two techniques? In most
programming languages, the inheritance hierarchy must be defined at compile
time. This gives a static genericity. Because it is static, the compiler may be able
to generate better code or do more error checking. Higher-order programming,
when it is possible, lets us define new classes at run-time. This gives a dynamic
genericity, which is more flexible.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 533

7.4.4 Multiple inheritance

Multiple inheritance is useful when an object has to be two different things in
the same program. For example, consider a graphical display that can show a
variety of geometrical figures, including circles, lines, and more complex figures.
We would like to define a “grouping” operation that can combine any number
of figures into a single, composite figure. How can we model this with object-
oriented programming? We will design a simple, fully working program. We will
use multiple inheritance to add the grouping ability to figures. The idea for this
design comes from Bertrand Meyer [122]. This program can easily be extended
to a full-fledged graphics package.

Geometric figures

We first define the class Figure to model geometric figures, with methods init

(initialize the figure), move(X Y) (move the figure), and display (display the
figure):

class Figure
meth otherwise(M)

raise undefinedMethod end
end

end

This is an abstract class; any attempt to invoke its methods will raise an excep-
tion. Actual figures are instances of subclasses of Figure . For example, here is
a Line class:

class Line from Figure
attr canvas x1 y1 x2 y2
meth init(Can X1 Y1 X2 Y2)

canvas:=Can
x1:=X1 y1:=Y1
x2:=X2 y2:=Y2

end
meth move(X Y)

x1:=@x1+X y1:=@y1+Y
x2:=@x2+X y2:=@y2+Y

end
meth display

{@canvas create(line @x1 @y1 @x2 @y2)}
end

end

and here is a Circle class:

class Circle from Figure
attr canvas x y r
meth init(Can X Y R)

canvas:=Can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

534 Object-Oriented Programming

LinkedList

elem
next

init
add(F)

forall(P)

display
move(X Y)

init

display
move(X Y)

init

display
move(X Y)

init

Figure

Methods

Attributes

Inheritance

Line

canvas

x2, y2
x1, y1

Circle

canvas
x, y

r

CompositeFigure

Figure 7.19: Class diagram of the graphics package

x:=X y:=Y r:=R
end
meth move(X Y)

x:=@x+X y:=@y+Y
end
meth display

{@canvas create(oval @x-@r @y-@r @x+@r @y+@r)}
end

end

Figure 7.19 shows how Line and Circle inherit from Figure . This kind of
diagram is called a class diagram. It is a part of UML, the Uniform Model-
ing Language, a widely-used set of techniques for modeling object-oriented pro-
grams [54]. Class diagrams are a useful way to visualize the class structure of
an object-oriented program. Each class is represented by a rectangle with three
parts, containing the class name, the attributes it defines, and the methods it
defines. These rectangles can be connected with lines representing inheritance
links.

Linked lists

We define the class LinkedList to group figures together, with methods init

(initialize the linked list), add(F) (add a figure), and forall(M) (execute {F

M} for all figures):

class LinkedList
attr elem next

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 535

meth init(elem:E<=null next:N<=null)
elem:=E next:=N

end
meth add(E)

next:={New LinkedList init(elem:E next:@next)}
end
meth forall(M)

if @elem\=null then {@elem M} end
if @next\=null then {@next forall(M)} end

end
end

The forall(M) method is especially interesting because it uses first-class mes-
sages. A linked list is represented as a sequence of instances of this class. The
next field of each instance refers to the next one in the list. The last element
has the next field equal to null . There is always at least one element in the
list, called the header. The header is not an element that it seen by users of the
linked list; it is just needed for the implementation, The header always has the
elem field equal to null . Therefore an empty linked list corresponds to a header
node with both elem and next fields equal to null .

Composite figures

What is a composite figure? It is both a figure and a linked list of figures. There-
fore we define a class CompositeFigure that inherits from both Figure and
LinkedList :

class CompositeFigure from Figure LinkedList
meth init

LinkedList,init
end
meth move(X Y)

{ self forall(move(X Y))}
end
meth display

{ self forall(display)}
end

end

Figure 7.19 shows the multiple inheritance. The multiple inheritance is correct
because the two functionalities are completely different and have no undesir-
able interaction. The init method is careful to initialize the linked list. It
does not need to initialize the figure. As in all figures, there is a move and a
display method. The move(X Y) method moves all figures in the linked list.
The display method displays all figures in the linked list.

Do you see the beauty of this design? With it, a figure can consist of other
figures, some of which consist of other figures, and so forth, to any number of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

536 Object-Oriented Programming

Figure 7.20: Drawing in the graphics package

levels. The inheritance structure guarantees that moving and displaying will
always work correctly.

Example execution

Let us run this example. First, we set up a window with a graphics display field:

declare
W=250 H=150 Can
Window={QTk.build td(canvas(width:W height:H bg:white handle:Can))}
{Window show}

This uses the QTk graphics tool, which is explained in Chapter 10. For now just
assume that this sets up a canvas, which is the drawing field for our geometric
figures. Next, we define a composite figure F1 containing a triangle and a circle:

declare
F1={New CompositeFigure init}
{F1 add({New Line init(Can 50 50 150 50)})}
{F1 add({New Line init(Can 150 50 100 125)})}
{F1 add({New Line init(Can 100 125 50 50)})}
{F1 add({New Circle init(Can 100 75 20)})}

We can display this figure as follows:

{F1 display}

This displays the figure once. Let us move the figure around and display it each
time:

for I in 1..10 do {F1 display} {F1 move(3 ˜2)} end

Figure 7.20 shows the result.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 537

Figure

LinkedList

elem
next

init
add(F)

forall(P)

CompositeFigure

init

figlist

move(X Y)
display

add(F)

Association

1 1

Figure 7.21: Class diagram with an association

Composite figures with single inheritance

Instead of defining CompositeFigure with multiple inheritance, we can define it
using single inheritance by putting the list of figures in an attribute. This gives:

class CompositeFigure from Figure
attr figlist
meth init

figlist:={New LinkedList init}
end
meth add(F)

{@figlist add(F)}
end
meth move(X Y)

{@figlist forall(move(X Y))}
end
meth display

{@figlist forall(display)}
end

end

Figure 7.21 shows the class diagram for this case. The link between CompositeFigure

and LinkedList is called an association. It represents a relationship between
the two classes. The numbers attached to the two ends are cardinalities; each
number says how many elements there are for a particular instance. The number
1 on the linked list side means that there is exactly one linked list per composite
figure, and similarly for the other side. The association link is a specification;
it does not say how it is implemented. In our case, each composite figure has a
figlist attribute that references a linked list.

The example execution we gave before will also work in the single inheri-
tance case. What are the trade-offs in using single or multiple inheritance in this

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

538 Object-Oriented Programming

example? In both cases, the figures that make up the composite figure are encap-
sulated. The main difference is that multiple inheritance brings the operations of
linked lists up to the same level as figures:

• With multiple inheritance, a composite figure is also a linked list. All
the operations of the LinkedList class can be used directly on composite
figures. This is important if we want to do linked list calculations with
composite figures.

• With single inheritance, a composite figure completely hides its structure.
This is important if we want to protect the composite figure from any
calculations other than those defined in its class.

Scaling it up

It is straightforward to extend this example to be a full-fledged graphics package.
Here are some of the changes that should be made:

• Many more figures can be defined to inherit from Figure .

• In the current implementation, figures are tied to their canvas. This has
the advantage that it allows figures to be spread over multiple canvasses.
But usually we will not want this ability. Rather, we would like to be able
to draw the same figure on different canvasses. This means that the canvas
should not be an attribute of figure objects but be passed as argument to
the display method.

• A journaling facility can be added. That is, it should be possible to record
sequences of drawing commands, i.e., sequences of calls to figures, and ma-
nipulate the recordings as first-class entities. These recordings represent
drawings at a high level of abstraction. They can then be manipulated by
the application, stored on files, passed to other applications, etc.

• The display method should be able to pass arbitrary parameters from
the application program, through the graphics package, to the underlying
graphics subsystem. In the Line and Circle classes, we change it as
follows:

meth display(...)=M
{@canvas {Adjoin M create(line @x1 @y1 @x2 @y2)}}

end

The Adjoin operation combines two record arguments, where the second
argument overrides the first in the case of conflicts. This allows arbitrary
parameters to be passed through display to the canvas drawing command.
For example, the call {F display(fill:red width:3)} draws a red fig-
ure of width 3.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 539

7.4.5 Rules of thumb for multiple inheritance

Multiple inheritance is a powerful technique that has to be used with care. We
recommend that you use multiple inheritance as follows:

• Multiple inheritance works well when combining two completely indepen-
dent abstractions. For example, figures and linked lists have nothing in
common, so they can be combined fruitfully.

• Multiple inheritance is much harder to use correctly when the abstractions
have something in common. For example, creating a WorkStudy class from
Student and Employee is dubious, because students and employees are
both human beings. They may in fact both inherit from a common Person

class. Even if they do not have a shared ancestor, there can be problems if
they have some concepts in common.

• What happens when sibling superclasses share (directly or indirectly) a
common ancestor class that specifies a stateful object (i.e., it has attributes)?
This is known as the implementation-sharing problem. This can lead to du-
plicated operations on the common ancestor. This typically happens when
initializing an object. The initialization method usually has to initialize its
superclasses, so the common ancestor is initialized twice. The only remedy
is to understand carefully the inheritance hierarchy to avoid such duplica-
tion. Alternatively, you should only inherit from multiple classes that do
not share a stateful common ancestor.

• When name clashes occur, i.e., the same method label is used for adjacent
superclasses, then the program must define a local method that overrides
the conflict-causing methods. Otherwise the object system gives an error
message. A simple way to avoid name clashes is to use name values as
method heads. This is a useful technique for classes, such as mixin classes,
that are often inherited from by multiple inheritance.

7.4.6 The purpose of class diagrams

Class diagrams are excellent tools for visualizing the class structure of an appli-
cation. They are at the heart of the UML approach to modeling object-oriented
applications, and as such they enjoy widespread use. This popularity has often
masked their limitations. They have three clear limitations:

• They do not specify the functionality of a class. For example, if the methods
of a class enforce an invariant, then this invariant does not show up in the
class diagram.

• They do not model the dynamic behavior of the application, i.e., its evo-
lution over time. Dynamic behavior is both large-scale and small-scale.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

540 Object-Oriented Programming

Applications often go through different phases, for which different class di-
agrams are valid. Application are often concurrent, with independent parts
that interact in coordinated ways.

• They only model one level in the application’s component hierarchy. As
Section 6.7 explains, well-structured applications have a hierarchical de-
composition. Classes and objects are near the base of this hierarchy. A
class diagram explains the decomposition at this level.

The UML approach recognizes these limitations and provides tools that partially
alleviate them, e.g., the interaction diagram and the package diagram. Inter-
action diagrams model part of the dynamic behavior. Package diagrams model
components at a higher level in the hierarchy than classes.

7.4.7 Design patterns

When designing a software system, it is common to encounter the same problems
over and over again. The design pattern approach explicitly recognizes this and
proposes solutions to these problems. A design pattern is a technique that solves
one of these common problems. The present book is full of design patterns in
that sense. For example, here are two:

• In declarative programming, Section 3.4.2 introduces the rule of construct-
ing a program by following a type. A program that uses a complicated
recursive data structure can often be written easily by looking at the type
of the data structure. The structure of the program mirrors the type defi-
nition.

• Section 6.4.2 introduces a series of techniques for making an ADT secure
by wrapping the functionality in a secure layer. These techniques are inde-
pendent of what the ADT does; they work for any ADT.

Design patterns were first popularized in an influential book by Gamma, Helm,
Johnson, and Vlissides [58], which gives a catalogue of design patterns in object-
oriented programming and explains how to use them. The catalogue emphasizes
patterns based on inheritance, using the type view. Let us look at a typical
design pattern of this catalogue from the viewpoint of a programmer who thinks
in terms of computation models.

The Composite pattern

Composite is a typical example of a design pattern. The purpose of Composite
is to build hierarchies of objects. Given a class that defines a leaf, the pattern
shows how to use inheritance to define trees. Figure 7.22, taken from Gamma et
al, shows the inheritance diagram of the Composite pattern. The usual way to
use this pattern is to plug in an initial leaf class, Leaf . Then the pattern defines

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.4 Programming with inheritance 541

Leaf Composite

Component

operation

add(Component)
operation

children

operation
add(Component)

remove(Component)
getChild(Int)

remove(Component)
getChild(Int)

Figure 7.22: The Composite pattern

both the Composite and Component classes. Component is an abstract class.
The hierarchy is either an instance of Leaf or Composite .

We can use the Composite pattern to define compound graphic figures. Sec-
tion 7.4.4 solves the problem by combining a figure and a linked list (either with
single or multiple inheritance). The Composite pattern is a more abstract solu-
tion, in that it does not assume that the grouping is done by a linked list. The
Composite class has add and remove operations but does not say how they are
implemented. They could be implemented as a linked list, but they could also be
implemented differently, e.g., as a dictionary or as a declarative list.

Given a class that defines a leaf of the tree, the Composite pattern returns a
class that defines the tree. When put in this way, this sounds much like higher-
order programming: we would like to define a function that accepts a class and
returns another class. Most programming languages, such as C++ and Java, do
not allow defining this function, however. There are two reasons for this. First,
most languages do not consider classes as first-class values. Second, the function
defines a new superclass of the input class. Most languages allow defining new
subclasses but not new superclasses. Yet despite these limitations we would still
like to use the Composite pattern in our programs.

The usual solution to this dilemma is to consider design patterns as primarily
a way to organize one’s thoughts, without necessarily being supported by the pro-
gramming language. A pattern might exist only in the mind of the programmer.
Design patterns can then be used in languages like C++ or Java, even if they
cannot be implemented as abstractions in those languages. This can be made

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

542 Object-Oriented Programming

easier by using a source code preprocessor. The programmer can then program
directly with design patterns, and the preprocessor generates the source code for
the target language.

Supporting the Composite pattern

The object system of this chapter lets us support a grouping pattern very much
like Composite from within the computation model. Let us implement a tree
structure whose leaves and internal nodes are objects. The leaves are instances
of the Leaf class, which is provided at run-time. The internal nodes forward all
method invocations to the leaves in their subtree. The simplest way to implement
this is to define a class Composite for the internal nodes. This class contains a list
of its children, which may be instances of Composite or Leaf . We assume that
all instances have the initialization method init and that Composite instances
have the method add for adding a new subtree.

class Composite
attr children
meth init

children:=nil
end
meth add(E)

children:=E|@nodelist
end
meth otherwise(M)

for N in @children do {N M} end
end

end

If nodes have many subnodes, then it is inefficient to remove nodes in this imple-
mentation. In that situation, using dictionaries instead of lists might be a good
choice. Here is an example of how to construct a tree:

N0={New Composite init}
L1={New Leaf init} {N0 add(L1)}
L2={New Leaf init} {N0 add(L2)}
N3={New Composite init} {N0 add(N3)}
L4={New Leaf init} {N0 add(L4)}

L5={New Leaf init} {N3 add(L5)}
L6={New Leaf init} {N3 add(L6)}
L7={New Leaf init} {N3 add(L7)}

If Leaf is the Figure class of Section 7.4.4, then Composite defines composite
figures.

Enforcing valid trees This implementation works for any Leaf class because
of dynamic typing. The disadvantage of this solution is that the system does not

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.5 Relation to other computation models 543

enforce all leaves to be instances of the same class. Let us add such enforcement
to Composite :

class Composite
attr children valid
meth init(Valid)

children:=nil
@valid=Valid

end
meth add(E)

if {Not {@valid E}} then raise invalidNode end end
children:=E|@children

end
meth otherwise(M)

for N in @children do {N M} end
end

end

When an instance of Composite is initialized, it is given a function Valid , which
is bound to the stateless attribute valid . The function Valid is used to check
the validity of each inserted node.

7.5 Relation to other computation models

“The language does not prevent you from deeply nesting classes,
but good taste should. [...] Nesting more than two levels invites a
readability disaster and should probably never be attempted.”
– The Java Programming Language, Second Edition,
Ken Arnold and James Gosling (1998) [10]

Object-oriented programming is one way to structure programs, which is most
often used together with explicit state. In comparison with other computation
models, it is characterized primarily by its use of inheritance. From the viewpoint
of multiple computation models, inheritance is not a new concept in the kernel
language, but emerges rather from how the class linguistic abstraction is defined.
This section examines how inheritance relates to other higher-order techniques.
This section also examines the commonly-stated desire that “everything should
be an object”, to find out what it means and to what extent it makes sense.

7.5.1 Object-based and component-based programming

Object-based programming is object-oriented programming without inheritance.
This is like component-based programming with class syntax. This gives a con-
venient notation for encapsulating state and defining multiple operations on it.
Without inheritance, the object abstraction becomes much simpler. There are no

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

544 Object-Oriented Programming

problems of overriding and conflict in multiple inheritance. Static and dynamic
binding are identical.

7.5.2 Higher-order programming

Object-oriented programming and higher-order programming are closely related.
For example, let us examine the case of a sorting routine that is parameterized
by an order function. A new sorting routine can be created by giving a particular
order function. In higher-order programming, this can be written as follows:

proc {NewSortRoutine Order ?SortRoutine}
proc {SortRoutine InL OutL}

% ... {Order X Y} calculates order
end

end

In object-oriented programming, this can be written as follows:

class SortRoutineClass
attr ord
meth init(Order)

ord:=Order
end
meth sort(InL OutL)

% ... {@ord order(X Y $)} calculates order
end

end

The order relation itself is written as follows:

proc {Order X Y ?B}
B=(X<Y)

end

or as follows:

class OrderClass
meth init skip end
meth order(X Y B)

B=(X<Y)
end

end

Instantiating the sorting routine is then written as follows:

SortRoutine={NewSortRoutine Order}

or as follows:

SortRoutine={New SortRoutineClass init({New OrderClass init})}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.5 Relation to other computation models 545

Embellishments added by object-oriented programming

It is clear that procedure values and objects are closely related. Let us now com-
pare higher-order and object-oriented programming more carefully. The main
difference is that object-oriented programming “embellishes” higher-order pro-
gramming. It is a richer abstraction that provides a collection of additional
idioms beyond procedural abstraction:

• Explicit state can be defined and used easily.

• Multiple methods that share the same explicit state can be defined easily.
Invoking an object picks one of them.

• Classes are provided, which define a set of methods and can be instantiated.
Each instance has a fresh explicit state. If objects are like procedures, then
classes are like procedures that return procedures.

• Inheritance is provided, to define new sets of methods from existing sets,
by extending, modifying, and combining existing ones. Static and dynamic
binding make this ability particulary rich.

• Different degrees of encapsulation can be defined between classes and ob-
jects. Attributes and methods can be private, public, protected or have
some other, programmer-defined encapsulation.

It is important to note that these mechanisms do not provide any fundamentally
new ability. They can be completely defined with higher-order programming,
explicit state, and name values. On the other hand, the mechanisms are useful
idioms that lead to a programming style that is often convenient.

Object-oriented programming is an abstraction that provides a rich notation
to use any or all of these mechanisms together, whenever they are needed. This
richness is a double-edged sword. On the one hand, it makes the abstraction
particularly useful for many programming tasks. On the other hand, the ab-
straction has a complex semantics and is hard to reason about. For this reason,
we recommend to use object orientation only in those cases when it significantly
simplifies program structure, e.g., when there is a clear need for inheritance: the
program contains a set of closely-related abstract data types. In other cases, we
recommend to use simpler programming techniques.

Common limitations

The object system defined in this chapter is particularly close to higher-order
programming. Not all object systems are so close. In particular, the following
characteristics are often absent or cumbersome to use:

• Classes as values. They can be created at run-time, passed as arguments,
and stored in data structures.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

546 Object-Oriented Programming

• Full lexical scoping. Full lexical scoping means that the language supports
procedure values with external references. This allows a class to be defined
inside the scope of a procedure or another class. Both Smalltalk-80 and
Java support procedure values (with some restrictions). In Java they are
instances of inner classes (i.e., nested classes). They are quite verbose due
to the class syntax (see section quote).

• First-class messages. Usually, the labels of messages and methods both
have to be known at compile time. The most general way to remove this
restriction is to allow messages to be values in the language, which can be
calculated at run time. Both Smalltalk-80 and Java provide this ability,
although it is more verbose than the usual (static) method invocations. For
example, here is a generic way to add “batching” to a class C:

class Batcher
meth nil skip end
meth ´ | ´ (M Ms) { self M} { self Ms} end

end

Mixing in the class Batcher adds batching ability to any other class:

C={New class $ from Counter Batcher end init(0)}
{C [inc(2) browse inc(3) inc(4)]}

Section 7.8.5 gives another way to add batching.

Some object-oriented languages, e.g., C++, do not support full higher-order pro-
gramming because they cannot define procedure values with lexical scoping at
run time (as explained in Section 3.6.1). In these languages, many of the abil-
ities of higher-order programming can be obtained through encapsulation and
inheritance, with a little effort from the programmer:

• A procedure value can be encoded as an object. The object’s attributes
represent the procedure value’s external references and the method argu-
ments are the procedure value’s arguments. When the object is created, its
attributes are initialized with the external references. The object can be
passed around and called just like a procedure value. With a little bit of dis-
cipline from the programmer, this allows for programming with procedure
values, thus giving true higher-order programming.

• A generic procedure can be encoded as an abstract class. A generic proce-
dure is one that takes procedure arguments and returns a specific procedure.
For example a generic sorting routine can take a comparison operation for
a given type and return a sorting routine that sorts arrays of that type. An
abstract class is a class with undefined methods. The methods are defined
in subclasses.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.5 Relation to other computation models 547

Encoding procedure values as objects

Let us give an example of how to encode a procedure value in a typical object-
oriented language. Assume we have any statement 〈stmt〉. With procedural
abstraction, we can define a procedure with proc {P} 〈stmt〉 end and execute it
later as {P} . To encode this in our object system we have to know the external
references of 〈stmt〉. Assume they are X and Y. We define the following class:

class Proc
attr x y
meth init(X Y) @x=X @y=Y end
meth apply X=@x Y=@y in 〈stmt〉 end

end

The external references are represented by the stateless attributes x and y . We
define P by doing P={New Proc init(X Y)} and call it with {P apply} . This
encoding can be used in any object-oriented language. With it, we can use
almost all the higher-order programming techniques of this book. It has two
disadvantages with respect to procedures: it is more cumbersome to write and
the external references have to be written explicitly.

7.5.3 Functional decomposition versus type decomposi-
tion

How do we organize an ADT that is based on a type 〈T〉 with subtypes 〈T〉1, 〈T〉2,
〈T〉3 and includes a set of operations 〈F〉1, ..., 〈F〉n? In declarative programming,
Section 3.4.2 recommends to construct functions by following the type defini-
tion. In object-oriented programming, Section 7.4.2 recommends to construct
inheritance hierarchies in similar fashion, also by following the type definition.
Both sections give examples based on lists. Figure 7.23 gives a rough schematic
overview comparing the two approaches. They result in very different program
structures, which we call functional decomposition and type decomposition. In
functional decomposition, each function definition is a self-contained whole, but
the types are spread out over all functions. In type decomposition, each type is
a self-contained whole, but the function definitions are spread out over all types.
Which approach is better? It turns out that each has its uses:

• In functional decomposition, one can modify a function or add a new func-
tion without changing the other function definitions. However, changing or
adding a type requires to modify all function definitions.

• In type decomposition, one can modify a type (i.e., a class) or add a new
type (including by inheritance) without changing the other type definitions.
However, changing or adding a function requires to modify all class defini-
tions.

When designing a program, it is good to ask oneself what kind of modification
is most important. If the type is relatively simple and there are a large number

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

548 Object-Oriented Programming

Type definition

〈T〉 ::= 〈T〉1 | 〈T〉2 | 〈T〉3

Operations

〈F〉1, 〈F〉2, ..., 〈F〉n

Functional decomposition Type decomposition

fun { 〈F〉1 〈T〉 ...}
case 〈T〉
of 〈T〉1 then

...
[] 〈T〉2 then

...
[] 〈T〉3 then

...
end

end

fun { 〈F〉2 〈T〉 ...}
...

end

...

fun { 〈F〉n 〈T〉 ...}
...

end

class 〈T〉 ... end

class 〈T〉1 from 〈T〉
...
meth 〈F〉1(...)

...
end
meth 〈F〉2(...)

...
end
...
meth 〈F〉n(...)

...
end

end

class 〈T〉2 from 〈T〉 ... end

class 〈T〉3 from 〈T〉 ... end

Figure 7.23: Functional decomposition versus type decomposition

of operations, then the functional approach is usually clearer. If the type is
complex, with a relatively small number of operations, then the type approach
can be clearer. There are techniques that combine some of the advantages of both
approaches. See, e.g., [211], which explains some of these techniques and shows
how to use them to build extensible compilers.

7.5.4 Should everything be an object?

In the area of object-oriented programming, the principle is often invoked that
“everything should be an object”. Often, it is invoked without a precise under-
standing of what it means. For example, we saw someone define it on a mailing
list as “one should send messages to everything” (whatever that means). Let us
examine this principle and try to discover what it is really trying to say.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.5 Relation to other computation models 549

Strong objects

A sensible way to define the principle is as “all language entities should be in-
stances of ADTs with as many generic properties as possible”. In its extreme
form, this implies five properties: all language entities should be defined by class-
es, be extensible with inheritance, have a unique identity, encapsulate a state,
and be accessed with a uniform syntax. The word “object” is sometimes used
for entities with all these properties. To avoid confusion, we will call them strong
objects. An object-oriented language is called pure if all its entities are strong
objects.

The desire for purity can lead to good things. For example, many languages
have the concept of “exception” to handle abnormal events during execution.
It can be quite convenient for exceptions to be objects within an inheritance
hierarchy. This allows classifying them into different categories, catching them
only if they are of a given class (or its subclasses), and possibly changing them
(adding information) if they are stateful.

Smalltalk-80 is a good example of a language for which purity was an ex-
plicit design goal [60, 89]. All data types in Smalltalk, including simple ones
like integers, are objects. However, not everything in Smalltalk is an object;
there is a concept called block that is a procedure value used for building control
abstractions.

In most languages, not all entities are strong objects. Let us give some exam-
ples in Java. An integer in Java is a pure value; it is not defined by a class and
does not encapsulate a state. An object in Java can have just final attributes,
which means that it is stateless. An array in Java cannot be extended with in-
heritance. Arrays behave as if they were defined in a final class. We summarize
this by saying that Java is object-oriented but not pure.

Should a language have only strong objects? It is clear that the answer is no,
for many reasons. First, stateless entities can play an important role. With them,
the powerful reasoning techniques of declarative programming become possible.
For this reason, many language designs allow them. We cite Objective Caml [32],
which has a functional core, and Java [10], which has immutable objects. In
addition, stateless entities are essential for making transparent distributed pro-
gramming practical (see Chapter 11). Second, not all entities need a unique
identity. For example, structured entities such as tuples in a database are iden-
tified by their contents, not by their names. Third, the simplicity of a uniform
syntax is illusory, as we explain below.

We seem to be removing each property one by one. We are left with two
principles: all language entities should be instances of ADTs and uniformity
among ADTs should be exploited when it is reasonable. Some ADTs will have
all the properties of strong objects; others will have only some of these properties
but also have some other, completely different properties. These principles are
consistent with the use of multiple computation models advocated in this book.
Building a system consists primarily in designing abstractions and realizing them

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

550 Object-Oriented Programming

as ADTs.

Objects and explicit state

Let us elaborate why stateless objects are a good idea. Given a particular object,
how can one predict its future behavior? It depends on two factors:

1. Its internal state, which potentially depends on all past calls. These calls
can be done from many parts of the program.

2. Its textual definition, which depends on all classes it inherits from. These
classes can be defined in many places in the program text.

We see that the semantics of an object is spread out over both time and space.
This makes an object harder to understand than a function. The semantics of
a function is all concentrated in one place, namely the textual definition of the
function. The function does not have a history; it depends only on its definition
and its arguments.

We give an example that shows why objects are harder to program with
when they have state. Assume that we are doing arithmetic with the IEEE
floating point standard and that we have implemented the standard completely.
This means, for example, that we can change the rounding mode of arithmetic
operations during execution (round to nearest even, round up, round down, etc.).
If we do not use this ability carefully, then whenever we do an addition X+Y we
have no idea what it will do unless we have followed the whole execution. Any
part of the program could have changed the rounding mode. This can wreak
havoc on numeric methods, which depend on predictable rounding to get good
results. One solution is for all numeric methods to set the rounding method
initially and on each external call.

To avoid this problem as much as possible, the language should not favor
explicit state and inheritance. That is, not using them should be easy. For
inheritance, this is almost never a problem, since it is always harder to use it
than to avoid it. For explicit state, it depends on the language. In the object-
oriented model of this chapter, defining (stateless) functions is actually slightly
easier than defining (stateful) objects. Objects need to be defined as instances of
classes, which themselves are defined with a class –end wrapping one or more
meth –end declarations. Functions just need fun –end .

In popular object-oriented languages, unfortunately, explicit state is almost al-
ways the default and functions are usually syntactically cumbersome. In Smalltalk,
all attributes are stateful but function values can be defined easily. In Java, there
is no syntactic support for functions and object attributes are stateful unless
declared to be final.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.5 Relation to other computation models 551

Uniform object syntax

A language’s syntax should help and not hinder programmers in designing, writ-
ing, and reasoning about programs. An important principle in syntax design is
form mirrors content. Differences in semantics should be visible as differences in
syntax and vice versa. For example, the while loop as used in many languages
has a syntax similar to while 〈expr〉 do 〈stmt〉. By writing 〈expr〉 before 〈stmt〉,
the syntax reflects the fact that the condition 〈expr〉 is evaluated before executing
〈stmt〉. If 〈expr〉 is false, then 〈stmt〉 is not executed at all. The Cobol language
does things differently. It has the perform loop, which can be written perform

〈stmt〉 until 〈expr〉. This syntax is misleading since 〈expr〉 is tested before 〈stmt〉
yet is written after 〈stmt〉. The perform loop’s semantics are while not 〈expr〉 do
〈stmt〉.

Should all operations on language entities have the same syntax? This does
not necessarily improve readability. For example, Scheme has a uniform syntax
which does not necessarily make it more readable. We find that a uniform syntax
just moves the richness of the language away from the syntax and into the names
of objects and classes. This adds a second layer of syntax, making the language
more verbose. Let us give an example taken from symbolic programming lan-
guages. Stateless values can be given a very natural, compact syntax. A list
value can be created just by mentioning it, e.g.:

LV=[1 2 3]

This is approximately the syntax used by languages that support symbolic pro-
gramming, such as Prolog, Haskell, Erlang, and their relatives. This contrasts
with the use of a uniform object syntax:

ListClass *lv= new ConsClass(1, new ConsClass(2,

new ConsClass(3, new NilClass())));

This is C++ syntax, which is similar to Java syntax. For decomposing a list
value, there is another natural notation using pattern matching:

case LV of X|LV2 then ... end

Pattern matching is commonly used in symbolic languages. This is also cumber-
some to do in a uniform object syntax. There is a further increase in verbosity
when doing concurrent programming in the object syntax. This is because the
uniform syntax requires explicit synchronization. This is not true for the case

syntax above, which is sufficient for concurrent programming if the computation
model does implicit dataflow synchronization.

Another, more realistic example is the graphical user interface tool of Chap-
ter 10. Inspired by this tool, Christophe Ponsard built a Java prototype of a
similar tool. The Java version is more cumbersome to use than the Oz version,
primarily because Java has no syntactic support for record values. Unfortunately,
this verbosity is an inherent property of Java. There is no simple way around it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

552 Object-Oriented Programming

7.6 Implementing the object system

The complete object system can be implemented in a straightforward way from
the declarative stateful computation model. In particular, the main characteris-
tics come from the combination of higher-order programming with explicit state.
With this construction, you will understand objects and classes completely.

While the construction of this section works well and is reasonably efficient,
a real implementation will add optimizations to do even better. For example, a
real implementation can make an object invocation be as fast as a procedure call.
This section does not give these optimizations.

7.6.1 Abstraction diagram

The first step in understanding how to build an object system is to understand
how the different parts are related. Object-oriented programming defines a hier-
archy of abstractions that are related to each other by a kind of “specification-
implementation” relationship. There are many variations on this hierarchy. We
give a simple one that has most of the main ideas. Here are the abstractions, in
order from most concrete to most abstract:

• Running object. A running object is an active invocation of an object.
It associates a thread to an object. It contains a set of environment frames
(the part of the thread’s stack that is created while executing the object)
as well as an object.

• Object. An object is a procedure that encapsulates an explicit state (a
cell) and a set of procedures that reference the state.

• Class. A class is a wrapped record that encapsulates a set of procedures
named by literals and a set of attributes, which are just literals. The pro-
cedures are called methods. Methods take a state as argument for each
attribute and modify that state. Methods can only call each other indirect-
ly, through the literals that name them. Often the following distinction is
useful:

– Abstract class. An abstract class is a class in which some methods
are called that have no definition in the class.

– Concrete class. A concrete class is a class in which all methods that
are called are also defined.

If first-class messages are supported by the language, then invocations of
the form {Obj M} are possible where M is calculated at run time. If such
an invocation exists in the program, then the distinction between abstract
and concrete class disappears in the program (although it may still exist
conceptually). Executing the invocation {Obj M} raises an exception if M

does not exist in Obj .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.6 Implementing the object system 553

concrete
class

abstract
class

metaclass

inherits from

inherits from

instance ofinvocation of

inherits from

(object & thread)
running object object

instance of

instance of

Figure 7.24: Abstractions in object-oriented programming

• Metaclass. A metaclass is a class with a particular set of methods that
correspond to the basic operations of a class, for example: object creation,
inheritance policy (which methods to inherit), method call, method return,
choice of method to call, attribute assignment, attribute access, self call.
Writing these methods allows to customize the semantics of objects.

Figure 7.24 shows how these concepts are related. There are three relationships,
“invocation of”, “instance of”, and “inherits from”. These relationships have the
following intuitive meanings:

• A running object is created when a thread invokes an object. The running
object exists until the thread’s execution leaves it. Multiple invocations of
the same object can exist simultaneously.

• An object can be created as an instance of a class. If the object system
distinguishes between abstract and concrete classes, then it is usually only
possible to create instances of concrete classes. The object exists forever.2

The object encapsulates a cell that was created especially for it. Multiple
instances of the same class can exist simultaneously.

• A class can be created that inherits from a list of other classes. The new
class exists forever. Inheritance takes a set of methods and a list of classes
and returns a new class with a new set of methods. Multiple classes that
inherit from the same class can exist simultaneously. If one class can inherit
from several classes, then we have multiple inheritance. Otherwise, if one
class can inherit only from one class, we have single inheritance.

2In practice, until the actively running program loses all references to it. At that point,
garbage collection can reclaim its memory and finalization can perform a last action, if necessary.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

554 Object-Oriented Programming

class Counter
attr val
meth init(Value)

val:=Value
end
meth inc(Value)

val:=@val+Value
end
meth browse

{Browse @val}
end

end

Figure 7.25: An example class Counter (again)

• A class can be created as an instance of a metaclass. The new class exists
forever. The basic operations of the class are defined by particular meth-
ods of the metaclass. Multiple instances of the same metaclass can exist
simultaneously.

7.6.2 Implementing classes

We first explain the class linguistic abstraction. The Counter class of Figure 7.25
is translated internally into the definition of Figure 7.26. This figure shows that
a class is simply a value, a record, that is protected from snooping because of
the wrapper Wrap (see Section 3.7.5). (Later, when the class is used to create
objects, it will be unwrapped with the corresponding Unwrap .) The class record
contains:

• A set of methods in a method table. Each method is a three-argument pro-
cedure that takes a message M, which is always a record, an extra parameter
S representing the state of the current object, and Self , which references
the object itself.

• A set of attribute names, giving the attributes that each class instance
(object) will possess. Each attribute is a stateful cell that is accessed by
the attribute name, which is either an atom or an Oz name.

This example is slightly simplified because it does not show how to support static
binding (see exercises). The Counter class has a single attribute accessed by
the atom val . It has a method table with three methods accessed through the
features browse , init , and inc . As we can see, the method init assigns the
value Value to the attribute val , the method inc increments the attribute val ,
and the method browse browses the current value of val .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.6 Implementing the object system 555

declare Counter
local

Attrs = [val]
MethodTable = m(browse:MyBrowse init:Init inc:Inc)
proc {Init M S Self}

init(Value)=M
in

(S.val):=Value
end
proc {Inc M S Self}

X
inc(Value)=M

in
X=@(S.val) (S.val):=X+Value

end
proc {MyBrowse M S Self}

browse=M
{Browse @(S.val)}

end
in

Counter = {Wrap c(methods:MethodTable attrs:Attrs)}
end

Figure 7.26: An example of class construction

7.6.3 Implementing objects

We can use the class Counter to create objects. Figure 7.27 shows a generic
functionw Newthat creates an object from any class. It starts by unwrapping the
class. It then creates an object state, a record, from the attributes of the class. It
initializes each field of this record to a cell (with an unbound initial value). This
uses the iterator Record.forAll to iterate over all fields of a record.

The object Obj returned by Newis a one-argument procedure. When called as
{Obj M} , it looks up and calls the procedure corresponding to M in the method
table. Because of lexical scoping, the object state is visible only within Obj . One
can say that Obj is a procedure that encapsulates the state.

The definition of Figure 7.27 works correctly, but it may not be the most
efficient way to implement objects. An actual system can use a different, more
efficient implementation as long as it behaves in the same way. For example, the
Mozart system uses an implementation in which object invocations are almost as
efficient as procedure calls [74, 76].

The proof of the pudding is in the eating. Let us verify that the class works
as claimed. We now create the Counter class and try out Newas follows:

C={New Counter init(0)}
{C inc(6)} {C inc(6)}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

556 Object-Oriented Programming

fun {New WClass InitialMethod}
State Obj Class={Unwrap WClass}

in
State = {MakeRecord s Class.attrs}
{Record.forAll State proc {$ A} {NewCell _ A} end }
proc {Obj M}

{Class.methods.{Label M} M State Obj}
end
{Obj InitialMethod}
Obj

end

Figure 7.27: An example of object construction

{C browse}

This behaves in exactly the same way as the example of Section 7.2.1.

7.6.4 Implementing inheritance

Inheritance calculates a new class record starting from existing class records,
which are combined according to the inheritance rules given in Section 7.3.1.
Inheritance can be defined by the function From, where the call C={From C1 C2

C3} returns a new class record whose base definition is C1 and which inherits
from C2 and C3. It corresponds to the following class syntax:

class C from C2 C3
... % The base class C1

end

Figure 7.28 shows the definition of From. It uses the set operations in the Set

module, which can be found on the book’s Web site. From first checks the method
tables and attribute lists for conflicts. If a duplicate method label or attribute is
found in C2 and C3 that is not overridden by C1, then an exception is raised. Then
From constructs the new method table and attribute lists. Overriding is handled
properly by the Adjoin function on the method tables (see Appendix B.3.2).
The definition is slightly simplified because it does not handle static binding and
because it assumes that there are exactly two superclasses.

7.7 The Java language (sequential part)

Java is a concurrent object-oriented language with a syntax that resembles C++.
This section gives a brief introduction to the sequential part of Java. We explain
how to write a simple program, how to define classes, and how to use inheritance.
We defer talking about concurrency in Java until Chapter 8. We do not talk

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.7 The Java language (sequential part) 557

fun {From C1 C2 C3}
c(methods:M1 attrs:A1)={Unwrap C1}
c(methods:M2 attrs:A2)={Unwrap C2}
c(methods:M3 attrs:A3)={Unwrap C3}
MA1={Arity M1}
MA2={Arity M2}
MA3={Arity M3}
ConfMeth={Minus {Inter MA2 MA3} MA1}
ConfAttr={Minus {Inter A1 A2} A3}

in
if ConfMeth\=nil then

raise illegalInheritance(methConf:ConfMeth) end
end
if ConfAttr\=nil then

raise illegalInheritance(attrConf:ConfAttr) end
end
{Wrap c(methods:{Adjoin {Adjoin M2 M3} M1}

attrs:{Union {Union A2 A3} A1})}
end

Figure 7.28: Implementing inheritance

about the reflection package, which lets one do much of what the object system
of this chapter can do (although in a more verbose way).

Java is almost a pure object-oriented language, i.e., almost everything is an
object. Only a small set of primitive types, namely integers, floats, booleans, and
characters, are not objects. Java is a relatively clean language with a relatively
simple semantics. Despite the syntactic similarity, there is a major difference in
language philosophy between Java and C++ [184, 10]. C++ gives access to the
machine representation of data and a direct translation to machine instructions.
It also has manual memory management. Because of these properties, C++ is
often suitable as a replacement for assembly language. In contrast, Java hides
the representation of data and does automatic memory management. It supports
distributed computing on multiple platforms. It has a more sophisticated ob-
ject system. These properties make Java better for general-purpose application
development.

7.7.1 Computation model

Java consists of statically-typed object-oriented programming with classes, pas-
sive objects, and threads. The Java computation model is close to the shared-
state concurrent model, minus dataflow variables, triggers, and names. Parameter
passing is done by value, both for primitive types and object references. Newly-
declared variables are given a default initial value that depends on their type.
There is support for single assignment: variables and object attributes can be

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

558 Object-Oriented Programming

declared as final, which means that the variable can be assigned exactly once.
Final variables must be assigned before they are used.

Java introduces its own terminology for some concepts. Classes contain fields
(attributes, in our terminology), methods, other classes, or interfaces, which are
known collectively as class members. Variables are either fields, local variables
(declared in code blocks local to methods), or method parameters. Variables are
declared by giving their type, identifier, and an optional set of modifiers (e.g.,
final). The self concept is called this.

Interfaces

Java has an elegant solution to the problems of multiple inheritance (Sections 7.4.4
and 7.4.5). Java introduces the concept of interface, which syntactically looks like
a class with only method declarations. An interface has no implementation. A
class can implement an interface, which simply means that it defines all the meth-
ods in the interface. Java supports single inheritance for classes, thus avoiding
the problems of multiple inheritance. But, to preserve the advantages of multiple
inheritance, Java supports multiple inheritance for interfaces.

Java supports higher-order programming in a trivial way by means of the
encoding given in Section 7.5.2. In addition to this, Java has more direct support
for higher-order programming through inner classes. An inner class is a class
definition that is nested inside another class or inside a code block (such as a
method body). An instance of an inner class can be passed outside of the method
body or code block. An inner class can have external references, but there is a
restriction if it is nested in a code block: in that case it cannot reference non-final
variables. We could say that an instance of an inner class is almost a procedure
value. The restriction likely exists because the language designers wanted non-
final variables in code blocks to be implementable on a stack, which would be
popped when exiting the method. Without the restriction, this might create
dangling references.

7.7.2 Introduction to Java programming

We give a brief introduction to programming in Java. We explain how to write a
simple program, how to define classes, how to use inheritance, and how to write
concurrent programs with locks and monitors. We situate the Java style with
respect to the computation models of this book.

This section only scratches the surface of what is possible in Java. For more
information, we refer the reader to one of the many good books on Java program-
ming. We especially recommend [10] (on the language) and [111] (on concurrent
programming).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.7 The Java language (sequential part) 559

A simple program

We would like to calculate the factorial function. In Java, functions are defined
as methods that return a result:

class Factorial {

public long fact(long n) {

long f=1;

for (int i=1; i<=n; i++) f=f*i;

return f;

}

}

Statements are terminated with a semicolon “;” unless they are compound state-
ments, which are delimited by braces { ...}. Variable identifiers are declared by
preceding them with their type, as in long f. Assignment is denoted by the
equals sign =. In the object system of Chapter 7 this becomes:

class Factorial
meth fact(N ?X)
F={NewCell 1} in

for I in 1..N do F:=@F*I end
X=@F

end
end

Note that i is an assignable variable (a cell) that is updated on each iteration,
whereas I is a value that is declared anew on each iteration. Factorial can also
be defined recursively:

class Factorial {

public long fact(long n) {

if (n==0) return 1;

else return n*this.fact(n-1);

}

}

In our object system this becomes:

class Factorial
meth fact(N ?F)

if N==0 then F=1
else F=N*{ self fact(N-1 $)} end

end
end

There are a few differences with the object system of Chapter 7. The Java
keyword this is the same as self in our object system. Java is statically typed.
The type of all variables is declared at compile time. Our model is dynamically
typed. A variable can be bound to an entity of any type. In Java, the visibility

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

560 Object-Oriented Programming

of fact is declared to be public. In our model, fact is public by default; to get
another visibility we would have to declare it as a name.

Input/output

Any realistic Java program has to do I/O. Java has an elaborate I/O subsystem
based on the notion of stream, which is an ordered sequence of data that has
a source (for an input stream) or a destination (for an output stream). Do not
confuse this with the concept of stream as used in the rest of this book: a list with
unbound tail. The Java stream concept generalizes the Unix concept of standard
I/O, i.e., the standard input (stdin) and standard output (stdout) files.

Streams can encode many types, including primitive types, objects, and object
graphs. (An object graph is an object together with the other objects it refer-
ences, directly or indirectly.) Streams can be byte streams or character streams.
Characters are not the same as bytes since Java supports Unicode. A byte in
Java is an 8-bit unsigned integer. A character in Java is a Unicode 2.0 character,
which has a 16-bit code. We do not treat I/O further in this section.

Defining classes

The Factorial class is rather atypical. It has only one method and no attributes.
Let us define a more realistic class. Here is a class to define points in two-
dimensional space:

class Point {

public double x, y;

}

The attributes x and y are public, which means they are visible from outside the
class. Public attributes are usually not a good idea; it is almost always better to
make them private and use accessor methods:

class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

}

The method Point is called a constructor; it is used to initialize new objects
created with new, as in:

Point p=new Point(10.0, 20.0);

which creates the new Point object p. Let us add some methods to calculate
with points:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.7 The Java language (sequential part) 561

class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

public void origin() { x=0.0; y=0.0; }

public void add(Point p) { x+=p.getX(); y+=p.getY(); }

public void scale(double s) { x*=s; y*=s; }

}

The p argument of add is a local variable whose initial value is a reference to the
argument. In our object system we can define Point as follows:

class Point
attr x y
meth init(X Y) x:=X y:=Y end
meth getX(X) X=@x end
meth getY(Y) Y=@y end
meth origin x:=0.0 y:=0.0 end
meth add(P) x:=@x+{P getX($)} y:=@y+{P getY($)} end
meth scale(S) x:=@x*S y:=@y*S end

end

This definition is very similar to the Java definition. There are also some minor
syntactic differences, such as the operators += and *=. Both definitions have
private attributes. There is a subtle difference in the visibility of the attributes.
In Java, private attributes are visible to all objects of the same class. This means
the method add could be written differently:

public void add(Point p) { x+=p.x; y+=p.y; }

This is explained further in Section 7.3.3.

Parameter passing and main program

Parameter passing to methods is done with call by value. A copy of the value
is passed to the method and can be modified inside the method without chang-
ing the original value. For primitive values, such as integers and floats, this is
straightforward. Java also passes object references (not the objects themselves)
by value. So objects can almost be considered as using call by reference. The
difference is that, inside the method, the field can be modified to refer to another
object.

Figure 7.29 gives an example. This example is a complete standalone program;
it can be compiled and executed as is. Each Java program has one method, main,
that is called when the program is started The object reference c is passed by
value to the method sqr. Inside sqr, the assignment a=null has no effect on c.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

562 Object-Oriented Programming

class MyInteger {

public int val;

MyInteger(int x) { val=x; }

}

class CallExample {

public void sqr(MyInteger a) {

a.val=a.val*a.val;

a=null;

}

public static void main(String[] args) {

int c=new MyInteger(25);

CallExample.sqr(c);

System.out.println(c.val);

}

}

Figure 7.29: Parameter passing in Java

The argument of main is an array of strings that contains the command line
arguments of the program when called from the operating system, The method
call System.out.println prints its argument to the standard output.

Inheritance

We can use inheritance to extend the Point class. For example, it can be extended
to represent a pixel, which is the smallest independently displayable area on a
two-dimensional graphics output device such as a computer screen. Pixels have
coordinates, just like points, but they also have color.

class Pixel extends Point {

Color color;

public void origin() {

super.origin();

color=null;

}

public Color getC() { return color; }

public void setC(Color c) { color=c; }

}

The extend keyword is used to denote inheritance; it corresponds to from in our
object system. We assume the class Color is defined elsewhere. The class Pixel

overrides the origin method. The new origin initializes both the point and the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 563

class BallGame
attr other count:0
meth init(Other)

other:=Other
end
meth ball

count:=@count+1
{@other ball}

end
meth get(X)

X=@count
end

end

B1={NewActive BallGame init(B2)}
B2={NewActive BallGame init(B1)}

{B1 ball}

Figure 7.30: Two active objects playing ball (definition)

color. It uses super to access the overridden method in the immediate ancestor
class. With respect to the current class, this class is often called the superclass.
In our object system, we can define Pixel as follows:

class Pixel from Point
attr color
meth origin

Point,origin
color:=null

end
meth getC(C) C=@color end
meth setC(C) color:=C end

end

7.8 Active objects

An active object is a port object whose behavior is defined by a class. It consists
of a port, a thread that reads messages from the port’s stream, and an object that
is a class instance. Each message that is received will cause one of the object’s
methods to be invoked.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

564 Object-Oriented Programming

ball

B1 B2

ball

Figure 7.31: Two active objects playing ball (illustration)

7.8.1 An example

Let us start with an example. Consider two active objects, where each object
has a reference to the other. When each object receives the message ball , it
sends the message ball to the other. The ball will be passed back and forth
indefinitely between the objects. We define the behavior of the active objects
by means of a class. Figure 7.30 defines the objects and Figure 7.31 illustrates
how the messages pass between them. Each object references the other in the
attribute other . We also add an attribute count to count the number of times
the message ball is received. The initial call {B1 ball} starts the game. With
the method get(X) we can follow the game’s progress:

declare X in
{B1 get(X)}
{Browse X}

Doing this several times will show a sequence of numbers that increase rapidly.

7.8.2 The NewActive abstraction

The behavior of active objects is defined with a class. Each method of the class
corresponds to a message that is accepted by the active object. Figure 7.30 gives
an example. Sending a message M to an active object A is written as {A M} ,
with the same syntax as invoking a standard, passive object. In contrast to the
other objects of this chapter, which are called passive objects, the invocation of
an active object is asynchronous: it returns immediately, without waiting until
the message has been handled. We can define a function NewActive that works
exactly like New except that it creates an active object:

fun {NewActive Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M in S do {Obj M} end

end
proc {$ M} {Send P M} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 565

40

2
3

4

5

6

7

1

.
.

.

Figure 7.32: The Flavius Josephus problem

end

This makes defining active objects very intuitive.

7.8.3 The Flavius Josephus problem

Let us now tackle a bigger problem. We introduce it with a well-known historical
anecdote. Flavius Josephus was a Roman historian of Jewish origin. During the
Jewish-Roman wars of the first century AD, he was in a cave with fellow soldiers,
40 men in all, surrounded by enemy Roman troops. They decided to commit
suicide by standing in a ring and counting off each third man. Each man so
designated was to commit suicide. Figure 7.32 illustrates the problem. Josephus,
not wanting to die, managed to place himself in the position of the last survivor.

In the general version of this problem, there are n soldiers numbered from 1
to n and each k-th soldier will be eliminated. The count starts from the first
soldier. What is the number of the last survivor? Let us model this problem by
representing soldiers with active objects. There is ring of active objects where
each object knows its two neighbors. Here is one possible message-passing pro-
tocol to solve the problem. A message kill(X S) circulates around the ring,
where X counts live objects traversed and S is the total number of live objects
remaining. Initially, the message kill(1 N) is given to the first object. When
object i receives the message kill(X S) it does the following:

• If it is alive and s = 1, then it is the last survivor. It signals this by binding
a global variable. No more messages are forwarded.

• If it is alive and X mod k = 0, then it becomes dead and it sends the
message kill(X+1 S-1) to the next object in the ring.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

566 Object-Oriented Programming

class Victim
attr ident step last succ pred alive: true
meth init(I K L) ident:=I step:=K last:=L end
meth setSucc(S) succ:=S end
meth setPred(P) pred:=P end
meth kill(X S)

if @alive then
if S==1 then @last=@ident
elseif X mod @step==0 then

alive:= false
{@pred newsucc(@succ)}
{@succ newpred(@pred)}
{@succ kill(X+1 S-1)}

else
{@succ kill(X+1 S)}

end
else {@succ kill(X S)} end

end
meth newsucc(S)

if @alive then succ:=S
else {@pred newsucc(S)} end

end
meth newpred(P)

if @alive then pred:=P
else {@succ newpred(P)} end

end
end

fun {Josephus N K}
A={NewArray 1 N null}
Last

in
for I in 1..N do

A.I:={NewActive Victim init(I K Last)}
end
for I in 2..N do {A.I setPred(A.(I-1))} end
{A.1 setPred(A.N)}
for I in 1..(N-1) do {A.I setSucc(A.(I+1))} end
{A.N setSucc(A.1)} {A.1 kill(1 N)}
Last

end

Figure 7.33: The Flavius Josephus problem (active object version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 567

• If it is alive and X mod k 6= 0, then it sends the message kill(X+1 S) to
the next object in the ring.

• If it is dead, then it forwards the message kill(X S) to the next object.3

Figure 7.33 gives a program that implements this protocol. The function Josephus

returns immediately with an unbound variable, which will be bound to the num-
ber of the last survivor as soon as it is known.

Short-circuit protocol

The solution of Figure 7.33 removes dead objects from the circle with a short-
circuit protocol. If this were not done, the traveling message would eventual-
ly spend most of its time being forwarded by dead objects. The short-circuit
protocol uses the newsucc and newpred methods. When an object dies, it sig-
nals to both its predecessor and its successor that it should be bypassed. The
short-circuit protocol is just an optimization to reduce execution time. It can be
removed and the program will still run correctly.

Without the short-circuit protocol, the program is actually sequential since
there is just a single message circulating. It could have been written as a sequen-
tial program. With the short-circuit protocol it is no longer sequential. More
than one message can be traveling in the network at any given time.

A declarative solution

As alert programmers, we remark that the solution of Figure 7.33 has no ob-
servable nondeterminism. We can therefore write it completely in the declarative
concurrent model of Chapter 4. Let us do this and compare the two programs.
Figure 7.34 shows a declarative solution that implements the same protocol as the
active object version. Like the active object version, it does short-circuiting and
eventually terminates with the identity of the last survivor. It pays to compare
the two versions carefully. The declarative version is half the size of the active
object version. One reason is that streams are first-class entities. This makes
short-circuiting very easy: just return the input stream as output.

The declarative program uses a concurrent abstraction, Pipe , that it defines
especially for this program. If l ≤ h, then the function call {Pipe X s L H F}

creates a pipeline of h−l+1 stream objects, numbered from l to h inclusive. Each
stream object is created by the call {F Is I} , which is given an input stream
Is and an integer I and returns the output stream. We create a closed ring
by feeding the output stream Zs back to the input, with the additional message
kill(1 N) to start the execution.

3The dead object is a kind of zombie.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

568 Object-Oriented Programming

fun {Pipe Xs L H F}
if L=<H then {Pipe {F Xs L} L+1 H F} else Xs end

end

fun {Josephus2 N K}
fun {Victim Xs I}

case Xs of kill(X S)|Xr then
if S==1 then Last=I nil
elseif X mod K==0 then

kill(X+1 S-1)|Xr
else

kill(X+1 S)|{Victim Xr I}
end

[] nil then nil end
end
Last Zs

in
Zs={Pipe kill(1 N)|Zs 1 N

fun {$ Is I} thread {Victim Is I} end end }
Last

end

Figure 7.34: The Flavius Josephus problem (data-driven concurrent version)

7.8.4 Other active object abstractions

Section 5.3 shows some of the useful protocols that we can build on top of message
passing. Let us take two of these protocols and make them into abstractions for
active objects.

Synchronous active objects

It is easy to extend active objects to give them synchronous behavior, like a
standard object or an RMI object. A synchronous invocation {Obj M} does not
return until the method corresponding to M is completely executed. Internal to
the abstraction, we use a dataflow variable to do the synchronization. Here is the
definition of NewSync, which creates a synchronous active object:

fun {NewSync Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M#X in S do {Obj M} X= unit end

end
proc {$ M} X in {Send P M#X} {Wait X} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 569

end

Each message sent to the object contains a synchronization token X, which is
bound when the message is completely handled.

Active objects with exception handling

Explicitly doing exception handling for active objects can be cumbersome, since
it means adding a try in each server method and a case after each call. Let
us hide these statements inside an abstraction. The abstraction adds an extra
argument that can be used to test whether or not an exception occurred. Instead
of adding the extra argument in the method, we add it to the object invocation
itself. In this way, it automatically works for all methods. The extra argument
is bound to normal if the invocation completes normally, and to exception(E)

if the object raises the exception E. Here is the definition of NewActiveExc :

fun {NewActiveExc Class Init}
P Obj={New Class Init} in

thread S in
{NewPort S P}
for M#X in S do

try {Obj M} X=normal
catch E then X=exception(E) end

end
end
proc {$ M X} {Send P M#X} end

end

The object Obj is called as {Obj M X} , where X is the extra argument. So the
send is still asynchronous and the client can examine at any time whether the call
completed successfully or not. For the synchronous case, we can put the case

statement inside the abstraction:

proc {$ M}
X in

{Send P M#X}
case E of normal then skip
[] exception(Exc) then raise Exc end end

end

This lets us call the object exactly like a passive object.

7.8.5 Event manager with active objects

We can use active objects to implement a simple concurrent event manager. The
event manager contains a set of event handlers. Each handler is a triple Id#F#S ,
where Id uniquely identifies the handler, F defines the state update function, and
S is the handler’s state. When an event E occurs, each triple Id#F#S is replaced

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

570 Object-Oriented Programming

class EventManager
attr

handlers
meth init handlers:=nil end
meth event(E)

handlers:=
{Map @handlers fun {$ Id#F#S} Id#F#{F E S} end }

end
meth add(F S ?Id)

Id={NewName}
handlers:=Id#F#S|@handlers

end
meth delete(DId ?DS)

handlers:={List.partition
@handlers fun {$ Id#F#S} DId==Id end [_#_#DS]}

end
end

Figure 7.35: Event manager with active objects

by Id#F#{F E S} . That is, each event handler is a finite state machine, which
does a transition from state S to state {F E S} when the event E occurs.

The event manager was originally written in Erlang [7]. The Erlang com-
putation model is based on communicating active objects (see Chapter 5). The
translation of the original code to the concurrent stateful model was straightfor-
ward.

We define the event manager EMas an active object with four methods:

• {EM init} initializes the event manager.

• {EM event(E)} posts the event E at the event manager.

• {EM add(F S Id)} adds a new handler with update function F and initial
state S. Returns a unique identifier Id .

• {EM delete(Id S)} removes the handler with identifier Id , if it exists.
Returns the handler’s state in S.

Figure 7.35 shows how to define the event manager as a class. We show how to
use the event manager to do error logging. First we define a new event manager:

EM={NewActive EventManager init}

We then install a memory-based handler. It logs every event in an internal list:

MemH=fun {$ E Buf} E|Buf end
Id={EM add(MemH nil $)}

We can replace the memory-based handler by a disk-based handler during exe-
cution, without losing any of the already-logged events. In the following code,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 571

class ReplaceEventManager from EventManager
meth replace(NewF NewS OldId NewId

insert:P<= proc {$ _} skip end)
Buf=EventManager,delete(OldId $)

in
{P Buf}
NewId=EventManager,add(NewF NewS $)

end
end

Figure 7.36: Adding functionality with inheritance

we remove the memory-based handler, open a log file, write the already-logged
events to the file, and then define and install the disk-based handler:

DiskH= fun {$ E F} {F write(vs:E)} F end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Buf={EM delete(Id $)}
for E in {Reverse Buf} do {File write(vs:E)} end
Id2={EM add(DiskH File $)}

This uses the System module Open to write the log. We could use the File

module but then the rest of the program could not use it, since it only supports
one open file at a time for writing.

Adding functionality with inheritance

The event manager of Figure 7.35 has the defect that if events occur during a
replacement, i.e., between the delete and add operations, then they will not be
logged. How can we remedy this defect? A simple solution is to add a new
method, replace to EventManager that does both the delete and add. Because
all methods are executed sequentially in the active object, this ensures no event
will occur between the delete and add. We have the choice to add the new method
directly, to EventManager , or indirectly, to a subclass by inheritance. Which
possibility is the right solution depends on several factors. First, whether we
have access to the source code of EventManager . If we do not, then inheritance
is the only possibility. If we do have the source code, inheritance may still be the
right answer. It depends on how often we need the replace functionality. If we
almost always need it in event managers, then we should modify EventManager

directly and not create a second class. If we rarely need it, then its definition
should not encumber EventManager , and we can separate it by using inheritance.

Let us use inheritance for this example. Figure 7.36 defines a new class
ReplaceEventManager that inherits from EventManager and adds a new method
replace . Instances of ReplaceEventManager have all methods of EventManager

as well as the method replace . The insert field is optional; it can be used to
insert an operation to be done between the delete and add operations. We define

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

572 Object-Oriented Programming

class Batcher
meth batch(L)

for X in L do
if {IsProcedure X} then {X} else { self X} end

end
end

end

Figure 7.37: Batching a list of messages and procedures

a new event manager:

EM={NewActive ReplaceEventManager init}

Now we can do the replacement as follows:

DiskH= fun {$ E S} {S write(vs:E)} S end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Id2
{EM replace(DiskH File Id Id2

insert:
proc {$ S}

for E in {Reverse S} do
{File write(vs:E)} end

end)}

Because replace is executed inside the active object, it is serialized with all the
other messages to the object. This ensures that no events can arrive between the
delete and add methods.

Batching operations using a mixin class

A second way to remedy the defect is to add a new method that does batching,
i.e., it does a list of operations. Figure 7.37 defines a new class Batcher that has
just one method, batch(L) . The list L can contain messages or zero-argument
procedures. When batch(L) is called, the messages are passed to self and the
procedures are executed, in the order they occur in L. This is an example of using
first-class messages. Since messages are also language entities (they are records),
they can be put in a list and passed to Batcher . We define a new class that
inherits from EventManager and brings in the functionality of Batcher :

class BatchingEventManager from EventManager Batcher end

We use multiple inheritance because Batcher can be useful to any class that
needs batching, not just to event managers. Now we can define a new event
manager:

EM={NewActive BatchingEventManager init}

All instances of BatchingEventManager have all methods of EventManager as
well as the method batch . The class Batcher is an example of a mixin class: it

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.8 Active objects 573

adds functionality to an existing class without needing to know anything about
the class. Now we can replace the memory-based handler by a disk-based handler:

DiskH= fun {$ E S} {S write(vs:E)} S end
File={New Open.file init(name: ´ event.log ´ flags:[write create])}
Buf Id2
{EM batch([delete(Id Buf)

proc {$}
for E in {Reverse Buf} do {File write(vs:E)} end

end
add(DiskH File Id2)])}

The batch method guarantees atomicity in the same way as the replace method,
i.e., because it executes inside the active object.

What are the differences between the replacement solution and the batching
solution? There are two:

• The replacement solution is more efficient because the replace method
is hard-coded. The batch method, on the other hand, adds a layer of
interpretation.

• The batching solution is more flexible. Batching can be added to any class
using multiple inheritance. No new methods have to be defined. Further-
more, any list of messages and procedures can be batched, even a list that
is calculated at run time. However, the batching solution requires that the
language support first-class messages.

Combining computation models

The event manager is an interesting combination of the declarative, object-
oriented, and stateful concurrent computation models:

• Each event handler is defined declaratively by its state update function.
Even stronger, each method of the event manager can be seen as a declara-
tive definition. Each method takes the event manager’s internal state from
the attribute handlers , does a declarative operation on it, and stores the
result in handlers .

• All methods are executed in sequential fashion, as if they were in a stateful
model with no concurrency. All concurrency is managed by the active object
abstraction, as implemented by NewActive . This abstraction guarantees
that all object invocations are serialized. Especially, no locking or other
concurrency control is needed.

• New functionality, for example replacement or batching, is added by using
object-oriented inheritance. Because the new method executes inside the
active object, it is guaranteed to be atomic.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

574 Object-Oriented Programming

The result is that event handlers are defined sequentially and declaratively, and
yet can be used in a stateful concurrent environment. This is an example of
impedance matching, as defined in Section 4.7.7. Impedance matching is a special
case of the general principle of separation of concerns. The concerns of state and
concurrency are separated from the definition of the event handlers. It is good
programming practice to separate concerns as much as possible. Using different
computation models together often helps to achieve separation of concerns.

7.9 Exercises

1. Uninitialized objects. The function Newcreates a new object when given
a class and an initial message. Write another function New2 that does not
require an initial message. That is, the call Obj={New2 Class} creates a
new object without initializing it. Hint: write New2 in terms of New.

2. Protected methods in the Java sense. A protected method in Java has
two parts: it is accessible throughout the package that defines the class
and also by descendants of the class. For this exercise, define a linguistic
abstraction that allows to annotate a method or attribute as protected in
the Java sense. Show how to encode this in the model of Section 7.3.3 by
using name values. Use functors to represent Java packages. For example,
one approach might to be to define the name value globally in the functor
and also to store it in an attribute called setOfAllProtectedAttributes .
Since the attribute is inherited, the method name is visible to all subclasses.
Work out the details of this approach.

3. Method wrapping. Section 7.3.5 shows how to do method wrapping. The
definition of TraceNew2 given there uses a class Trace that has an external
reference. This is not allowed in some object systems. For this exercise,
rewrite TraceNew2 so that it uses a class with no external references.

4. Implementing inheritance and static binding. For this exercise, gen-
eralize the implementation of the object system given in Section 7.6 to
handle static binding and to handle inheritance with any number of super-
classes (not just two).

5. Message protocols with active objects. For this exercise, redo the
message protocols of Section 5.3 with active objects instead of port objects.

6. The Flavius Josephus problem. Section 7.8.3 solves this problem in
two ways, using active objects and using data-driven concurrency. For this
exercise, do the following:

(a) Use a third model, the sequential stateful model, to solve the problem.
Write two programs: the first without short-circuiting and the second

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

7.9 Exercises 575

with it. Try to make both as concise and natural as possible in the
model. For example, without short-circuiting an array of booleans is
a natural data structure to represent the ring. Compare the structure
of both programs with the two programs in Section 7.8.3.

(b) Compare the execution times of the different versions. There are two
orthogonal analyses to be done. First, measure the advantages (if any)
of using short-circuiting for various values of n and k. This can be done
in each of the three computation models. For each model, divide the
(n, k) plane into two regions, depending on whether short-circuiting
is faster or not. Are these regions the same for each model? Second,
compare the three versions with short-circuiting. Do these versions
have the same asymptotic time complexity as a function of n and k?

7. (advanced exercise) Inheritance without explicit state. Inheritance
does not require explicit state; the two concepts are orthogonal. For this
exercise, design and implement an object system with classes and inheri-
tance but without explicit state. One possible starting point is the imple-
mentation of declarative objects in Section 6.4.2.

8. (research project) Programming design patterns. For this exercise, de-
sign an object-oriented language that allows “upwards” inheritance (defin-
ing a new superclass of a given class) as well as higher-order programming.
Upwards inheritance is usually called generalization. Implement and eval-
uate the usefulness of your language. Show how to program the design
patterns of Gamma et al [58] as abstractions in your language. Do you
need other new operations in addition to generalization?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

576 Object-Oriented Programming

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 8

Shared-State Concurrency

The shared-state concurrent model is a simple extension to the declarative con-
current model that adds explicit state in the form of cells, which are a kind of mu-
table variable. This model is equivalent in expressiveness to the message-passing
concurrent model of Chapter 5, because cells can be efficiently implemented with
ports and vice versa. In practice, however, the shared-state model is harder to
program than the message-passing model. Let us see what the problem is and
how we can solve it.

The inherent difficulty of the model

Let us first see exactly why the shared-state model is so difficult. Execution
consists of multiple threads, all executing independently and all accessing shared
cells. At some level, a thread’s execution can be seen as a sequence of atomic
instructions. For a cell, these are @(access), := (assignment), and Exchange .
Because of the interleaving semantics, all execution happens as if there was one
global order of operations. All operations of all threads are therefore “interleaved”
to make this order. There are many possible interleavings; their number is limited
only by data dependencies (calculations needing results of others). Any particular
execution realizes an interleaving. Because thread scheduling is nondeterministic,
there is no way to know which interleaving will be chosen.

But just how many interleavings are possible? Let us consider a simple case:
two threads, each doing k cell operations. Thread T1 does the operations a1, a2,
..., ak and thread T2 does b1, b2, ..., bk. How many possible executions are there,

interleaving all these operations? It is easy to see that the number is

(
2k
k

)
.

Any interleaved execution consists of 2k operations, of which each thread takes
k. Consider these operations as integers from 1 to 2k, put in a set. Then T1

takes k integers from this set and T2 gets the others. This number is exponential
in k.1 For three or more threads, the number of interleavings is even bigger (see
Exercises).

1Using Stirling’s formula we approximate it as 22k/
√

πk.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

578 Shared-State Concurrency

It is possible to write algorithms in this model and prove their correctness
by reasoning on all possible interleavings. For example, given that the only
atomic operations on cells are @and := , then Dekker’s algorithm implements
mutual exclusion. Even though Dekker’s algorithm is short (e.g., 48 lines of code
in [43], using a Pascal-like language), the reasoning is already quite difficult. For
bigger programs, this technique rapidly becomes impractical. It is unwieldy and
interleavings are easy to overlook.

Why not use declarative concurrency?

Given the inherent difficulty of programming in the shared-state concurrent mod-
el, an obvious question is why not stick with the declarative concurrent model of
Chapter 4? It is enormously simpler to program in than the shared-state concur-
rent model. It is almost as easy to reason in as the declarative model, which is
sequential.

Let us briefly examine why the declarative concurrent model is so easy. It is
because dataflow variables are monotonic: they can be bound to just one value.
Once bound, the value does not change. Threads that share a dataflow variable,
e.g., a stream, can therefore calculate with the stream as if it were a simple value.
This is in contrast to cells, which are nonmonotonic: they can be assigned any
number of times to values that have no relation to each other. Threads that share
a cell cannot make any assumptions about its content: at any time, the content
can be completely different from any previous content.

The problem with the declarative concurrent model is that threads must com-
municate in a kind of “lock-step” or “systolic” fashion. Two threads communicat-
ing with a third thread cannot execute independently; they must coordinate with
each other. This is a consequence of the fact that the model is still declarative,
and hence deterministic.

We would like to allow two threads to be completely independent and yet
communicate with the same third thread. For example, we would like clients to
make independent queries to a common server or to independently increment a
shared state. To express this, we have to leave the realm of declarative models.
This is because two independent entities communicating with a third introduce an
observable nondeterminism. A simple way to solve the problem is to add explicit
state to the model. Ports and cells are two important ways to add explicit state.
This gets us back to the model with both concurrency and state. But reasoning
directly in this model is impractical. Let us see how we can get around the
problem.

Getting around the difficulty

Programming in the stateful concurrent model is largely a matter of managing
the interleavings. There are two successful approaches:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

579

• Message passing between port objects. This is the subject of Chapter 5.
In this approach, programs consist of port objects that send asynchronous
messages to each other. Internally, a port object executes in a single thread.

• Atomic actions on shared cells. This is the subject of the present chapter.
In this approach, programs consist of passive objects that are invoked by
threads. Abstractions are used to build large atomic actions (e.g., using
locking, monitors, or transactions) so that the number of possible interleav-
ings is small.

Each approach has its advantages and disadvantages. The technique of invari-
ants, as explained in Chapter 6, can be used in both approaches to reason about
programs. The two approaches are equivalent in a theoretical sense, but not in a
practical sense: a program using one approach can be rewritten to use the other
approach, but it may not be as easy to understand [109].

Structure of the chapter

The chapter consists of seven main sections:

• Section 8.1 defines the shared-state concurrent model.

• Section 8.2 brings together and compares briefly all the different concur-
rent models that we have introduced in the book. This gives a balanced
perspective on how to do practical concurrent programming.

• Section 8.3 introduces the concept of lock, which is the basic concept used to
create coarse-grained atomic actions. A lock defines an area of the program
inside of which only a single thread can execute at a time.

• Section 8.4 extends the concept of lock to get the concept of monitor, which
gives better control on which threads are allowed to enter and exit the
lock. Monitors make it possible to program more sophisticated concurrent
programs.

• Section 8.5 extends the concept of lock to get the concept of transaction,
which allows a lock to be either committed or aborted. In the latter case,
it is as if the lock had never executed. Transactions allow to program
concurrent programs that can handle rare events and non-local exits.

• Section 8.6 summarizes how concurrency is done in Java, a popular concur-
rent object-oriented language.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

580 Shared-State Concurrency

... Multiple semantic stacks

Immutable store
(single-assignment)

Mutable store

ST1 ST2 STn
(‘‘threads’’)

W=atom

XZ=person(age: Y)

U=c2

c2:Z
c1:W

Y=c1

Figure 8.1: The shared-state concurrent model

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value
| {IsDet 〈x〉 〈y〉} Boundness test
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 8.1: The kernel language with shared-state concurrency

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.1 The shared-state concurrent model 581

8.1 The shared-state concurrent model

Chapter 6 adds explicit state to the declarative model. This allows to do object-
oriented programming. Chapter 4 adds concurrency to the declarative model.
This allows to have multiple active entities that evolve independently. The next
step is to add both explicit state and concurrency to the declarative model. One
way to do this is given in Chapter 5: by adding ports. This chapter gives an
alternative way: by adding cells.

The resulting model, called the shared-state concurrent model, is shown in
Figure 8.1. Its kernel language is defined in Table 8.1. If we consider the subset
of operations up to ByNeed then we have the declarative concurrent model. We
add names, read-only variables, exceptions, and explicit state to this model.

8.2 Programming with concurrency

By now, we have seen many different ways to write concurrent programs. Before
diving into programming with shared-state concurrency, let us make a slight
detour and put all these ways into perspective. We first give a brief overview of
the main approaches. We then examine more closely the new approaches that
become possible with shared-state concurrency.

8.2.1 Overview of the different approaches

For the programmer, there are four main practical approaches to writing concur-
rent programs:

• Sequential programming (Chapters 3, 6, and 7). This is the baseline
approach that has no concurrency. It can be either eager or lazy.

• Declarative concurrency (Chapter 4). This is concurrency in the declar-
ative model, which gives the same results as a sequential program but can
give them incrementally. This model is usable when there is no observable
nondeterminism. It can be either eager (data-driven concurrency) or lazy
(demand-driven concurrency).

• Message-passing concurrency (Chapter 5 and Section 7.8). This is mes-
sage passing between port objects, which are internally sequential. This
limits the number of interleavings. Active objects (Section 7.8) are a vari-
ant of port objects where the object’s behavior is defined by a class.

• Shared-state concurrency (this chapter). This is threads updating shared
passive objects using coarse-grained atomic actions. This is another ap-
proach to limit the number of interleavings.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

582 Shared-State Concurrency

Order−determining concurrency
Coroutining
Lazy evaluation

Sequential programming

Demand−driven concurrency

Use the model directly
Message−passing concurrency
Shared−state concurrency

Stream objects with merge

Approaches

Sequential

Nondeterministic concurrent

Stateful concurrent

Declarative concurrent

(declarative or stateful)

Model

Data−driven concurrency

Figure 8.2: Different approaches to concurrent programming

Figure 8.2 gives a complete list of these approaches and some others. Previous
chapters have already explained sequential programming and concurrent declara-
tive programming. In this chapter we look at the others. We first give an overview
of the four main approaches.

Sequential programming

In a sequential model, there is a total order among all operations. This is the
strongest order invariant a program can have. We have seen two ways that this
order can be relaxed a little, while still keeping a sequential model:

• “Order-determining” concurrency (Section 4.4.1). In this model, all
operations execute in a total order, like with sequential execution, but the
order is unknown to the programmer. Concurrent execution with dataflow
finds the order dynamically.

• Coroutining (Section 4.4.2). In this model, preemption is explicit, i.e., the
program decides when to pass control to another thread. Lazy evaluation,
in which laziness is added to a sequential program, does coroutining.

Both of these variant models are still deterministic.

Declarative concurrency

The declarative concurrent models of Chapter 4 all add threads to the declarative
model. This does not change the result of a calculation, but only changes the
order in which the result is obtained. For example, the result might be given
incrementally. This allows to build a dynamic network of concurrent stream

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.2 Programming with concurrency 583

objects connected with streams. Because of concurrency, adding an element to
its input stream allows a stream object to produce an output immediately.

These models have nondeterminism in the implementation, since the system
chooses how to advance the threads. But, to stay declarative, the nondetermin-
ism must not be observable to the program. The declarative concurrent models
guarantee this as long as no exceptions are raised (since exceptions are witness-
es to an observable nondeterminism). In practice, this means that each stream
object must know at all times from which stream its next input will come.

The demand-driven concurrent model, also known as lazy execution (Sec-
tion 4.5), is a form of declarative concurrency. It does not change the result of
a calculation, but only affects how much calculation is done to obtain the result.
It can sometimes give results in cases where the data-driven model would go into
an infinite loop. This is important for resource management, i.e., controlling how
many computational resources are needed. Calculations are initiated only when
their results are needed by other calculations. Lazy execution is implemented
with by-need triggers.

Message-passing concurrency

Message passing is a basic programming style of the stateful concurrent model. It
is explained in Chapter 5 and Section 7.8. It extends the declarative concurrent
model with a simple kind of communication channel, a port. It defines port objects,
which extend stream objects to read from ports. A program is then a network
of port objects communicating with each other through asynchronous message
passing. Each port object decides when to handle each messages. The port
object processes the messages sequentially. This limits the possible interleavings
and allows us to reason using invariants. Sending and receiving messages between
port objects introduces a causality between events (send, receive, and internal).
Reasoning on such systems requires reasoning on the causality chains.

Shared-state concurrency

Shared state is another basic programming style in the stateful concurrent model.
It is explained in the present chapter. It consists of a set of threads accessing
a set of shared passive objects. The threads coordinate among each other when
accessing the shared objects. They do this by means of coarse-grained atomic
actions, e.g., locks, monitors, or transactions. Again, this limits the possible
interleavings and allows us to reason using invariants.

Relationship between ports and cells

The message-passing and shared-state models are equivalent in expressiveness.
This follows because ports can be implemented with cells and vice versa. (It is
an amusing exercise to implement the Send operation using Exchange and vice
versa.) It would seem then that we have the choice whether to add ports or cells

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

584 Shared-State Concurrency

to the declarative concurrent model. However, in practice this is not so. The
two computation models emphasize a quite different programming style that is
appropriate for different classes of applications. The message-passing style is of
programs as active entities that coordinate with one another. The shared-state
style is of programs as passive data repositories that are modified in a coherent
way.

Other approaches

In addition to these four approaches, there are two others worth mentioning:

• Using the stateful concurrent model directly. This consists in pro-
gramming directly in the stateful concurrent model, either in message-
passing style (using threads, ports, and dataflow variables, see Section 5.5),
in shared-state style (using threads, cells, and dataflow variables, see Sec-
tion 8.2.2), or in a mixed style (using both cells and ports).

• Nondeterministic concurrent model (Section 5.7.1). This model adds
a nondeterministic choice operator to the declarative concurrent model. It
is a stepping stone to the stateful concurrent model.

They are less common, but can be useful in some circumstances.

Which concurrent model to use?

How do we decide which approach to use when writing a concurrent program?
Here are a few rules of thumb:

• Stick with the least concurrent model that suffices for your program. For
example, if using concurrency does not simplify the architecture of the pro-
gram, then stick with a sequential model. If your program does not have any
observable nondeterminism, such as independent clients interacting with a
server, then stick with the declarative concurrent model.

• If you absolutely need both state and concurrency, then use either the
message-passing or the shared-state approach. The message-passing ap-
proach is often the best for multi-agent programs, i.e., programs that con-
sist of autonomous entities (“agents”) that communicate with each other.
The shared-state approach is often the best for data-centered programs,
i.e., programs that consist of a large repository of data (“database”) that is
accessed and updated concurrently. Both approaches can be used together
for different parts of the same application.

• Modularize your program and concentrate the concurrency aspects in as
few places as possible. Most of the time, large parts of the program can
be sequential or use declarative concurrency. One way to implement this

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.2 Programming with concurrency 585

is with impedance matching, which is explained in Section 4.7.7. For ex-
ample, active objects can be used as front ends to passive objects. If the
passive objects are all called from the same active object then they can use
a sequential model.

Too much concurrency is bad

There is a model, the maximally concurrent model, that has even more concur-
rency than the stateful concurrent model. In the maximally concurrent model,
each operation executes in its own thread. Execution order is constrained only
by data dependencies. This has the greatest possible concurrency.

The maximally concurrent model model has been used as the basis for exper-
imental parallel programming languages. But it is both hard to program in and
hard to implement efficiently (see Exercise). This is because operations tend to
be fine-grained compared to the overhead of scheduling and synchronizing. The
shared-state concurrent model of this chapter does not have this problem because
thread creation is explicit. This allows the programmer to control the granularity.
We do not present the maximally concurrent model in more detail in this chapter.
A variant of this model is used for constraint programming (see Chapter 12).

8.2.2 Using the shared-state model directly

As we saw in the beginning of this chapter, programming directly in the shared-
state model can be tough. This is because there are potentially an enormous
number of interleavings, and the program has to work correctly for all of them.
That is the main reason why more high-level approaches, like active objects and
atomic actions, were developed. Yet, it is sometimes useful to use the model
directly. Before moving on to using atomic actions, let us see what can be done
directly in the shared-state concurrent model. Practically, it boils down to pro-
gramming with threads, procedures, cells, and dataflow variables. This section
gives some examples.

Concurrent stack

A concurrent ADT is an ADT where multiple threads can execute the ADT
operations simultaneously. The first and simplest concurrent ADT we show is a
stack. The stack provides nonblocking push and pop operations, i.e., they never
wait, but succeed or fail immediately. Using exchange, its implementation is very
compact, as Figure 8.3 shows. The exchange does two things: it accesses the cell’s
old content and it assigns a new content. Because exchange is atomic, it can be
used in a concurrent setting. Because the push and pop operations each do just
one exchange, they can be interleaved in any way and still work correctly. Any
number of threads can access the stack concurrently, and it will work correctly.
The only restriction is that a pop should not be attempted on an empty stack.
An exception can be raised in that case, e.g., as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

586 Shared-State Concurrency

fun {NewStack}
Stack={NewCell nil}
proc {Push X}
S in

{Exchange Stack S X|S}
end
fun {Pop}
X S in

{Exchange Stack X|S S}
X

end
in

stack(push:Push pop:Pop)
end

Figure 8.3: Concurrent stack

fun {Pop}
X S in

try {Exchange Stack X|S S}
catch failure(...) then raise stackEmpty end end
X

end

The concurrent stack is simple because each operation does just a single exchange.
Things become much more complex when an ADT operation does more than one
cell operation. For the ADT operation to be correct in general, these opera-
tions would have to be done atomically. To guarantee this in a simple way, we
recommend using the active object or atomic action approach.

Simulating a slow network

The object invocation {Obj M} calls Obj immediately and returns when the
call is finished. We would like to modify this to simulate a slow, asynchronous
network, where the object is called asynchronously after a delay that represents
the network delay. Here is a simple solution that works for any object:

fun {SlowNet1 Obj D}
proc {$ M}

thread
{Delay D}
{Obj M}

end
end

end

The call {SlowNet1 Obj D} returns a “slow” version of Obj . When the slow
object is invoked, it waits at least Dmilliseconds before calling the original object.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.2 Programming with concurrency 587

Preserving message order with token passing The above solution does
not preserve message order. That is, if the slow object is invoked several times
from within the same thread, then there is no guarantee that the messages will
arrive in the same order as they are sent. Moreover, if the object is invoked
from several threads, different executions of the object can overlap in time which
could result in an inconsistent object state. Here is a solution that does preserve
message order and guarantees that only one thread at a time can execute inside
the object:

fun {SlowNet2 Obj D}
C={NewCell unit }

in
proc {$ M}
Old New in

{Exchange C Old New}
thread

{Delay D}
{Wait Old}
{Obj M}
New=unit

end
end

end

This solution uses a general technique, called token passing, to extract an execu-
tion order from one part of a program and impose it on another part. The token
passing is implemented by creating a sequence of dataflow variables X0, X1, X2, ...,
and passing consecutive pairs (X0, X1), (X1, X2), ... to the operations that should
be done in the same order. An operation that receives the pair (Xi, Xi+1) does
the following steps in order:

1. Wait until the token arrives, i.e., until Xi is bound ({Wait X i}).

2. Do the computation.

3. Send the token to the next pair, i.e., bind Xi+1 (Xi+1=unit).

In the definition of SlowNet2 , each time the slow object is called, a pair of
variables (Old , New) is created. This is inserted into the sequence by the call
{Exchange C Old New} . Because Exchange is atomic, this works also in a
concurrent setting where many threads call the slow object. Each pair shares one
variable with the previous pair (Old) and one with the next pair (New). This
effectively puts the object call in an ordered queue. Each call is done in a new
thread. It first waits until the previous call has terminated ({Wait Old}), then
invokes the object ({Obj M}), and finally signals that the next call can continue
(New=unit). The {Delay D} call must be done before {Wait Old} ; otherwise
each object call would take at least D milliseconds, which is incorrect.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

588 Shared-State Concurrency

Simple lock

(gating mechanism) (can be aborted)

(ACID properties)
... ...

Reentrant lock

Monitor Light transaction

Full transaction

Figure 8.4: The hierarchy of atomic actions

8.2.3 Programming with atomic actions

Starting with the next section, we give the programming techniques for shared-
state concurrency using atomic actions. We introduce the concepts gradually,
starting with locks. We refine locks into monitors and transactions. Figure 8.4
shows the hierarchical relationships between these three concepts.

• Locks allow to group little atomic operations together into big atomic oper-
ations. With a reentrant lock, the same lock can guard discontiguous parts
of the program. A thread that is inside one part can reenter the lock at any
part without suspending.

• Monitors refine locks with wait points. A wait point is a pair of an exit and
a corresponding entry with no code in between. (Wait points are sometimes
called delay points [6].) Threads can park themselves at a wait point, just
outside the lock. Exiting threads can wake up parked threads.

• Transactions refine locks to have two possible exits: a normal one (called
commit) and an exceptional one (called abort). The exceptional exit can be
taken at any time during the transaction. When it is taken, the transaction
leaves the execution state unchanged, i.e., as it was upon entry.

Figure 8.5 summarizes the principal differences between the three concepts. There
are many variations of these concepts that are designed to solve specific problems.
This section only gives a brief introduction to the basic ideas.

Reasoning with atomic actions

Consider a program that uses atomic actions throughout. Proving that the pro-
gram is correct consists of two parts: proving that each atomic action is correct
(when considered by itself) and proving that the program uses them correctly.
The first step is to show that each atomic action, e.g., lock, monitor, or transac-
tion, is correct. Each atomic action defines an ADT. The ADT should have an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.2 Programming with concurrency 589

Lock Transaction

enter

exit
commit abort

Monitor

wait

wait

Figure 8.5: Differences between atomic actions

invariant assertion, i.e., an assertion that is true when there is no thread inside
the ADT. This is similar to reasoning with stateful programs and active objects,
except that the ADT can be accessed concurrently. Because only one thread can
be inside the atomic action at a time, we can still use mathematical induction to
show that the assertion is an invariant. We have to prove two things:

• When the ADT is first defined, the assertion is satisfied.

• Whenever a thread exits from the ADT, the assertion is satisfied.

The existence of the invariant shows that the atomic action is correct. The next
step is to show that the program using the atomic actions is correct.

8.2.4 Further reading

There are many good books on concurrent programming. The following four
are particularly well-suited as companions to this book. They give more practi-
cal techniques and theoretical background for the two concurrent paradigms of
message-passing and shared-state concurrency. At the time of writing, we know of
no books that deal with the third concurrent paradigm of declarative concurrency.

Concurrent Programming in Java

The first book deals with shared-state concurrency: Concurrent Programming
in Java, Second Edition, by Doug Lea [111]. This book presents a rich set of
practical programming techniques that are particularly well-suited to Java, a
popular concurrent object-oriented language (see Chapters 7 and 8). However,
they can be used in many other languages including the shared-state concurrent
model of this book. The book is targeted towards the shared-state approach;
message passing is mentioned only in passing.

The major difference between the Java book and this chapter is that the Java
book assumes threads are expensive. This is true for current Java implementa-
tions. Because of this, the Java book adds a conceptual level between threads and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

590 Shared-State Concurrency

procedures, called tasks, and advises the programmer to schedule multiple tasks
on one thread. If threads are lightweight this conceptual level is not needed. The
range of practical programming techniques is broadened and simpler solutions
are often possible. For example, having lightweight threads makes it easier to use
active objects, which often simplifies program structure.2

Concurrent Programming in Erlang

The second book deals with message-passing concurrency: Concurrent Program-
ming in Erlang, by Joe Armstrong, Mike Williams, Claes Wikström, and Robert
Virding [9]. This book is complementary to the book by Doug Lea. It presents a
rich set of practical programming techniques, all based on the Erlang language.
The book is entirely based on the message-passing approach.

Concurrent Programming: Principles and Practice

The third book is Concurrent Programming: Principles and Practice, by Gregory
Andrews [6]. This book is more rigorous than the previous two. It explains both
shared state and message passing. It gives a good introduction to formal reasoning
with these concepts, using invariant assertions. The formalism is presented at
just the right level of detail so that it is both precise and usable by programmers.
The book also surveys the historical evolution of these concepts and includes
some interesting intermediate steps that are no longer used.

Transaction Processing: Concepts and Techniques

The final book is Transaction Processing: Concepts and Techniques, by Jim Gray
and Andreas Reuter [64]. This book is a successful blend of theoretical insight and
hard-nosed practical information. It gives insight into various kinds of transaction
processing, how they are used, and how they are implemented in practice. It gives
a modicum of theory, carefully selected to be relevant to the practical information.

8.3 Locks

It often happens that threads wish to access a shared resource, but that the
resource can only be used by one thread at a time. To help manage this situation,
we introduce a language concept called lock, to help control access to the resource.
A lock dynamically controls access to part of the program, called a critical region.
The basic operation of the lock is to ensure exclusive access to the critical region,
i.e., that only one thread at a time can be executing inside it. If the shared
resource is only accessed from within the critical region, then the lock can be
used to control access to the resource.

2Special cases of active objects are possible if threads are expensive, see e.g., Section 5.5.1.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 591

fun {NewQueue}
X in

q(0 X X)
end

fun {Insert q(N S E) X}
E1 in

E=X|E1 q(N+1 S E1)
end

fun {Delete q(N S E) X}
S1 in

S=X|S1 q(N-1 S1 E)
end

Figure 8.6: Queue (declarative version)

The shared resource can be either inside the program (e.g., an object) or
outside it (e.g., an operating system resource). Locks can help in both cases. If
the resource is inside the program, then the programmer can guarantee that it
cannot be referenced outside the critical region, using lexical scoping. This kind
of guarantee can in general not be given for resources outside of the program.
For those resources, locks are an aid to the programmer, but he must follow the
discipline of only referencing the resource inside the critical region.

There are many different kinds of locks that provide different kinds of access
control. Most of them can be implemented in Oz using language entities we have
already seen (i.e., cells, threads, and dataflow variables). However, a particu-
larly useful kind of lock, the thread-reentrant lock, is directly supported by the
language. The following operations are provided:

• {NewLock L} returns a new lock.

• {IsLock X} returns true if and only if X references a lock.

• lock X then 〈S〉 end guards 〈S〉 with lock X. If no thread is currently
executing any statement guarded by lock X, then any thread can enter. If
a thread is currently executing a guarded statement, then the same thread
can enter again, if it encounters the same lock in a nested execution. A
thread suspends if it attempts to enter a guarded statement while there is
another thread in a statement guarded by the same lock.

Note that lock X then ... end can be called many times with the same lock
X. That is, the critical section does not have to be contiguous. The lock will
ensure that at most one thread is inside any of the parts that it guards.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

592 Shared-State Concurrency

fun {NewQueue}
X C={NewCell q(0 X X)}
proc {Insert X}
N S E1 in

q(N S X|E1)=@C
C:=q(N+1 S E1)

end
fun {Delete}
N S1 E X in

q(N X|S1 E)=@C
C:=q(N-1 S1 E)
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.7: Queue (sequential stateful version)

8.3.1 Building stateful concurrent ADTs

Now that we have introduced locks, we are ready to program stateful concurrent
ADTs. Let us approach this in steps. We give a systematic way to transform
a declarative ADT to become a stateful concurrent ADT. We also show how to
modify a sequential stateful ADT to become concurrent.

We illustrate the different techniques by means of a simple example, a queue.
This is not a limitation since these techniques work for any ADT. We start from
a declarative implementation and show how to convert this to a stateful imple-
mentation that can be used in a concurrent setting:

• Figure 8.6 is essentially the declarative queue of Section 3.4.4. (For brevity
we leave out the function IsEmpty .) Delete operations never block: if the
queue is empty when an element is deleted, then a dataflow variable is
returned which will be bound to the next inserted element. The size N is
positive if there are more inserts than deletes and negative otherwise. All
functions have the form Qout={QueueOp Qin ...} , taking an input queue
Qin and returning an output queue Qout . This queue will work correctly
in a concurrent setting, insofar as it can be used there. The problem is that
the order of the queue operations is explicitly determined by the program.
Doing these queue operations in different threads will ipso facto cause the
threads to synchronize. This is almost surely an undesired behavior.

• Figure 8.7 shows the same queue, but in a stateful version that encapsulates
the queue’s data. This version cannot be used in a concurrent setting
without some changes. The problem is that encapsulating the state requires
to read the state (@), do the operation, and then to write the new state (:=).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 593

fun {NewQueue}
X C={NewCell q(0 X X)}
L={NewLock}
proc {Insert X}
N S E1 in

lock L then
q(N S X|E1)=@C
C:=q(N+1 S E1)

end
end
fun {Delete}
N S1 E X in

lock L then
q(N X|S1 E)=@C
C:=q(N-1 S1 E)

end
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.8: Queue (concurrent stateful version with lock)

If two threads each do an insert, then both reads may be done before both
writes, which is incorrect. A correct concurrent version requires the read-
operation-write sequence to be atomic.

• Figure 8.8 shows a concurrent version of the stateful queue, using a lock to
ensure atomicity of the read-operation-write sequence. Doing queue opera-
tions in different threads will not impose any synchronization between the
threads. This property is a consequence of using state.

• Figure 8.9 shows the same version, written with object-oriented syntax. The
cell is replaced by the attribute queue and the lock is implicitly defined by
the locking property.

• Figure 8.10 shows another concurrent version, using an exchange to en-
sure atomicity. Since there is only a single state operation (the exchange),
no locks are needed. This version is made possible because of the single-
assignment property of dataflow variables. An important detail: the arith-
metic operations N-1 and N+1 must be done after the exchange (why?).

We discuss the advantages and disadvantages of these solutions:

• The declarative version of Figure 8.6 is the simplest, but it cannot be used
as a shared resource between independent threads.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

594 Shared-State Concurrency

class Queue
attr queue
prop locking

meth init
queue:=q(0 X X)

end

meth insert(X)
lock N S E1 in

q(N S X|E1)=@queue
queue:=q(N+1 S E1)

end
end

meth delete(X)
lock N S1 E in

q(N X|S1 E)=@queue
queue:=q(N-1 S1 E)

end
end

end

Figure 8.9: Queue (concurrent object-oriented version with lock)

• Both concurrent versions of Figure 8.8 and 8.10 are reasonable. Figure 8.8’s
use of a lock is more general, since a lock can be used to make atomic any set
of operations. This version can be written with an object-oriented syntax,
as shown in Figure 8.9. Figure 8.10’s version with exchange is compact but
less general; it is only possible for operations that manipulate a single data
sequence.

8.3.2 Tuple spaces (“Linda”)

Tuple spaces are a popular abstraction for concurrent programming. The first
tuple space abstraction, called Linda, was introduced by David Gelernter in
1985 [59, 30, 31]. This abstraction plays two very different roles. From a theoret-
ical viewpoint, it is one of the first models of concurrent programming. From a
practical viewpoint, it is a useful abstraction for concurrent programs. As such, it
can be added to any language, thus giving a concurrent version of that language
(e.g., C with Linda is called C-Linda). A tuple space abstraction is sometimes
called a coordination model and a programming language that contains a tuple
space abstraction is sometimes called a coordination language. In its basic form,
the abstraction is simple to define. It consists of a multiset TS of tuples with
three basic operations:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 595

fun {NewQueue}
X C={NewCell q(0 X X)}
proc {Insert X}
N S E1 N1 in

{Exchange C q(N S X|E1) q(N1 S E1)}
N1=N+1

end
fun {Delete}
N S1 E N1 X in

{Exchange C q(N X|S1 E) q(N1 S1 E)}
N1=N-1
X

end
in

queue(insert:Insert delete:Delete)
end

Figure 8.10: Queue (concurrent stateful version with exchange)

• {TS write(T)} adds the tuple T to the tuple space.

• {TS read(L T)} waits until the tuple space contains at least one tuple
with label L. It then removes one such tuple and binds it to T.

• {TS readnonblock(L T B)} does not wait, but immediately returns. It
returns with B=false if the tuple space contains no tuple with label L.
Otherwise, it returns with B=true , removes one tuple with label L and
binds it to T.

This slightly simplifies the usual formulation of Linda, in which the read oper-
ation can do pattern matching. This abstraction has two important properties.
The first property is that it provides a content-addressable memory: tuples are
identified only by their labels. The second property is that the readers are decou-
pled from the writers. The abstraction does no communication between readers
and writers other than that defined above.

Example execution

We first create a new tuple space:

TS={New TupleSpace init}

In TS we can read and write any tuples in any order. The final result is always
the same: the reads see the writes in the order they are written. Doing {TS

write(foo(1 2 3))} adds a tuple with label foo and three arguments. The
following code waits until a tuple with label foo exists, and when it does, it
removes and displays it:

thread {Browse {TS read(foo $)}} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

596 Shared-State Concurrency

fun {NewQueue}
X TS={New TupleSpace init}
proc {Insert X}
N S E1 in

{TS read(q q(N S X|E1))}
{TS write(q(N+1 S E1))}

end
fun {Delete}
N S1 E X in

{TS read(q q(N X|S1 E))}
{TS write(q(N-1 S1 E))}
X

end
in

{TS write(q(0 X X))}
queue(insert:Insert delete:Delete)

end

Figure 8.11: Queue (concurrent version with tuple space)

The following code immediately checks if a tuple with label foo exists:

local T B in {TS readnonblock(foo T B)} {Browse T#B} end

This does not block, so it does not need to be put in its own thread.

Implementing a concurrent queue

We can show yet another implementation of a concurrent queue, using tuple
spaces instead of cells. Figure 8.11 shows how it is done. The tuple space TS

contains a single tuple q(N S E) that represents the state of the queue. The tuple
space is initialized with the tuple q(0 X X) that represents an empty queue. No
locking is needed because the read operation atomically removes the tuple from
the tuple space. This means that the tuple can be considered as a unique token,
which is passed between the tuple space and the queue operations. If there are
two concurrent Insert operations, only one will get the tuple and the other
will wait. This is another example of the token passing technique introduced in
Section 8.2.2.

Implementing tuple spaces

A tuple space can be implemented with a lock, a dictionary, and a concurrent
queue. Figure 8.12 shows a simple implementation in object-oriented style. This
implementation is completely dynamic; at any moment it can read and write
tuples with any labels. The tuples are stored in a dictionary. The key is the
tuple’s label and the entry is a queue of tuples with that label. The capitalized
methods EnsurePresent and Cleanup are private to the TupleSpace class and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 597

class TupleSpace
prop locking
attr tupledict

meth init tupledict:={NewDictionary} end

meth EnsurePresent(L)
if {Not {Dictionary.member @tupledict L}}
then @tupledict.L:={NewQueue} end

end

meth Cleanup(L)
if {@tupledict.L.size}==0
then {Dictionary.remove @tupledict L} end

end

meth write(Tuple)
lock L={Label Tuple} in

{ self EnsurePresent(L)}
{@tupledict.L.insert Tuple}

end
end

meth read(L ?Tuple)
lock

{ self EnsurePresent(L)}
{@tupledict.L.delete Tuple}
{ self Cleanup(L)}

end
{Wait Tuple}

end

meth readnonblock(L ?Tuple ?B)
lock

{ self EnsurePresent(L)}
if {@tupledict.L.size}>0 then

{@tupledict.L.delete Tuple} B= true
else B=false end
{ self Cleanup(L)}

end
end

end

Figure 8.12: Tuple space (object-oriented version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

598 Shared-State Concurrency

fun {SimpleLock}
Token={NewCell unit }
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
{P}
New=unit

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.13: Lock (non-reentrant version without exception handling)

fun {CorrectSimpleLock}
Token={NewCell unit }
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
try {P} finally New=unit end

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.14: Lock (non-reentrant version with exception handling)

invisible to users of tuple space objects (see Section 7.3.3). The implementation
does correct memory management: a new entry is added upon the first occurrence
of a particular label; and when the queue is empty, the entry is removed.

The tuple space implementation uses a concurrent stateful queue which is a
slightly extended version of Figure 8.8. We add just one operation, a function
that returns the size of the queue, i.e., the number of elements it contains. Our
queue extends Figure 8.8 like this:

fun {NewQueue}
...
fun {Size}

lock L then @C.1 end
end

in
queue(insert:Insert delete:Delete size:Size)

end

We will extend this queue again for implementing monitors.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.3 Locks 599

fun {NewLock}
Token={NewCell unit }
CurThr={NewCell unit }
proc {Lock P}

if {Thread.this}==@CurThr then
{P}

else Old New in
{Exchange Token Old New}
{Wait Old}
CurThr:={Thread.this}
try {P} finally

CurThr:= unit
New=unit

end
end

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 8.15: Lock (reentrant version with exception handling)

8.3.3 Implementing locks

Locks can be defined in the concurrent stateful model by using cells and dataflow
variables. We first show the definition of a simple lock, then a simple lock that
handles exceptions correctly, and finally a thread-reentrant lock. The built-in
locks provided by the system are thread-reentrant locks with the semantics given
here, but they have a more efficient low-level implementation.

A simple lock is a procedure {L P} that takes a zero-argument procedure P

as argument and executes P in a critical section. Any thread that attempts to
enter the lock while there is still one thread inside will suspend. The lock is
called simple because a thread that is inside a critical section cannot enter any
other critical section protected by the same lock. It first has to leave the initial
critical section. Simple locks can be created by the function SimpleLock defined
in Figure 8.13. If multiple threads attempt to access the lock body, then only
one is given access and the others are queued. When a thread leaves the critical
section, access is granted to the next thread in the queue. This uses the token
passing technique of in Section 8.2.2.

But what happens if the lock body {P} raises an exception? The lock of Fig-
ure 8.13 does not work since New will never be bound. We can fix this problem
with a try statement. Figure 8.14 gives a version of the simple lock that han-
dles exceptions. The try 〈stmt〉1 finally 〈stmt〉2 end is syntactic sugar that
ensures 〈stmt〉2 is executed in both the normal and exceptional cases, i.e., an
exception will not prevent the lock from being released.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

600 Shared-State Concurrency

A thread-reentrant lock extends the simple lock to allow the same thread to
enter other critical sections protected by the same lock. It is even possible to
nest critical sections protected by the same lock. Other threads trying to acquire
the lock will queue until P is completed. When the lock is released, it is granted
to the thread standing first in line. Figure 8.15 shows how to define thread-
reentrant locks. This assumes that each thread has a unique identifier T that
is different from the literal unit and that is obtained by calling the procedure
{Thread.this T} . The assignments to CurThr have to be done in exactly the
places shown. What can go wrong if {Wait Old} and CurThr:={Thread.this}

are switched or if CurThr:= unit and New=unit are switched?

8.4 Monitors

Locks are an important tool for building concurrent abstractions in a stateful
model, but they are not sufficient. For example, consider the simple case of a
bounded buffer. A thread may want to put an element in the buffer. It is not
enough to protect the buffer with a lock. What if the buffer is full: the thread
enters and can do nothing! What we really want is a way for the thread to wait
until the buffer is not full, and then continue. This cannot be done with just
locks. It needs a way for threads to coordinate among each other. For example,
a thread that puts an element in the buffer can be notified that the buffer is not
full by another thread which removes an element from the buffer.

The standard way for coordinating threads in a stateful model is by using
monitors. Monitors were introduced by Brinch Hansen [22, 23] and further de-
veloped by Hoare [82]. They continue to be widely used; for example they are
a basic concept in the Java language [111]. A monitor is a lock extended with
program control over how waiting threads enter and exit the lock. This control
makes it possible to use the monitor as a resource that is shared among concur-
rent activities. There are several ways to give this control. Typically, a monitor
has either one set of waiting threads or several queues of waiting threads. The
simplest case is when there is one set; let us consider it first.

The monitor adds a wait and a notify operation to the lock entry and exit
operations. (notify is sometimes called signal.) The wait and notify are only
possible from inside the monitor. When inside a monitor, a thread can explicitly
do a wait; thereupon the thread suspends, is entered in the monitor’s wait set,
and releases the monitor lock. When a thread does a notify, it lets one thread
in the wait set continue. This thread attempts to get the monitor lock again. If
it succeeds, it continues running from where it left off.

We first give an informal definition of monitors. We then program some
examples both with monitors and in the declarative concurrent model. This
will let us compare both approaches. We conclude the section by giving an
implementation of monitors in the shared-state concurrent model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 601

Definition

There exist several varieties of monitors, with slightly different semantics. We
first explain the Java version because it is simple and popular. (Section 8.4.4
gives an alternative version.) The following definition is taken from [110]. In
Java, a monitor is always part of an object. It is an object with an internal lock
and wait set. Object methods can be protected by the lock by annotating them
as synchronized. There are three operations to manage the lock: wait, notify,
and notifyAll. These operations can only be called by threads that hold the
lock. They have the following meaning:

• The wait operation does the following:

– The current thread is suspended.

– The thread is placed in the object’s internal wait set.

– The lock for the object is released.

• The notify operation does the following:

– If one exists, an arbitrary thread T is removed from the object’s internal
wait set.

– T proceeds to get the lock, just as any other thread. This means that T

will always suspend for a short time, until the notifying thread releases
the lock.

– T resumes execution at the point it was suspended.

• The notifyAll operation is similar to notify except that it does the above
steps for all threads in the internal wait set. The wait set is then emptied.

For the examples that follow, we suppose that a function NewMonitor exists with
the following specification:

• M={NewMonitor} creates a monitor with operations {M. ´ lock ´ } (monitor
lock procedure), {M.wait} (wait operation), {M.notify} (notify opera-
tion), and {M.notifyAll} (notifyAll operation).

In the same way as for locks, we assume that the monitor lock is thread-reentrant
and handles exceptions correctly. Section 8.4.3 explains how the monitor is im-
plemented.

Monitors were designed for building concurrent ADTs. To make it easier to
build ADTs with monitors, some languages provide them as a linguistic abstrac-
tion. This makes it possible for the compiler to guarantee that the wait and notify
operations are only executed inside the monitor lock. This can also make it easy
for the compiler to ensure safety properties, e.g., that shared variables are only
accessed through the monitor [24].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

602 Shared-State Concurrency

8.4.1 Bounded buffer

In Chapter 4, we showed how to implement a bounded buffer declaratively in two
ways, with both eager and lazy stream communication. In this section we imple-
ment it with a monitor. We then compare this solution with the two declarative
implementations. The bounded buffer is an ADT with three operations:

• B={New Buffer init(N)} : create a new bounded buffer B of size N.

• {B put(X)} : put the element X in the buffer. If the buffer is full, this will
block until the buffer has room for the element.

• {B get(X)} : remove the element X from the buffer. If the buffer is empty,
this will block until there is at least one element.

The idea of the implementation is simple: the put and get operations will each
wait until the buffer is not full and not empty, respectively. This gives the fol-
lowing partial definition:

class Buffer
attr

buf first last n i

meth init(N)
buf:={NewArray 0 N-1 null}
first:=0 last:=0 n:=N i:=0

end

meth put(X)
... % wait until i<n
% now add an element:
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1

end

meth get(X)
... % wait until i>0
% now remove an element:
X=@buf.@first
first:=(@first+1) mod @n
i:=@i-1

end
end

The buffer uses an array of n elements, indexed by first and last . The array
wraps around: after element n− 1 comes element 0. The buffer’s maximum size
is n of which i elements are used. Now let’s code it with a monitor. The naive
solution is the following (where M is a monitor record):

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 603

meth put(X)
{M. ´ lock ´ proc {$}

if @i>=@n then {M.wait} end
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{M.notifyAll}

end }
end

That is, if the buffer is full, then {M.wait} simply waits until it is no longer full.
When get(X) removes an element, it does a {M.notifyAll} , which wakes up the
waiting thread. This naive solution is not good enough, since there is no guarantee
that the buffer will not fill up just after the wait. When the thread releases
the monitor lock with {M.wait} , other threads can slip in to add and remove
elements. A correct solution does {M.wait} as often as necessary, checking the
comparison @i>=@neach time. This gives the following code:

meth put(X)
{M. ´ lock ´ proc {$}

if @i>=@n then
{M.wait}
{ self put(X)}

else
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{M.notifyAll}

end
end }

end

After the wait, this calls the put method again to do the check again. Since the
lock is reentrant, it will let the thread enter again. The check is done inside the
critical section, which eliminates any interference from other threads. Now we can
put the pieces together. Figure 8.16 gives the final solution. The init method
creates the monitor and stores the monitor procedures in object attributes. The
put and get methods use the technique we gave above of waiting in a loop.

Let us compare this version with the declarative concurrent versions of Chap-
ter 4. Figure 4.15 gives the eager version and Figure 4.28 gives the lazy version.
The lazy version is the simplest. Either of the declarative concurrent versions
can be used whenever there is no observable nondeterminism, for example, in
point-to-point connections to connect one writer with one reader. Another case
is when there are multiple readers that all read the same items. The monitor
version can be used when the number of independent writers is more than one or
when the number of independent readers is more than one.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

604 Shared-State Concurrency

class Buffer
attr m buf first last n i

meth init(N)
m:={NewMonitor}
buf:={NewArray 0 N-1 null}
n:=N i:=0 first:=0 last:=0

end

meth put(X)
{@m.́ lock ´ proc {$}

if @i>=@n then
{@m.wait}
{ self put(X)}

else
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{@m.notifyAll}

end
end }

end

meth get(X)
{@m.́ lock ´ proc {$}

if @i==0 then
{@m.wait}
{ self get(X)}

else
X=@buf.@first
first:=(@first+1) mod @n
i:=@i-1
{@m.notifyAll}

end
end }

end
end

Figure 8.16: Bounded buffer (monitor version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 605

8.4.2 Programming with monitors

The technique we used in the bounded buffer is a general one for programming
with monitors. Let us explain it in the general setting. For simplicity, assume that
we are defining a concurrent ADT completely in a single class. The idea is that
each method is a critical section that is guarded, i.e., there is a boolean condition
that must be true for a thread to enter the method body. If the condition is false,
then the thread waits until it becomes true. A guarded method is also called a
conditional critical section.

Guarded methods are implemented using the wait and notifyAll operations.
Here is an example in a simple pseudocode:

meth methHead
lock

while not 〈expr〉 do wait;
〈stmt〉
notifyAll;

end
end

In this example, 〈expr〉 is the guard and 〈stmt〉 is the guarded body. When the
method is called, the thread enters the lock and waits for the condition in a
while loop. If the condition is true then it immediately executes the body. If
the condition is false then it waits. When the wait continues then the loop is
repeated, i.e., the condition is checked again. This guarantees that the condition
is true when the body is executed. Just before exiting, the method notifies all
other waiting threads that they might be able to continue. They will all wake up
and try to enter the monitor lock to test their condition. The first one that finds
a true condition is able to continue. The others will wait again.

8.4.3 Implementing monitors

Let us show how to implement monitors in the shared-state concurrent model.
This gives them a precise semantics. Figure 8.19 shows the implementation.
It is thread-reentrant and correctly handles exceptions. It implements mutual
exclusion using the get-release lock of Figure 8.18. It implements the wait set
using the extended queue of Figure 8.17. Implementing the wait set with a queue
avoids starvation because it gives the longest-waiting thread the first chance to
enter the monitor.

The implementation only works if M.wait is always executed inside an active
lock. To be practical, the implementation should be extended to check this at
run-time. We leave this simple extension up to the reader. Another approach is to
embed the implementation inside a linguistic abstraction that statically enforces
this.

When writing concurrent programs in the shared-state concurrent model, it is
usually simpler to use the dataflow approach rather than monitors. The Mozart

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

606 Shared-State Concurrency

fun {NewQueue}
...
fun {Size}

lock L then @C.1 end
end
fun {DeleteAll}

lock L then
X q(_ S E)=@C in

C:=q(0 X X)
E=nil S

end
end
fun {DeleteNonBlock}

lock L then
if {Size}>0 then [{Delete}] else nil end

end
end

in
queue(insert:Insert delete:Delete size:Size

deleteAll:DeleteAll deleteNonBlock:DeleteNonBlock)
end

Figure 8.17: Queue (extended concurrent stateful version)

implementation therefore does no special optimizations to improve monitor per-
formance. However, the implementation of Figure 8.19 can be optimized in many
ways, which is important if monitor operations are frequent.

Extended concurrent queue

For the monitor implementation, we extend the concurrent queue of Figure 8.8
with the three operations Size , DeleteAll , and DeleteNonBlock . This gives
the definition of Figure 8.17.

This queue is a good example of why reentrant locking is useful. Just look
at the definition of DeleteNonBlock : it calls Size and Delete . This will only
work if the lock is reentrant.

Reentrant get-release lock

For the monitor implementation, we extend the reentrant lock of Figure 8.15 to
a get-release lock. This exports the actions of getting and releasing the lock as
separate operations, Get and Release . This gives the definition of Figure 8.18.
The operations have to be separate because they are used in both LockM and
WaitM .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.4 Monitors 607

fun {NewGRLock}
Token1={NewCell unit }
Token2={NewCell unit }
CurThr={NewCell unit }

proc {GetLock}
if {Thread.this}\=@CurThr then Old New in

{Exchange Token1 Old New}
{Wait Old}
Token2:=New
CurThr:={Thread.this}

end
end

proc {ReleaseLock}
CurThr:= unit
unit =@Token2

end
in

´ lock ´ (get:GetLock release:ReleaseLock)
end

Figure 8.18: Lock (reentrant get-release version)

8.4.4 Another semantics for monitors

In the monitor concept we introduced above, notify has just one effect: it causes
one waiting thread to leave the wait set. This thread then tries to obtain the
monitor lock. The notifying thread does not immediately release the monitor
lock. When it does, the notified thread competes with other threads for the lock.
This means that an assertion satisfied at the time of the notify might no longer
be satisfied when the notified thread enters the lock. This is why an entering
thread has to check the condition again.

There is a variation that is both more efficient and easier to reason about. It
is for notify to do two operations atomically: it first causes one waiting thread
to leave the wait set (as before) and it then immediately passes the monitor lock
to that thread. The notifying thread thereby exits from the monitor. This has
the advantage that an assertion satisfied at the time of the notify will still be true
when the notified thread continues. The notifyAll operation no longer makes
any sense in this variation, so it is left out.

Languages that implement monitors this way usually allow to declare several
wait sets. A wait set is seen by the programmer as an instance of a special
ADT called a condition. The programmer can create new instances of conditions,
which are called condition variables. Each condition variable c has two operations,
c.wait and c.notify.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

608 Shared-State Concurrency

fun {NewMonitor}
Q={NewQueue}
L={NewGRLock}

proc {LockM P}
{L.get} try {P} finally {L.release} end

end

proc {WaitM}
X in

{Q.insert X} {L.release} {Wait X} {L.get}
end

proc {NotifyM}
U={Q.deleteNonBlock} in

case U of [X] then X=unit else skip end
end

proc {NotifyAllM}
L={Q.deleteAll} in

for X in L do X=unit end
end

in
monitor(´ lock ´ :LockM wait:WaitM notify:NotifyM

notifyAll:NotifyAllM)
end

Figure 8.19: Monitor implementation

We can reimplement the bounded buffer using this variation. The new bound-
ed buffer has two conditions, which we can call nonempty and nonfull. The put

method waits for a nonfull and then signals a nonempty. The get method waits
for a nonempty and then signals a nonfull. This is more efficient than the pre-
vious implementation because it is more selective. Instead of waking up all the
monitor’s waiting threads with notifyAll, only one thread is woken up, in the
right wait set. We leave the actual coding to an exercise.

8.5 Transactions

Transactions were introduced as a basic concept for the management of large
shared databases. Ideally, databases must sustain a high rate of concurrent up-
dates while keeping the data coherent and surviving system crashes. This is not
an easy problem to solve. To see why, consider a database represented as a large
array of cells. Many clients wish to update the database concurrently. A naive
implementation is to use a single lock to protect the whole array. This solution is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 609

impractical for many reasons. One problem is that a client that takes one minute
to perform an operation will prevent any other operation from taking place during
that time. This problem can be solved with transactions.

The term “transaction” has acquired a fairly precise meaning: it is any oper-
ation that satisfies the four ACID properties [16, 64]. ACID is an acronym:

• A stands for atomic: no intermediate states of a transaction’s execution are
observable. It is as if the transaction happened instantaneously or did not
happen at all. The transaction can complete normally (it commits) or it
can be canceled (it aborts).

• C stands for consistent: observable state changes respect the system in-
variants. Consistency is closely related to atomicity. The difference is that
consistency is the responsibility of the programmer, whereas atomicity is
the responsibility of the implementation of the transaction system.

• I stands for isolation: several transactions can execute concurrently without
interfering with each other. They execute as if they were sequential. This
property is also called serializability. It means that the transactions have
an interleaving semantics, just like the underlying computation model. We
have “lifted” the interleaving semantics up from the model to the level of
the transactions.

• D stands for durability: observable state changes survive across system shut-
downs. Durability is often called persistence. Implementing durability re-
quires a stable storage (such as a disk) that stores the observable state
changes.

This chapter only gives a brief introduction to transaction systems. The classic
reference on transactions is Bernstein et al [16]. This book is clear and precise
and introduces the theory of transactions with just the right amount of formalism
to aid intuition. Unfortunately, this book is out of print. Good libraries will often
have a copy. Another good book on transactions is Gray & Reuter [64]. An exten-
sive and mathematically rigorous treatment is given by Weikum & Vossen [204].

Lightweight (ACI) transactions

Outside of database applications all four ACID properties are not always needed.
This section uses the term “transaction” in a narrower sense that is closer to the
needs of general-purpose concurrent programming. Whenever there is a risk of
confusion, we will call it a light transaction. A lightweight transaction is simply
an abortable atomic action. It has all ACID properties except for D (durability).
A lightweight transaction can commit or abort. The abort can be due to a cause
internal to the program (e.g., because of conflicting access to shared data) or
external to the program (e.g., due to failure of part of the system, like a disk or
the network).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

610 Shared-State Concurrency

Motivations

We saw that one motivation for transactions was to increase the throughput of
concurrent accesses to a database. Let us look at some other motivations. A sec-
ond motivation is concurrent programming with exceptions. Most routines have
two possible ways to exit: either they exit normally or they raise an exception.
Usually the routine behaves atomically when it exits normally, i.e., the caller sees
the initial state and the result but nothing in between. When there is an excep-
tion this is not the case. The routine might have put part of the system in an
inconsistent state. How can we avoid this undesirable situation? There are two
solutions:

• The caller can clean up the called routine’s mess. This means that the
called routine has to be carefully written so that its mess is always limited
in extent.

• The routine can be inside a transaction. This solution is harder to im-
plement, but can make the program much simpler. Raising an exception
corresponds to aborting the transaction.

A third motivation is fault tolerance. Lightweight transactions are important for
writing fault-tolerant applications. When a fault occurs, a fault-tolerant applica-
tion has to take three steps: (1) detect the fault, (2) contain the fault in a limited
part of the application, and (3) handle the fault. Lightweight transactions are a
good mechanism for fault confinement.

A fourth motivation is resource management. Lightweight transactions allow
to acquire multiple resources without causing a concurrent application to stop
because of an undesirable situation called deadlock. This situation is explained
below.

Kernel language viewpoint Let us make a brief detour and examine trans-
actions from the viewpoint of computation models. The transactional solution
satisfies one of our criteria for adding a concept to the computation model, namely
that programs in the extended model are simpler. But what exactly is the con-
cept to be added? This is still an open research subject. In our view, it is a very
important one. Some day, the solution to this question will be an important part
of all general-purpose programming languages. In this section we do not solve
this problem. We will implement transactions as an abstraction in the concurrent
stateful model without changing the model.

8.5.1 Concurrency control

Consider a large database accessed by many clients at the same time. What does
this imply for transactions? It means that they are concurrent yet still satisfy
serializability. The implementation should allow concurrent transactions and yet

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 611

it has to make sure that they are still serializable. There is a strong tension
between these two requirements. They are not easy to satisfy simultaneously.
The design of transaction systems that satisfy both has led to a rich theory and
many clever algorithms [16, 64].

Concurrency control is the set of techniques used to build and program con-
current systems with transactional properties. We introduce these techniques and
the concepts they are based on and we show one practical algorithm. Technically
speaking, our algorithm does optimistic concurrency control with strict two-phase
locking and deadlock avoidance. We explain what all these terms mean and why
they are important. Our algorithm is interesting because it is both practical and
simple. A complete working implementation takes just two pages of code.

Locks and timestamps

The two most widely-used approaches to concurrency control are locks and time-
stamps:

• Lock-based concurrency control. Each stateful entity has a lock that controls
access to the entity. For example, a cell might have a lock that permits only
one transaction to use it at a time. In order to use a cell, the transaction
must have a lock on it. Locks are important to enforce serializability. This
is a safety property, i.e., an assertion that is always true during execution.
A safety property is simply a system invariant. In general, locks allow to
restrict the system’s behavior so that it is safe.

• Timestamp-based concurrency control. Each transaction is given a time-
stamp that gives it a priority. The timestamps are taken from an ordered
set, something like the numbered tickets used in shops to ensure that cus-
tomers are served in order. Timestamps are important to ensure that exe-
cution makes progress. For example, that each transaction will eventually
commit or abort. This is a liveness property, i.e., an assertion that always
eventually becomes true.

Safety and liveness properties describe how a system behaves as a function of
time. To reason with these properties, it is important to be careful about the
exact meanings of the terms “is always true” and “eventually becomes true”.
These terms are relative to the current execution step. A property is always true
if it is true at every execution step starting from the current step. A property
eventually becomes true if there exists at least one execution step in the future
where it is true. We can combine always and eventually to make more complicated
properties. For example, a property that always eventually becomes true means
that at every step starting from the current step it will eventually become true.
The property “an active transaction will eventually abort or commit” is of this
type. This style of reasoning can be given a formal syntax and semantics. This
results in a variety of logic called temporal logic.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

612 Shared-State Concurrency

Optimistic and pessimistic scheduling

There are many algorithms for concurrency control, which vary on different axes.
One of these axes is the degree of optimism or pessimism of the algorithm. Let
us introduce this with two examples taken from real life. Both examples concern
traveling, by airplane or by train.

Airlines often overbook flights, that is, sell more tickets than there is room
on the flight. At boarding time, there have usually been enough cancellations
that this is not a problem (all passengers have a seat). But occasionally some
passengers have no seat, and these have to be accommodated in some way (e.g.,
by booking them on a later flight and reimbursing their discomfort). This is
an example of optimistic scheduling: a passenger requesting a ticket is given the
ticket right away even if the flight is already completely booked, as long as the
overbooking is less than some ratio. Occasional problems are tolerated since
overbooking allows to increase the average number of filled seats on a flight and
because problems are easily repaired.

Railways are careful to ensure that there are never two trains traveling towards
each other on the same track segment. A train is only allowed to enter a track
segment if at that moment there is no other train on the same segment. Protocols
and signaling mechanisms have been devised to ensure this. This is an example
of pessimistic scheduling: a train requesting to enter a segment may have to wait
until the segment is known to be clear. Unlike the case of overbookings, accidents
are not tolerated because they are extremely costly and usually irreparable in
terms of people’s lives lost.

Let us see how these approaches apply to transactions. A transaction requests
a lock on a cell. This request is given to a scheduler. The scheduler decides when
and if the request should be fulfilled. It has three possible responses: to satisfy
the request immediately, to reject the request (causing a transaction abort), or to
postpone its decision. An optimistic scheduler tends to give the lock right away,
even if this might cause problems later on (deadlocks and livelocks, see below).
A pessimistic scheduler tends to delay giving the lock, until it is sure that no
problems can occur. Depending on how often transactions work on shared data,
an optimistic or pessimistic scheduler might be more appropriate. For example,
if transactions mostly work on independent data, then an optimistic scheduler
may give higher performance. If transactions often work on shared data, then a
pessimistic scheduler may give higher performance. The algorithm we give below
is an optimistic one; it sometimes has to repair mistakes due to past choices.

Two-phase locking

Two-phase locking is the most popular technique for doing locking. It is used
by almost all commercial transaction processing systems. It can be proved that
doing two-phase locking guarantees that transactions are serializable. In two-
phase locking a transaction has two phases: a growing phase, in which it acquires
locks but does not release them, and a shrinking phase, in which it releases locks

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 613

but does not acquire them. A transaction is not allowed to release a lock and
then acquire another lock afterwards. This restriction means that a transaction
might hold a lock longer than it needs to. Experience shows that this is not a
serious problem.

A popular refinement of two-phase locking used by many systems is called
strict two-phase locking. In this refinement, all locks are released simultaneously
at the end of the transaction, after it commits or aborts. This avoids a problem
called cascading abort. Consider the following scenario. Assume that standard
two-phase locking is used with two transactions T1 and T2 that share cell C. First
T1 locks C and changes C’s content. Then T1 releases the lock in its shrinking
phase but continues to be active. Finally T2 locks C, does a calculation with
C, and commits. What happens if T1, which is still active, now aborts? If T1
aborts then T2 has to abort too, since it has read a value of C modified by T1.
T2 could be linked in a similar way to another transaction T3, and so forth. If
T1 aborts then all the others have to abort as well, in cascade, even though they
already committed. If locks are released only after transactions commit or abort
then this problem does not occur.

8.5.2 A simple transaction manager

Let us design a simple transaction manager. It will do optimistic concurrency
control with strict two-phase locking. We first design the algorithm using stepwise
refinement. We then show how to implement a transaction manager that is based
on this algorithm.

A naive algorithm

We start the design with the following simple idea. Whenever a transaction
requests the lock of an unlocked cell, let it acquire the lock immediately without
any further conditions. If the cell is already locked, then let the transaction wait
until it becomes unlocked. When a transaction commits or aborts, then it releases
all its locks. This algorithm is optimistic because it assumes that getting the lock
will not give problems later on. If problems arise (see next paragraph!) then the
algorithm has to fix them.

Deadlock

Our naive algorithm has a major problem: it suffers from deadlocks. Consider
two concurrent transactions T1 and T2 where each one uses cells C1 and C2. Let
transaction T1 use C1 and C2, in that order, and transaction T2 use C2 and C1,
in the reverse order. Because of concurrency, it can happen that T1 has C1’s
lock and T2 has C2’s lock. When each transaction tries to acquire the other lock
it needs, it waits. Both transactions will therefore wait indefinitely. This kind
of situation, in which active entities (transactions) wait for resources (cells) in a
cycle, such that no entity can continue, is called a deadlock.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

614 Shared-State Concurrency

How can we ensure that our system never suffers from the consequences of
deadlock? Like for ailments in general, there are two basic approaches: prevention
and cure. The goal of deadlock prevention (also called avoidance) is to prevent a
deadlock from ever happening. A transaction is prevented from locking an object
that might lead to a deadlock. The goal of deadlock cure (also called detection &
resolution) is to detect when a deadlock occurs and to take some action to reverse
its effects.

Both approaches are based on a concept called the wait-for graph. This is a
directed graph that has nodes for active entities (e.g., transactions) and resources
(e.g., cells). There is an edge from each active entity to the resource it is waiting
for (if any) but does not yet have. There is an edge from each resource to
the active entity (if any) that has it. A deadlock corresponds to a cycle in the
wait-for graph. Deadlock avoidance forbids adding an edge that would make a
cycle. Deadlock detection detects the existence of a cycle and then removes one
of its edges. The algorithm we give below does deadlock avoidance. It keeps a
transaction from getting a lock that might result in a deadlock.

The correct algorithm

We can avoid deadlocks in the naive algorithm by giving earlier transactions high-
er priority than later transactions. The basic idea is simple. When a transaction
tries to acquire a lock, it compares its priority with the priority of the transaction
already holding the lock. If the latter has lower priority, i.e., it is a more recent
transaction, then it is restarted and the former gets the lock. Let us define an
algorithm based on this idea. We assume that transactions perform operations on
cells and that each cell comes with a priority queue of waiting transactions, i.e.,
the transactions wait in order of their priorities. We use timestamps to implement
the priorities. Here is the complete algorithm:

• A new transaction is given a priority that is lower than all active transac-
tions.

• When a transaction tries to acquire a lock on a cell, then it does one of the
following:

– If the cell is currently unlocked, then the transaction immediately takes
the lock and continues.

– If the cell is already locked by the transaction, then the transaction
just continues.

– If the cell is locked by a transaction with higher priority, then the
current transaction waits, i.e., it enqueues itself on the cell’s queue.

– If the cell is locked by a transaction with lower priority, then restart
the latter and give the lock to the transaction with higher priority.
A restart consists of two actions: first to abort the transaction and
second to start it again with the same priority.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 615

Done

already taken
Ask for lock

Ask for & obtain lock

Waiting

Running

Restart

Probation
Obtain lock

Done

Ask for lock

needs one of my locks
High priority transaction

High priority transaction
needs one of my locks

Start
Commit

or
Abort

Figure 8.20: State diagram of one incarnation of a transaction

• When a transaction commits, then it releases all its locks and dequeues one
waiting transaction per released lock (if there is one waiting).

• When a transaction aborts (because it raises an exception or explicitly does
an abort operation) then it unlocks all its locked cells, restores their states,
and dequeues one waiting transaction per unlocked cell (if there is one
waiting).

Restarting at a well-defined point

There is a small problem with the above algorithm. It terminates running trans-
actions at an arbitrary point during their execution. This can give problems. It
can lead to inconsistencies in the run-time data structures of the transaction.
It can lead to complications in the implementation of the transaction manager
itself.

A simple solution to these problems is to terminate the transaction at a well-
defined point in its execution. A well-defined point is, for example, the instant
when a transaction asks the transaction manager for a lock. Let us refine the
above algorithm to restart only at such points. Again, we start with a simple
basic idea: instead of restarting a low priority transaction, we mark it. Later,
when it tries to acquire a lock, the transaction manager notices that it is marked
and restarts it. To implement this idea, we extend the algorithm as follows:

• Transactions can be in one of three states (the marks):

– running : this is the unmarked state. The transaction is running freely
and is able to acquire locks as before.

– probation : this is the marked state. The transaction still runs freely,
but the next time it tries to acquire a lock, it will be restarted. If it
asks for no more locks, it will eventually commit.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

616 Shared-State Concurrency

– waiting_on(C) : this means that the transaction is waiting for the
lock on cell C. It will obtain the lock when it becomes available. How-
ever, if a high priority transaction wants a lock held by this one while
it is waiting, it will be restarted.

Figure 8.20 gives the state diagram of one incarnation of a transaction
according to this scheme. By incarnation we mean part of the lifetime of
a transaction, from its initial start or a restart until it commits, aborts, or
again restarts.

• When a transaction tries to acquire a lock, then it checks its state before
attempting to acquire locks. If it is in the state probation then it is
restarted immediately. This is fine, since the transaction is at a well-defined
point.

• When a transaction tries to acquire a lock and the cell is locked by a trans-
action with lower priority, then do the following. Enqueue the high priority
transaction and take action depending on the state of the low priority trans-
action:

– running : change the state to probation and continue.

– probation : do nothing.

– waiting_on(C) : remove the low priority transaction from the queue
it is waiting on and restart it immediately. This is fine, since it is at a
well-defined point.

• When a transaction is enqueued on a cell C, change its state to waiting_on(C) .
When a transaction is dequeued, change its state to running .

8.5.3 Transactions on cells

Let us define an ADT for doing transactions on cells that uses the algorithm of
the previous section.3 We define the ADT as follows:

• {NewTrans ?Trans ?NewCellT} creates a new transaction context and
returns two operations: Trans for creating transactions and NewCellT for
creating new cells.

• A new cell is created by calling NewCellT in the same way as with the
standard NewCell :

{NewCellT X C}

3A similar ADT can be defined for objects, but the implementation is a little more compli-
cated since we have to take into account classes and methods. For simplicity we will therefore
limit ourselves to cells.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 617

This creates a new cell in the transaction context and binds it to C The cell
can only be used inside transactions of this context. The initial value of the
cell is X.

• A new transaction is created by calling the function Trans as follows:

{Trans fun {$ T} 〈expr〉 end B}

The sequential expression 〈expr〉 can interact with its environment in only
the following ways: it can read values (including procedures and functions)
and it can perform operations on cells created with NewCellT . The Trans

call executes 〈expr〉 in a transactional manner and completes when 〈expr〉
completes. If 〈expr〉 raises an exception then the transaction will abort and
raise the same exception. If the transaction commits, then it has the same
effect as an atomic execution of 〈expr〉 and it returns the same result. If the
transaction aborts, then it is as if 〈expr〉 were not executed at all (all its
state changes are undone). B is bound to commit or abort , respectively,
depending on whether the transaction commits or aborts.

• There are four operations that can be performed inside 〈expr〉:

– T.access , T.assign , and T.exchange have the same semantics as
the standard three cell operations. They must only use cells created
by NewCellT .

– T.abort is a zero-argument procedure that when called causes the
transaction to abort immediately.

• There are only two ways a transaction can abort: either it raises an excep-
tion or it calls T.abort . In all other cases, the transaction will eventually
commit.

An example

Let us first create a new transaction environment:

declare Trans NewCellT in
{NewTrans Trans NewCellT}

We first define two cells in this environment:

C1={NewCellT 0}
C2={NewCellT 0}

Now let us increment C1 and decrement C2 in the same transaction:

{Trans proc {$ T _}
{T.assign C1 {T.access C1}+1}
{T.assign C2 {T.access C2}-1}

end _ _}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

618 Shared-State Concurrency

(We use procedure syntax since we are not interested in the output.) We can
repeat this transaction several times in different threads. Because transactions
are atomic, we are sure that @C1+ @C2= 0 will always be true. It is an invariant
of our system. This would not be the case if the increment and decrement were
executed outside a transaction. To read the contents of C1 and C2, we have to
use another transaction:

{Browse {Trans fun {$ T} {T.access C1}#{T.access C2} end _}}

Another example

The previous example does not show the real advantages of transactions. The
same result could have been achieved with locks. Our transaction ADT has two
advantages with respect to locks: aborting causes the original cell states to be
restored and the locks can be requested in any order without leading to deadlock.
Let us give a more sophisticated example that exploits these two advantages. We
will create a tuple with 100 cells and do transactional calculations with it. We
start by creating and initializing the tuple:

D={MakeTuple db 100}
for I in 1..100 do D.I={NewCellT I} end

(We use a tuple of cells instead of an array because our transaction ADT only
handles cells.) We now define two transactions, Mix and Sum. Sumcalculates the
sum of all cell contents. Mix “mixes up” the cell contents in random fashion but
keeps the total sum unchanged. Here is the definition of Mix :

fun {Rand} {OS.rand} mod 100 + 1 end
proc {Mix} {Trans

proc {$ T _}
I={Rand} J={Rand} K={Rand}
A={T.access D.I} B={T.access D.J} C={T.access D.K}

in
{T.assign D.I A+B-C}
{T.assign D.J A-B+C}
if I==J orelse I==K orelse J==K then {T.abort} end
{T.assign D.K ˜A+B+C}

end _ _}
end

The random number generator Rand is implemented with the OS module. The
mix-up function replaces the contents a, b, c of three randomly-picked cells by
a + b − c, a − b + c, and −a + b + c. To guarantee that three different cells are
picked, Mix aborts if any two are the same. The abort can be done at any point
inside the transaction. Here is the definition of Sum:

S={NewCellT 0}
fun {Sum}

{Trans
fun {$ T} {T.assign S 0}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 619

(active object)

TM

T

T

Sync=ok

abort(T)

savestate(T C ?Sync)

commit(T)

getlock(T C ?Sync)

Sync=ok
Sync=halt

..

.

Sequential
transactions

Asynchronous messages manager
Transaction

Figure 8.21: Architecture of the transaction system

for I in 1..100 do
{T.assign S {T.access S}+{T.access D.I}} end

{T.access S}
end _}

end

Sumuses the cell S to hold the sum. Note that Sum is a big transaction since it
simultaneously locks all cells in the tuple. Now we can do some calculations:

{Browse {Sum}} % Displays 5050
for I in 1..1000 do thread {Mix} end end
{Browse {Sum}} % Still displays 5050

5050 is the sum of the integers from 1 to 100. You can check that the values of
individual cells are well and truly mixed:

{Browse {Trans fun {$ T} {T.access D.1}#{T.access D.2} end _}}

This initially displays 1#2 , but will subsequently display very different values.

8.5.4 Implementing transactions on cells

Let us show how to build a transaction system that implements our optimistic
two-phase locking algorithm. The implementation consists of a transaction man-
ager and a set of running transactions. (Transaction managers come in many
varieties and are sometimes called transaction processing monitors [64].) The
transaction manager and the running transactions each execute in its own thread.
This allows terminating a running transaction without affecting the transaction

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

620 Shared-State Concurrency

manager. A running thread sends four kinds of messages to the transaction man-
ager: to get a lock (getlock), to save a cell’s state (savestate), to commit
(commit), and to abort (abort). Figure 8.21 shows the architecture.

The transaction manager is always active and accepts commands from the
running transactions’ threads. When a transaction is restarted, it restarts in a
new thread. It keeps the same timestamp, though. We implement the transaction
manager as an active object using the NewActive function of Section 7.8. The
active object has two internal methods, Unlockall and Trans , and five external
methods, newtrans , getlock , savestate , commit , and abort . Figures 8.22
and 8.23 show the implementation of the transaction system. Together with
NewActive and the priority queue, this is a complete working implementation.
Each active transaction is represented by a record with five fields:

• stamp : This is the transaction’s timestamp, a unique integer that identifies
the transaction and its priority. This number is incremented for successive
transactions. High priority therefore means a small timestamp.

• save : This is a dictionary indexed by cell name (see below) that contains
entries of the form save(cell:C state:S) , where C is a cell record (as
represented below) and S is the cell’s original state.

• body : This is the function fun {$ T} 〈expr〉 end that represents the trans-
action body.

• state : This is a cell containing running , probation , or waiting_on(C) .
If probation , it means that the transaction will be restarted the next time
it tries to obtain a lock. If waiting_on(C) , it means that the transaction
will be restarted immediately if a higher priority transaction needs C.

• result : This is a dataflow variable that will be bound to commit(Res) ,
abort(Exc) , or abort when the transaction completes.

Each cell is represented by a record with four fields:

• name: This is a name value that is the cell’s unique identifier.

• owner : This is either unit , if no transaction is currently locking the cell,
or the transaction record if a transaction is locking the cell.

• queue : This is a priority queue containing pairs of the form Sync#T , where
T is a transaction record and Sync is the synchronization variable on which
the transaction is currently blocked. The priority is the transaction’s time-
stamp. Sync will always eventually be bound by the transaction manager
to ok or halt .

• state : This is a cell that contains the transactional cell’s content.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 621

class TMClass
attr timestamp tm
meth init(TM) timestamp:=0 tm:=TM end

meth Unlockall(T RestoreFlag)
for save(cell:C state:S) in {Dictionary.items T.save} do

(C.owner):= unit
if RestoreFlag then (C.state):=S end
if {Not {C.queue.isEmpty}} then
Sync2#T2={C.queue.dequeue} in

(T2.state):=running
(C.owner):=T2 Sync2=ok

end
end

end

meth Trans(P ?R TS) /* See next figure */ end
meth getlock(T C ?Sync) /* See next figure */ end

meth newtrans(P ?R)
timestamp:=@timestamp+1 { self Trans(P R @timestamp)}

end
meth savestate(T C ?Sync)

if {Not {Dictionary.member T.save C.name}} then
(T.save).(C.name):=save(cell:C state:@(C.state))

end Sync=ok
end
meth commit(T) { self Unlockall(T false)} end
meth abort(T) { self Unlockall(T true)} end

end

proc {NewTrans ?Trans ?NewCellT}
TM={NewActive TMClass init(TM)} in

fun {Trans P ?B} R in
{TM newtrans(P R)}
case R of abort then B=abort unit
[] abort(Exc) then B=abort raise Exc end
[] commit(Res) then B=commit Res end

end
fun {NewCellT X}

cell(name:{NewName} owner:{NewCell unit }
queue:{NewPrioQueue} state:{NewCell X})

end
end

Figure 8.22: Implementation of the transaction system (part 1)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

622 Shared-State Concurrency

meth Trans(P ?R TS)
Halt={NewName}
T=trans(stamp:TS save:{NewDictionary} body:P

state:{NewCell running} result:R)
proc {ExcT C X Y} S1 S2 in

{@tm getlock(T C S1)}
if S1==halt then raise Halt end end
{@tm savestate(T C S2)} {Wait S2}
{Exchange C.state X Y}

end
proc {AccT C ?X} {ExcT C X X} end
proc {AssT C X} {ExcT C _ X} end
proc {AboT} {@tm abort(T)} R=abort raise Halt end end

in
thread try Res={T.body t(access:AccT assign:AssT

exchange:ExcT abort:AboT)}
in {@tm commit(T)} R=commit(Res)
catch E then

if E\=Halt then {@tm abort(T)} R=abort(E) end
end end

end

meth getlock(T C ?Sync)
if @(T.state)==probation then

{ self Unlockall(T true)}
{ self Trans(T.body T.result T.stamp)} Sync=halt

elseif @(C.owner)== unit then
(C.owner):=T Sync=ok

elseif T.stamp==@(C.owner).stamp then
Sync=ok

else /* T.stamp\=@(C.owner).stamp */ T2=@(C.owner) in
{C.queue.enqueue Sync#T T.stamp}
(T.state):=waiting_on(C)
if T.stamp<T2.stamp then

case @(T2.state) of waiting_on(C2) then
Sync2#_={C2.queue.delete T2.stamp} in

{ self Unlockall(T2 true)}
{ self Trans(T2.body T2.result T2.stamp)}
Sync2=halt

[] running then
(T2.state):=probation

[] probation then skip end
end

end
end

Figure 8.23: Implementation of the transaction system (part 2)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.5 Transactions 623

When a transaction T does an exchange operation on cell C, it executes the
ExcT procedure defined in Trans . This first sends getlock(T C Sync1) to the
transaction manager to request a lock on the cell. The transaction manager replies
with Sync1=ok if the transaction successfully gets the lock and Sync1=halt if
the current thread should be terminated. In the latter case, getlock ensures
that the transaction is restarted. If the transaction gets the lock, then it calls
savestate(T C Sync2) to save the original cell state.

Priority queue

The transaction manager uses priority queues to make sure that high priority
transactions get the first chance to lock cells. A priority queue is a queue whose
entries are always ordered according to some priority. In our queue, the priorities
are integers and the lowest value has the highest priority. We define the ADT as
follows:

• Q={NewPrioQueue} creates an empty priority queue.

• {Q.enqueue X P} inserts X with priority P, where P is an integer.

• X={Q.dequeue} returns the entry with the smallest integer value and re-
moves it from the queue.

• X={Q.delete P} returns the entry with priority P and removes it from the
queue.

• B={Q.isEmpty} returns true or false depending on whether Q is empty or
not.

Figure 8.24 shows a simple implementation of the priority queue. The priority
queue is represented internally as a cell containing a list of pairs pair(X P) ,
which are ordered according to increasing P. The dequeue operation executes in
O(1) time. The enqueue and delete operations execute in O(s) time where s
is the size of the queue. More sophisticated implementations are possible with
better time complexities.

8.5.5 More on transactions

We have just scratched the surface of transaction processing. Let us finish by
mentioning some of the most useful extensions [64]:

• Durability. We have not shown how to make a state change persistent.
This is done by putting state changes on stable storage, such as a disk.
Techniques for doing this are carefully designed to maintain atomicity, no
matter at what instant in time a system crash happens.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

624 Shared-State Concurrency

fun {NewPrioQueue}
Q={NewCell nil}
proc {Enqueue X Prio}

fun {InsertLoop L}
case L of pair(Y P)|L2 then

if Prio<P then pair(X Prio)|L
else pair(Y P)|{InsertLoop L2} end

[] nil then [pair(X Prio)] end
end

in Q:={InsertLoop @Q} end

fun {Dequeue}
pair(Y _)|L2=@Q

in
Q:=L2 Y

end

fun {Delete Prio}
fun {DeleteLoop L}

case L of pair(Y P)|L2 then
if P==Prio then X=Y L2
else pair(Y P)|{DeleteLoop L2} end

[] nil then nil end
end X

in
Q:={DeleteLoop @Q}
X

end

fun {IsEmpty} @Q==nil end
in

queue(enqueue:Enqueue dequeue:Dequeue
delete:Delete isEmpty:IsEmpty)

end

Figure 8.24: Priority queue

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.6 The Java language (concurrent part) 625

• Nested transactions. It often happens that we have a long-lived transaction
that contains a series of smaller transactions. For example, a complex bank
transaction might consist of a large series of updates to many accounts.
Each of these updates is a transaction. The series itself should also be a
transaction: if something goes wrong in the middle, it is canceled. There
is a strong relationship between nested transactions, encapsulation, and
modularity.

• Distributed transactions. It often happens that a database is spread over
several physical sites, either for performance or organizational reasons. We
would still like to perform transactions on the database.

8.6 The Java language (concurrent part)

The introduction of Section 7.7 only talked about the sequential part of Java.
We now extend this to the concurrent part. Concurrent programming in Java is
supported by two concepts: threads and monitors. Java is designed for shared-
state concurrency. Threads are too heavyweight to support an active object
approach efficiently. Monitors have the semantics of Section 8.4. Monitors are
lightweight constructs that are associated to individual objects.

Each program starts with one thread, the one that executes main. New threads
can be created in two ways, by instantiating a subclass of the Thread class or by
implementing the Runnable interface. By default, the program terminates when
all its threads terminate. Since threads tend to be heavyweight in current Ja-
va implementations, the programmer is encouraged not to create many of them.
Using the Thread class gives more control, but might be overkill for some appli-
cations. Using the Runnable interface is lighter. Both techniques assume that
there is a method run:

public void run();

that defines the thread’s body. The Runnable interface consists of just this single
method.

Threads interact by means of shared objects. To control the interaction, any
Java object can be a monitor, as defined in Section 8.4. Methods can execute
inside the monitor lock with the keyword synchronized. Methods without this
keyword are called non-synchronized. They execute outside the monitor lock but
can still see the object attributes. This ability has been strongly criticized because
the compiler can no longer guarantee that the object attributes are accessed
sequentially [24]. Non-synchronized methods can be more efficient, but they
should be used extremely rarely.

We give two examples. The first example uses synchronized methods just
for locking. The second example uses the full monitor operations. For further
reading, we recommend [111].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

626 Shared-State Concurrency

8.6.1 Locks

The simplest way to do concurrent programming in Java is with multiple threads
that access shared objects. Let us extend the class Point as an example:

class Point {

double x, y;

Point(double x1, y1) { x=x1; y=y1; }

public double getX() { return x; }

public double getY() { return y; }

public synchronized void origin() { x=0.0; y=0.0; }

public synchronized void add(Point p)

{ x+=p.getX(); y+=p.getY(); }

public synchronized void scale(double s) { x*=s; y*=s; }

public void draw(Graphics g) {

double lx, ly;

synchronized (this) { lx=x; ly=y; }

g.drawPoint(lx, ly);

}

}

Each instance of Point has its own lock. Because of the keyword synchronized,
the methods origin, add, and scale all execute within the lock. The method
draw is only partly synchronized. This is because it calls an external method,
g.drawPoint (not defined in the example). Putting the external method inside
the object lock would increase the likelihood of deadlocking the program. Instead,
g should have its own lock.

8.6.2 Monitors

Monitors are an extension of locks that give more control over how threads enter
and exit. Monitors can be used to do more sophisticated kinds of cooperation
between threads accessing a shared object. Section 8.4.1 shows how to write a
bounded buffer using monitors. The solution given there can easily be translated
to Java, giving Figure 8.25. This defines a bounded buffer of integers. It uses
an array of integers, buf, which is allocated when the buffer is initialized. The
percent sign % denotes the modulo operation, i.e., the remainder after integer
division.

8.7 Exercises

1. Number of interleavings. Generalize the argument used in the chapter
introduction to calculate the number of possible interleavings of n threads,
each doing k operations. Using Stirling’s formula for the factorial function,
n! ≈

√
2πnn+1/2e−n, calculate a closed form approximation to this function.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 627

class Buffer

int[] buf;

int first, last, n, i;

public void init(int size) {

buf=new int[size];

n=size; i=0; first=0; last=0;

}

public synchronized void put(int x) {

while (i<n) wait();

buf[last]=x;

last=(last+1)%n;

i=i+1;

notifyAll();

}

public synchronized int get() {

int x;

while (i==0) wait();

x=buf[first];

first=(first+1)%n;

i=i-1;

notifyAll();

return x;

}

}

Figure 8.25: Bounded buffer (Java version)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

628 Shared-State Concurrency

2. Concurrent counter. Let us implement a concurrent counter in the sim-
plest possible way. The counter has an increment operation. We would
like this operation to be callable from any number of threads. Consider the
following possible implementation that uses one cell and an Exchange :

local X in {Exchange C X X+1} end

This attempted solution does not work.

• Explain why the above program does not work and propose a simple
fix.

• Would your fix still be possible in a language that did not have dataflow
variables? Explain why or why not.

• Give a solution (perhaps the same one as in the previous point) that
works in a language without dataflow variables.

3. Maximal concurrency and efficiency. In between the shared-state con-
current model and the maximally concurrent model, there is an interesting
model called the job-based concurrent model. The job-based model is identi-
cal to the shared-state concurrent model, except that whenever an operation
would block, a new thread is created with only that operation (this is called
a job) and the original thread continues execution.4 Practically speaking,
the job-based model has all the concurrency of the maximally concurrent
model, and in addition it can easily be implemented efficiently. For this ex-
ercise, investigate the job-based model. Is it a good choice for a concurrent
programming language? Why or why not?

4. Simulating slow networks. Section 8.2.2 defines a function SlowNet2

that creates a “slow” version of an object. But this definition imposes
a strong order constraint. Each slow object defines a global order of its
calls and guarantees that the original objects are called in this order. This
constraint is often too strong. A more refined version would only impose
order among object calls within the same thread. Between different threads,
there is no reason to impose an order. Define a function SlowNet3 that
creates slow objects with this property.

5. The MVar abstraction. An MVar is a box that can be full or empty. It
comes with two procedures, Put and Get . Doing {Put X} puts X in the
box if it is empty, thus making it full. If the box is full, Put waits until it is
empty. Doing {Get X} binds X to the boxes’ content and empties the box.
If the box is empty, Get waits until it is full. For this exercise, implement
the MVar abstraction. Use whatever concurrency approach is most natural.

4The initial Oz language used the job-based model [180].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 629

6. Communicating Sequential Processes (CSP). The CSP language con-
sists of independent threads (called “processes” in CSP terminology) com-
municating through synchronous channels [83, 165]. The channels have two
operations, send and receive, with rendezvous semantics. That is, a send
blocks until a receive is present and vice versa. When send and receive are
simultaneously present, then they both complete atomically, transferring
information from send to receive. The Ada language also uses rendezvous
semantics. In addition, there is a nondeterministic receive operation which
listens to several channels simultaneously. As soon as a message is received
on one of the channels, then the nondeterministic receive completes. For
this exercise, implement these CSP operations as the following control ab-
straction:

• C={Channel.new} creates a new channel C.

• {Channel.send C M} sends message Mon channel C.

• {Channel.mreceive [C1#S1 C2#S2 ... Cn#Sn]} listens nondeter-
ministically on channels C1, C2, ..., and Cn. Si is a one-argument
procedure proc {$ M} 〈stmt〉 end that is executed when message M

is received on channel Ci .

Now extend the Channel.mreceive operation with guards:

• {Channel.mreceive [C1#B1#S1 C2#B2#S2 ... Cn#Bn#Sn]} , where
Bi is a one-argument boolean function fun {$ M} 〈expr〉 end that
must return true for a message to be received on channel Ci .

7. Comparing Linda with Erlang. Linda has a read operation that can
selectively retrieve tuples according to a pattern (see Section 8.3.2). Erlang
has a receive operation that can selectively receive messages according to
a pattern (see Section 5.6.3). For this exercise, compare and contrast these
two operations and the abstractions that they are part of. What do they
have in common and how do they differ? For what kinds of application is
each best suited?

8. Termination detection with monitors. This exercise is about detecting
when a group of threads are all terminated. Section 4.4.3 gives an algorithm
that works for a flat thread space, where threads are not allowed to create
new threads. Section 5.5.3 gives an algorithm that works for a hierarchical
thread space, where threads can create new threads to any nesting level.
The second algorithm uses a port to collect the termination information.
For this exercise, write an algorithm that works for a hierarchical thread
space, like the second algorithm, but that uses a monitor instead of a port.

9. Monitors and conditions. Section 8.4.4 gives an alternative semantics for
monitors in which there can be several wait sets, which are called conditions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

630 Shared-State Concurrency

The purpose of this exercise is to study this alternative and compare it with
main approach given in the text.

• Reimplement the bounded buffer example of Figure 8.16 using moni-
tors with conditions.

• Modify the monitor implementation of Figure 8.19 to implement mon-
itors with conditions. Allow the possibility to create more than one
condition for a monitor.

10. Breaking up big transactions. The second example in Section 8.5.3
defines the transaction Sum that locks all the cells in the tuple while it
is calculating their sum. While Sum is active, no other transaction can
continue. For this exercise, rewrite Sum as a series of small transactions.
Each small transaction should only lock a few cells. Define a representation
for a partial sum, so that a small transaction can see what has already been
done and determine how to continue. Verify your work by showing that you
can perform transactions while a sum calculation is in progress.

11. Lock caching. In the interest of simplicity, the transaction manager of
Section 8.5.4 has some minor inefficiencies. For example, getlock and
savestate messages are sent on each use of a cell by a transaction. It is
clear that they are only really needed the first time. For this exercise, opti-
mize the getlock and savestate protocols so they use the least possible
number of messages.

12. Read and write locks. The transaction manager of Section 8.5 locks a
cell upon its first use. If transactions T1 and T2 both want to read the
same cell’s content, then they cannot both lock the cell simultaneously. We
can relax this behavior by introducing two kinds of locks, read locks and
write locks. A transaction that holds a read lock is only allowed to read the
cell’s content, not change it. A transaction that holds a write lock can do
all cell operations. A cell can either be locked with exactly one write lock
or with any number of read locks. For this exercise, extend the transaction
manager to use read and write locks.

13. Concurrent transactions. The transaction manager of Section 8.5 cor-
rectly handles any number of transactions that execute concurrently, but
each individual transaction must be sequential. For this exercise, extend the
transaction manager so that the individual transactions can themselves be
concurrent. Hint: add the termination detection algorithm of Section 5.5.3.

14. Combining monitors and transactions. Design and implement a con-
currency abstraction that combines the abilities of monitors and transac-
tions. That is, it has the ability to wait and notify, and also the ability to
abort without changing any state. Is this a useful abstraction?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

8.7 Exercises 631

15. (research project) Transactional computation model. Extend the shared-
state concurrent model of this chapter to allow transactions, as suggested
in Section 8.5. Your extension should satisfy the following properties:

• It should have a simple formal semantics.

• It should be efficient, i.e., only cause overhead when transactions are
actually used.

• It should preserve good properties of the model, e.g., compositionality.

This will allow programs to use transactions without needing costly and
cumbersome encodings. Implement a programming language that uses your
extension and evaluate it for realistic concurrent programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

632 Shared-State Concurrency

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 9

Relational Programming

“Toward the end of the thirteenth century, Ramón Llull (Raimundo
Lulio or Raymond Lully) invented the thinking machine. [...] The
circumstances and objectives of this machine no longer interest us,
but its guiding principle–the methodical application of chance to the
resolution of a problem–still does.”
– Ramón Llull’s Thinking Machine, Jorge Luis Borges (1899–1986)

“In retrospect it can now be said that the ars magna Lulli was the
first seed of what is now called “symbolic logic,” but it took a long
time until the seed brought fruit, this particular fruit.”
– Postscript to the “Universal Library”, Willy Ley (1957)

A procedure in the declarative model uses its input arguments to calculate
the values of its output arguments. This is a functional calculation, in the math-
ematical sense: the outputs are functions of the inputs. For a given set of input
argument values, there is only one set of output argument values. We can gen-
eralize this to become relational. A relational procedure is more flexible in two
ways than a functional procedure. First, there can be any number of results to a
call, either zero (no results), one, or more. Second, which arguments are inputs
and which are outputs can be different for each call.

This flexibility makes relational programming well-suited for databases and
parsers, in particular for difficult cases such as deductive databases and parsing
ambiguous grammars. It can also be used to enumerate solutions to complex
combinatoric problems. We have used it to automatically generate diagnostics
for a RISC microprocessor, the VLSI-BAM [84, 193]. The diagnostics enumerate
all possible instruction sequences that use register forwarding. Relational pro-
gramming has also been used in artificial intelligence applications such as David
Warren’s venerable WARPLAN planner [39].

From the programmer’s point of view, relational programming extends declar-
ative programming with a new kind of statement called “choice”. Conceptually,
the choice statement nondeterministically picks one among a set of alternatives.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

634 Relational Programming

During execution, the choice is implemented with search, which enumerates the
possible answers. We call this don’t know nondeterminism, although the search
algorithm is almost always deterministic.

Introducing a choice statement is an old idea. E. W. Elcock [52] used it in
1967 in the Absys language and Floyd [53] used it in the same year. The Prolog
language uses a choice operation as the heart of its execution model, which was
defined in 1972 [40]. Floyd gives a lucid account of the choice operation. He
first extends a simple Algol-like language with a function called choice(n), which
returns an integer from 1 to n. He then shows how to implement a depth-first
search strategy using flow charts to give the operational semantics of the extended
language.

Watch out for efficiency

The flexibility of relational programming has a reverse side. It can easily lead
to highly inefficient programs, if not used properly. This cannot be avoided in
general since each new choice operation multiplies the size of the search space by
the number of alternatives. The search space is the set of candidate solutions to a
problem. This means the size is exponential in the number of choice operations.
However, relational programming is sometimes practical:

• When the search space is small. This is typically the case for database
applications. Another example is the above-mentioned VLSI-BAM diagnos-
tics generator, which generated all combinations of instructions for register
forwarding, condition bit forwarding, and branches in branch delay slots.
This gave a total of about 70,000 lines of VLSI-BAM assembly language
code. This was small enough to be used as input to the gate-level simula-
tor.

• As an exploratory tool. If used on small examples, relational program-
ming can give results even if it is impractical for bigger examples. The
advantage is that the programs can be much shorter and easier to write:
no algorithm has to be devised since search is a brute force technique that
avoids the need for algorithms. This is an example of nonalgorithmic pro-
gramming. This kind of exploration gives insight into the problem structure.
This insight is often sufficient to design an efficient algorithm.

To use search in other cases, more sophisticated techniques are needed, e.g., pow-
erful constraint-solving algorithms, optimizations based on the problem structure,
and search heuristics. We leave these until Chapter 12. The present chapter
studies the use of nondeterministic programming as a tool for the two classes of
problems for which it works well. For more information and techniques, we rec-
ommend any good book on Prolog, which has good support for nondeterministic
programming [182, 39].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.1 The relational computation model 635

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| choice 〈s〉1 [] ... [] 〈s〉n end Choice
| fail Failure

Table 9.1: The relational kernel language

Structure of the chapter

The chapter consists of four parts:

• Section 9.1 explains the basic concepts of the relational computation model,
namely choice and encapsulated search. Section 9.2 continues with some
more examples to introduce programming in the model.

• Section 9.3 introduces logic and logic programming. It introduces a new
kind of semantics for programs, the logical semantics. It then explains how
both the declarative and relational computation models are doing logic
programming.

• Sections 9.4–9.6 give large examples in three areas that are particularly
well-suited to relational programming, namely natural language parsing,
interpreters, and deductive databases.

• Section 9.7 gives an introduction to Prolog, a programming language based
on relational programming. Prolog was originally designed for natural lan-
guage processing, but has become one of the main programming languages
in all areas that require symbolic programming.

9.1 The relational computation model

9.1.1 The choice and fail statements

The relational computation model extends the declarative model with two new
statements, choice and fail :

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

636 Relational Programming

• The choice statement groups together a set of alternative statements. Ex-
ecuting a choice statement provisionally picks one of these alternatives. If
the alternative is found to be wrong later on, then another one is picked.

• The fail statement indicates that the current alternative is wrong. A
fail is executed implicitly when trying to bind two incompatible values, for
example 3=4 . This is a modification of the declarative model, which raises
an exception in that case. Section 2.7.2 explains the binding algorithm in
detail for all partial values.

Table 9.1 shows the relational kernel language.

An example for clothing design

Here is a simple example of a relational program that might interest a clothing
designer:

fun {Soft} choice beige [] coral end end
fun {Hard} choice mauve [] ochre end end

proc {Contrast C1 C2}
choice C1={Soft} C2={Hard} [] C1={Hard} C2={Soft} end

end

fun {Suit}
Shirt Pants Socks

in
{Contrast Shirt Pants}
{Contrast Pants Socks}
if Shirt==Socks then fail end
suit(Shirt Pants Socks)

end

This program is intended to help a clothing designer pick colors for a man’s
casual suit. Soft picks a soft color and Hard picks a hard color. Contrast picks
a pair of contrasting colors (one soft and one hard). Suit returns a complete set
including shirt, pants, and socks such that adjacent garments are in contrasting
colors and such that shirt and socks are of different colors.

9.1.2 Search tree

A relational program is executed sequentially. The choice statements are exe-
cuted in the order that they are encountered during execution. When a choice

is first executed, its first alternative is picked. When a fail is executed, exe-
cution “backs up” to the most recent choice statement, which picks its next
alternative. If there are none, then the next most recent choice picks another
alternative, and so forth. Each choice statement picks alternatives in order from
left to right.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.1 The relational computation model 637

......

......

Shirt=beige
Pants=ochre

Shirt=beige
Pants=mauve

Shirt=coral
Pants=mauve

Shirt=coral
Pants=ochre

Pants={Hard}
Shirt=beige

Pants={Hard}
Shirt=coral

Pants={Hard}
Shirt={Soft}

{Suit}

Shirt={Hard}
Pants={Soft}

Pants={Soft}
Socks={Hard}

Pants=mauve
Shirt=beige

Pants={Hard}
Socks={Soft}

Shirt=beige
Pants=mauve

Shirt=beige Shirt=beige
Pants=mauve

Shirt=beige
Pants=mauve
Pants=beige
Socks={Hard}

Shirt=beige
Pants=mauve
Pants=coral
Socks={Hard}

(fail) (fail)

Pants=mauve
Pants=ochrePants=mauve

Socks={Soft} Socks={Soft}

Shirt=beige
Pants=mauve
Socks=coral
Shirt\=Socks

Shirt=beige
Pants=mauve
Socks=beige
Shirt\=Socks

(fail)

(fail) (succeed)

... ...

choice

choice

choice

choice

choice

choice

choice

Figure 9.1: Search tree for the clothing design example

This execution strategy can be illustrated with a tree called the search tree.
Each node in the search tree corresponds to a choice statement and each subtree
corresponds to one of the alternatives. Figure 9.1 shows part of the search tree for
the clothing design example. Each path in the tree corresponds to one possible
execution of the program. The path can lead either to no solution (marked “fail”)
or to a solution (marked “succeed”). The search tree shows all paths at a glance,
including both the failed and successful ones.

9.1.3 Encapsulated search

A relational program is interesting because it can potentially execute in many
different ways, depending on the choices it makes. We would like to control
which choices are made and when they are made. For example, we would like to
specify the search strategy: depth-first search, breadth-first search, or some other
strategy. We would like to specify how many solutions are calculated: just one
solution, all solutions right away, or new solutions on demand. Briefly, we would
like the same relational program to be executed in many different ways.

One way to exercise this control is to execute the relational program with
encapsulated search. Encapsulation means that the relational program runs inside
a kind of “environment”. The environment controls which choices are made by
the relational program and when they are made. The environment also protects
the rest of the application from the effects of the choices. This is important

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

638 Relational Programming

because the relational program can do multiple bindings of the same variable
when different choices are made. These multiple bindings should not be visible to
the rest of the application. Encapsulated search is important also for modularity
and compositionality:

• For modularity: with encapsulated search there can be more than one re-
lational program running concurrently. Since each is encapsulated, they
do not interfere with each other (except that they can influence each oth-
er’s performance because they share the same computational resources).
They can be used in a program that communicates with the external world,
without interfering with that communication.

• For compositionality: an encapsulated search can run inside another encap-
sulated search. Because of encapsulation, this is perfectly well-defined.

Early logic languages with search such as Prolog have global backtracking, in
which multiple bindings are visible everywhere. This is bad for program mod-
ularity and compositionality. To be fair to Prolog, it has a limited form of en-
capsulated search, the bagof/3 and setof/3 operations. This is explained in
Section 9.7.

9.1.4 The Solve function

We provide encapsulated search by adding one function, Solve , to the com-
putation model. The call {Solve F} is given a zero-argument function F (or
equivalently, a one-argument procedure) that returns a solution to a relational
program. The call returns a lazy list of all solutions, ordered according to a
depth-first search strategy. For example, the call:

L={Solve fun {$} choice 1 [] 2 [] 3 end end }

returns the lazy list [1 2 3] . Because Solve is lazy, it only calculates the
solutions that are needed. Solve is compositional, i.e., it can be nested: the
function F can contain calls to Solve . Using Solve as a basic operation, we can
define both one-solution and all-solutions search. To get one-solution search, we
look at just the first element of the list and never look at the rest:

fun {SolveOne F}
L={Solve F}

in
if L==nil then nil else [L.1] end

end

This returns either a list [X] containing the first solution X or nil if there are
no solutions. To get all-solutions search, we look at the whole list:

fun {SolveAll F}
L={Solve F}
proc {TouchAll L}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 639

if L==nil then skip else {TouchAll L.2} end
end

in
{TouchAll L}
L

end

This returns a list of all solutions.

Computation spaces

We have introduced choice and fail statements and the Solve function. These
new operations can be programmed by extending the declarative model with just
one new concept, the computation space. Computation spaces are part of the
constraint-based computation model, which is explained in Chapter 12. They
were originally designed for constraint programming, a powerful generalization of
relational programming. Chapter 12 explains how to implement choice , fail ,
and Solve in terms of computation spaces. The definition of Solve is also given
in the supplements file on the book’s Web site.

Solving the clothing design example

Let us use Solve to find answers to the clothing design example. To find all
solutions, we do the following query:

{Browse {SolveAll Suit}}

This displays a list of the eight solutions:

[suit(beige mauve coral) suit(beige ochre coral)
suit(coral mauve beige) suit(coral ochre beige)
suit(mauve beige ochre) suit(mauve coral ochre)
suit(ochre beige mauve) suit(ochre coral mauve)]

Figure 9.1 gives enough of the search tree to show how the first solution suit(beige

mauve coral) is obtained.

9.2 Further examples

We give some simple examples to show how to program in the relational compu-
tation model.

9.2.1 Numeric examples

Let us show some simple examples using numbers, to show how to program with
the relational computation model. Here is a program that uses choice to count
from 0 to 9:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

640 Relational Programming

... 96 97 98 99

{Digit}

{Digit}

(second digit)

(first digit)

0 1 2 3 4 ...

Figure 9.2: Two digit counting with depth-first search

fun {Digit}
choice 0 [] 1 [] 2 [] 3 [] 4 [] 5 [] 6 [] 7 [] 8 [] 9 end

end
{Browse {SolveAll Digit}}

This displays:

[0 1 2 3 4 5 6 7 8 9]

(Note that the zero-argument function Digit is the same as a one-argument
procedure.) We can combine calls to Digit to count with more than one digit:

fun {TwoDigit}
10*{Digit}+{Digit}

end
{Browse {SolveAll TwoDigit}}

This displays:

[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 98 99]

This shows what it means to do a depth-first search: when two choices are done,
the program first makes the first choice and then makes the second. Here the func-
tion chooses first the tens digit and then the ones digit. Changing the definition
of TwoDigit to choose digits in the opposite order will give unusual results:

fun {StrangeTwoDigit}
{Digit}+10*{Digit}

end
{Browse {SolveAll StrangeTwoDigit}}

This displays:

[0 10 20 30 40 50 60 70 80 90 1 11 21 31 41 ... 89 99]

In this case, the tens digit is chosen second and therefore changes quicker than
the ones digit.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 641

Palindrome product problem

Using Digit , we can already solve some interesting puzzles, like the “palindrome
product” problem. We would like to find all four-digit palindromes that are prod-
ucts of two-digit numbers. A palindrome is a number that reads the same forwards
and backwards, when written in decimal notation. The following program solves
the puzzle:

proc {Palindrome ?X}
X=(10*{Digit}+{Digit})*(10*{Digit}+{Digit}) % Generate
(X>0)= true % Test 1
(X>=1000)= true % Test 2
(X div 1000) mod 10 = (X div 1) mod 10 % Test 3
(X div 100) mod 10 = (X div 10) mod 10 % Test 4

end

{Browse {SolveAll Palindrome}}

This displays all 118 palindrome products. Why do we have to write the condition
X>0 as (X>0)= true ? If the condition returns false , then the attempted binding
false =true will fail. This ensures the relational program will fail when the
condition is false.

Palindrome product is an example of a generate-and-test program: it generates
a set of possibilities and then it uses tests to filter out the bad ones. The tests use
unification failure to reject bad alternatives. Generate-and-test is a very naive
way to explore a search space. It generates all the possibilities first and only
filters out the bad ones afterwards. In palindrome product, 10000 possibilities
are generated.

Chapter 12 introduces a much better way to explore a search space, called
propagate-and-search. This approach does the filtering during the generation, so
that many fewer possibilities are generated. If we extend palindrome product
to 6-digit numbers then the naive solution takes 45 seconds.1 The propagate-
and-search solution of Chapter 12 takes less than 0.4 second to solve the same
problem.

9.2.2 Puzzles and the n-queens problem

The n-queens problem is an example of a combinatoric puzzle. This kind of puzzle
can be easily specified in relational programming. The resulting solution is not
very efficient; for more efficiency we recommend using constraint programming
instead, as explained in Chapter 12. Using relational programming is a precursor
to constraint programming.

The problem is to place n queens on an n × n chessboard so that no queen
attacks another. There are many ways to solve this problem. The solution given
in Figure 9.4 is noteworthy because it uses dataflow variables. We can get the

1On a 500 MHz Pentium III processor running Mozart 1.1.0.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

642 Relational Programming

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

Cs (columns)

Us Ds
(down diagonals)(up diagonals)

Figure 9.3: The n-queens problem (when n = 4)

first solution of an 8-queens problem as follows:

{Browse {SolveOne fun {$} {Queens 8} end }}

This uses higher-order programming to define a zero-argument function from the
one-argument function Queens . The answer displayed is:

[[1 7 5 8 2 4 6 3]]

This list gives the placement of the queens on the chessboard. It assumes there
is one queen per column. The solution lists the eight columns and gives for each
column the queen’s position (first square of first column, seventh square of second
column, etc.). How many solutions are there to the 8-queens problem (counting
reflections and rotations as separate)? This is easy to calculate:

{Browse {Length {SolveAll fun {$} {Queens 8} end }}}

This displays the number 92, which is the answer. Queens is not the best possible
program for solving the n-queens problem. It is not practical for large n. Much
better programs can be gotten by using constraint programming or by design-
ing specialized algorithms (which amounts almost to the same thing). But this
program is simple and elegant.

How does this magical program work? We explain it by means of Figure 9.3.
Each column, up diagonal, and down diagonal has one dataflow variable. The
lists Cs, Us, and Ds contain all the column variables, up variables, and down
variables, respectively. Each column variable “guards” a column, and similarly

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.2 Further examples 643

fun {Queens N}
fun {MakeList N}

if N==0 then nil else _|{MakeList N-1} end
end

proc {PlaceQueens N ?Cs ?Us ?Ds}
if N>0 then Ds2

Us2=_|Us
in

Ds=_|Ds2
{PlaceQueens N-1 Cs Us2 Ds2}
{PlaceQueen N Cs Us Ds}

else skip end
end

proc {PlaceQueen N ?Cs ?Us ?Ds}
choice

Cs=N|_ Us=N|_ Ds=N|_
[] _|Cs2=Cs _|Us2=Us _|Ds2=Ds in

{PlaceQueen N Cs2 Us2 Ds2}
end

end
Qs={MakeList N}

in
{PlaceQueens N Qs _ _}
Qs

end

Figure 9.4: Solving the n-queens problem with relational programming

for the variables of the up and down diagonals. Placing a queen on a square
binds the three variables to the queen’s number. Once the variables are bound,
no other queen can bind the variable of the same column, up diagonal, or down
diagonal. This is because a dataflow variable can only have one value. Trying to
bind to another value gives a unification failure, which causes that alternative to
be rejected.

The procedure PlaceQueens traverses a column from top to bottom. It keeps
the same Cs, but “shifts” the Us one place to the right and the Ds one place to
the left. At each iteration, PlaceQueens is at one row. It calls PlaceQueen ,
which tries to place a queen in one of the columns of that row, by binding one
entry in Cs, Us, and Ds.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

644 Relational Programming

9.3 Relation to logic programming

Both the declarative computation model of Chapter 2 and the relational com-
putation model of this chapter are closely related to logic programming. This
section examines this relationship. Section 9.3.1 first gives a brief introduction
to logic and logic programming. Sections 9.3.2 and 9.3.3 then show how these
ideas apply to the declarative and relational computation models. Finally, Sec-
tion 9.3.4 briefly mentions pure Prolog, which is another implementation of logic
programming.

The advantage of logic programming is that programs have two semantics,
a logical and an operational semantics, which can be studied separately. If the
underlying logic is chosen well, then the logical semantics is much simpler than
the operational. However, logic programming cannot be used for all computation
models. For example, there is no good way to design a logic for the stateful
model. For it we can use the axiomatic semantics of Section 6.6.

9.3.1 Logic and logic programming

A logic program is a statement of logic that is given an operational semantics, i.e.,
it can be executed on a computer. If the operational semantics is well-designed,
then the execution has two properties: it is correct, i.e., it respects the logical
semantics (all consequences of the execution are valid logical consequences of the
program considered as a set of logical axioms) and it is efficient, i.e., it allows to
write programs that execute with the expected time and space complexity. Let
us examine more closely the topics of logic and logic programming. Be warned
that this section gives only a brief introduction to logic and logic programming.
For more information we refer interested readers to other books [114, 182].

Propositional logic

What is an appropriate logic in which to write logic programs? There are many
different logics. For example, there is propositional logic. Propositional formulas
consist of expressions combining symbols such as p, q, r, and so forth together
with the connectors ∧ (“and”), ∨ (“or”), ↔ (“if and only if”), → (“implies”),
and ¬ (“not”). The symbols p, q, r, and so forth are called atoms in logic. An
atom in logic is the smallest indivisible part of a logical formula. This should
not be confused with an atom in a programming language, which is a constant
uniquely determined by its print representation.

Propositional logic allows to express many simple laws. The contrapositive
law (p→ q) ↔ (¬q → ¬p) is a formula of propositional logic, as is De Morgan’s
law ¬(p∧ q)↔ (¬p∨¬q). To assign a truth value to a propositional formula, we
have to assign a truth value to each of its atoms. We then evaluate the formula
using the usual rules for ∧, ∨, ↔, →, and ¬:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 645

a b a ∧ b a ∨ b a↔ b a→ b ¬a
false false false false true true true
false true false true false true true
true false false true false false false
true true true true true true false

If the formula is true for all possible assignments of its atoms, then it is called
a tautology. Both the contrapositive law and De Morgan’s law are examples of
tautologies. They are true for all four possible truth assignments of p and q.

First-order predicate calculus

Propositional logic is rather weak as a base for logic programming, principally be-
cause it does not allow expressing data structures. First-order predicate calculus
is much better-suited for this. The predicate calculus generalizes propositional
logic with variables, terms, and quantifiers. A logical formula in the predicate
calculus has the following grammar, where 〈a〉 is an atom and 〈f〉 is a formula:

〈a〉 ::= p(〈x〉1, ..., 〈x〉n)
〈f〉 ::= 〈a〉

| 〈x〉 = f(l1 : 〈x〉1, ..., ln : 〈x〉n)
| 〈x〉1 = 〈x〉2
| 〈f〉1 ∧ 〈f〉2 | 〈f〉1 ∨ 〈f〉2 | 〈f〉1 ↔ 〈f〉2 | 〈f〉1 → 〈f〉2 | ¬〈f〉
| ∀〈x〉.〈f〉 | ∃〈x〉.〈f〉

Atoms in predicate calculus are more general than propositional atoms since they
can have arguments. Here 〈x〉 is a variable symbol, p is a predicate symbol, f is a
term label, and the li are term features. The symbols ∀ (“for all”) and ∃ (“there
exists”) are called quantifiers. In like manner as for program statements, we
can define the free identifier occurrences of a logical formula. Sometimes these
are called free variables, although strictly speaking they are not variables. A
logical formula with no free identifier occurrences is called a logical sentence. For
example, p(x, y) ∧ q(y) is not a logical sentence because it has two free variables
x and y. We can make it a sentence by using quantifiers, giving for instance
∀x.∃y.p(x, y) ∧ q(y). The free variables x and y are captured by the quantifiers.

Logical semantics of predicate calculus

To assign a truth value to a sentence of the predicate calculus, we have to do a bit
more work than for the propositional calculus. We have to define a model. The
word “model” here means a logical model, which is a very different beast than a
computation model! A logical model consists of two parts: a domain of discourse
(all possible values of the variables) and a set of relations (where a relation is a
set of tuples). Each predicate has a relation, which gives the tuples for which the
predicate is true. Among all predicates, equality (=) is particularly important.
The equality relation will almost always be part of the model. The quantifiers

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

646 Relational Programming

∀x (“for all x”) and ∃x (“there exists x”) range over the domain of discourse.
Usually the logical model is chosen so that a special set of sentences, called the
axioms, are all true. Such a model is called a logical semantics of the axioms.
There can be many models for which the axioms are true.

Let us see how this works with an example. Consider the following two axioms:

∀x, y.grandfather(x, y)↔ ∃z.father(x, z) ∧ father(z, y)
∀x, y, z.father(x, z) ∧ father(y, z)→ x = y

There are many possible models of these axioms. Here is one possible model:

Domain of discourse: {george, tom, bill}
Father relation: {father(george, tom), father(tom, bill)}
Grandfather relation: {grandfather(george, bill)}
Equality relation: {george = george, tom = tom, bill = bill}

The relations contain only the true tuples; all other tuples are assumed to be false.
With this model, we can give truth values to sentences of predicate calculus. For
example, the sentence ∃x, y.father(x, y)→ father(y, x) can be evaluated as being
false. Note that the equality relation is part of this model, even though the
axioms might not mention it explicitly.

Logic programming

Now we can state more precisely what a logic program is. For our purposes, a
logic program consists of a set of axioms in the first-order predicate calculus, a
sentence called the query, and a theorem prover, i.e., a system that can perform
deduction using the axioms in an attempt to prove or disprove the query. Per-
forming deductions is called executing the logic program. Can we build a practical
programming system based on the idea of executing logic programs? We still need
to address three issues:

• Theoretically, a theorem prover is limited in what it can do. It is only guar-
anteed to find a proof or disproof for queries that are true in all models. If
we are only interested in some particular models, then there might not exist
a proof or disproof, even though the query is true. We say that the theo-
rem prover is incomplete. For example, we might be interested in number
theory, so we use the model of integers with integer arithmetic. There is a
famous result in mathematics called Gödel’s Incompleteness Theorem, from
which it follows that there exist statements of number theory that cannot
be proved or disproved within any finite set of axioms.

• Even in those cases where the theorem prover could theoretically find a
result, it might be too inefficient. The search for a proof might take expo-
nential time. A theorem prover intended for practical programming should
have a simple and predictable operational semantics, so that the program-
mer can define algorithms and reason about their complexity.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 647

• A final point is that the deduction done by the theorem prover should be
constructive. That is, if the query states that there exists an x that satisfies
some property, then the system should construct a witness to the existence.
In other words, it should build a data structure as an output of the logic
program.

Two approaches are taken to overcome these problems:

• We place restrictions on the form of the axioms so that an efficient con-
structive theorem prover is possible. The Prolog language, for example, is
based on Horn clauses, which are axioms of the form:

∀x1, ..., xk . 〈a〉1 ∧ ... ∧ 〈a〉n → 〈a〉,

where {x1, ..., xk} are chosen so that the axiom has no free variables. Horn
clauses are interesting because there is an efficient constructive theorem
prover for them using an inference rule called resolution [114]. The rela-
tional computation model of this chapter also does logic programming, but
without using resolution. It uses a different set of axioms and theorem
prover, which are discussed in the next section.

• We give the programmer the possibility of helping the theorem prover with
operational knowledge. This operational knowledge is essential for writing
efficient logic programs. For example, consider a logic program to sort
a list of integers. A naive program might consist of axioms defining a
permutation of a list and a query that states that there exists a permutation
whose elements are in ascending order. Such a program would be short but
inefficient. Much more efficient would be to write axioms that express the
properties of an efficient sorting algorithm, such as mergesort.

A major achievement of computer science is that practical logic programming
systems have been built by combining these two approaches. The first popular
language to achieve this goal was Prolog; it was subsequently followed by many
other languages. High-performance Prolog implementations are amazingly fast;
they can even rival the speed of imperative language implementations [195].

9.3.2 Operational and logical semantics

There are two ways to look at a logic program: the logical view and the op-
erational view. In the logical view, it is simply a statement of logic. In the
operational view, it defines an execution on a computer. Before looking at the
relational model, let us look first at the declarative model of Chapter 2. We will
see that programs in the declarative model have a logical semantics as well as an
operational semantics. It is straightforward to translate a declarative program
into a logical sentence. If the program terminates correctly, i.e., it does not block,
go into an infinite loop, or raise an exception, then all the bindings it does are

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

648 Relational Programming

correct deductions from the axioms. That is, the results of all predicates are valid
tuples in the predicates’ relations. We call this deterministic logic programming.

Table 9.2 defines a translation scheme T which translates any statement 〈s〉 in
the relational kernel language into a logical formula T (〈s〉). Procedure definitions
are translated into predicate definitions. Note that exceptions are not translated.
Raising an exception signals that the normal, logical execution is no longer valid.
The logical sentence therefore does not hold in that case. Proving the correctness
of this table is beyond the scope of this chapter. We leave it as an interesting
exercise for mathematically-minded readers.

A given logical semantics can correspond to many operational semantics. For
example, the following three statements:

1. X=Y 〈s〉

2. 〈s〉 X=Y

3. if X==Y then 〈s〉 else fail end

all have the exactly same logical semantics, namely:

x = y ∧ T (〈s〉)

But their operational semantics are very different! The first statement binds X

and Y and then executes 〈s〉. The second statement executes 〈s〉 and then binds
X and Y. The third statement waits until it can determine whether or not X and
Y are equal. It then executes 〈s〉, if it determines that they are equal.

Writing a logic program consists of two parts: writing the logical semantics
and then choosing an operational semantics for it. The art of logic program-
ming consists in balancing two conflicting tensions: the logical semantics should
be simple and the operational semantics should be efficient. All the declarative
programs of Chapters 3 and 4 can be seen in this light. They are all logic pro-
grams. In the Prolog language, this has given rise to a beautiful programming
style [182, 21, 139].

Deterministic append

Let us write a simple logic program to append two lists. We have already seen
the Append function:

fun {Append A B}
case A
of nil then B
[] X|As then X|{Append As B}
end

end

Let us expand it into a procedure:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 649

Relational statement Logical formula
skip true
fail false
〈s〉1 〈s〉2 T (〈s〉1) ∧ T (〈s〉2)
local X in 〈s〉 end ∃x.T (〈s〉)
X=Y x = y
X=f(l1:X1 ... ln:Xn) x = f(l1 : x1, ..., ln : xn)
if X then 〈s〉1 else 〈s〉2 end (x = true ∧ T (〈s〉1)) ∨ (x = false ∧ T (〈s〉2))
case X of f(l1:X1 ... ln:Xn) (∃x1, ..., xn.x = f(l1 : x1, ..., ln : xn) ∧ T (〈s〉1))

then 〈s〉1 else 〈s〉2 end ∨(¬∃x1, ..., xn.x = f(l1 : x1, ..., ln : xn) ∧ T (〈s〉2))
proc {P X1 ... Xn} 〈s〉 end ∀x1, ..., xn.p(x1, ..., xn)↔ T (〈s〉)
{P Y1 ... Yn} p(y1, ..., yn)
choice 〈s〉1 [] ... [] 〈s〉n end T (〈s〉1) ∨ ... ∨ T (〈s〉n)

Table 9.2: Translating a relational program to logic

proc {Append A B ?C}
case A
of nil then C=B
[] X|As then Cs in

C=X|Cs
{Append As B Cs}

end
end

According to Table 9.2, this procedure has the following logical semantics:

∀a, b, c.append(a, b, c)↔
(a = nil ∧ c = b) ∨ (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′))

The procedure also has an operational semantics, given by the semantics of the
declarative model. The call:

{Append [1 2 3] [4 5] X}

executes successfully and returns X=[1 2 3 4 5] . The call’s logical meaning is
the tuple append([1, 2, 3], [4, 5], x). After the execution, the tuple becomes:

append([1, 2, 3], [4, 5], [1, 2, 3, 4, 5])

This tuple is a member of the append relation. We see that Append can be seen
as a logic program.

Another deterministic append

The above definition of Append does not always give a solution. For example,
the call {Append X [3] [1 2 3]} should return X=[1 2] , which is the logical-
ly correct solution, but the program cannot give this solution because it assumes

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

650 Relational Programming

X is bound to a value on input. The program blocks. This shows that the opera-
tional semantics is incomplete. To give a solution, we need to write a version of
Append with a different operational semantics. To calculate X from the last two
arguments, we change the definition of Append as follows:

proc {Append A B ?C}
if B==C then A=nil
else

case C of X|Cs then As in
A=X|As
{Append As B Cs}

end
end

end

This version of Append expects its last two arguments to be inputs and its first
argument to be an output. It has a different operational semantics as the previous
version, but keeps the same logical semantics. To be precise, its logical semantics
according to Table 9.2 is:

∀a, b, c.append(a, b, c)↔
(b = c ∧ a = nil) ∨ (∃x, c′, a′.c = x| c′ ∧ a = x| a′ ∧ append(a′, b, c′))

This sentence is logically equivalent to the previous one.

Nondeterministic append

We have seen two versions of Append , with the same logical semantics but differ-
ent operational semantics. Both versions return exactly one solution. But what
if we want the solutions of {Append X Y [1 2 3]} ? There are four different
solutions that satisfy the logical semantics. The declarative model is determinis-
tic, so it can only give one solution at most. To give several solutions, we can use
the choice statement to guess the right information and then continue. This is
explained in the next section.

9.3.3 Nondeterministic logic programming

We saw that the Append procedure in the declarative model has a logical se-
mantics but the operational semantics is not able to realize this logical semantics
for all patterns of inputs and outputs. In the declarative model, the operational
semantics is deterministic (it gives just one solution) and directional (it works for
only one pattern of input and output arguments). With relational programming,
we can write programs with a more flexible operational semantics, that can give
solutions when the declarative program would block. We call this nondetermin-
istic logic programming. To see how it works, let us look again at the logical
semantics of append:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 651

∀a, b, c.append(a, b, c)↔
(a = nil ∧ c = b) ∨ (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′))

How can we write a program that respects this logical semantics and is able to
provide multiple solutions for the call {Append X Y [1 2 3]} ? Look closely at
the logical semantics. There is a disjunction (∨) with a first alternative (a = nil ∧
c = b) and a second alternative (∃x, a′, c′.a = x| a′ ∧ c = x| c′ ∧ append(a′, b, c′)).
To get multiple solutions, the program should be able to pick both alternatives.
We implement this by using the choice statement. This gives the following
program:

proc {Append ?A ?B ?C}
choice

A=nil B=C
[] As Cs X in

A=X|As C=X|Cs {Append As B Cs}
end

end

We can search for all solutions to the call {Append X Y [1 2 3]} :

{Browse {SolveAll
proc {$ S} X#Y=S in {Append X Y [1 2 3]} end }}

To get one output, we pair the solutions X and Y together. This displays all four
solutions:

[nil#[1 2 3] [1]#[2 3] [1 2]#[3] [1 2 3]#nil]

This program can also handle the directional cases, for example:

{Browse {SolveAll
proc {$ X} {Append [1 2] [3 4 5] X} end }}

displays [[1 2 3 4 5]] (a list of one solution). The program can even handle
cases where no arguments are known at all, e.g., {Append X Y Z} . Since in that
case there are an infinity of solutions, we do not call SolveAll , but just Solve :

L={Solve proc {$ S} X#Y#Z=S in {Append X Y Z} end }

Each solution is a tuple containing all three arguments (X#Y#Z). We can display
successive solutions one by one by touching successive elements of L:

{Touch 1 L}
{Touch 2 L}
{Touch 3 L}
{Touch 4 L}
...

({Touch N L} is defined in Section 4.5.6; it simply traverses the first N elements
of L.) This displays successive solutions:

nil#B#B|
[X1]#B#(X1|B)|

[X1 X2]#B#(X1|X2|B)|

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

652 Relational Programming

[X1 X2 X3]#B#(X1|X2|X3|B)|_

All possible solutions are given in order of increasing length of the first argument.
This can seem somewhat miraculous. It certainly seemed so to the first logic
programmers, in the late 1960’s and early 1970’s. Yet it is a simple consequence
of the semantics of the choice statement, which picks its alternatives in order. Be
warned that this style of programming, while it can sometimes perform miracles,
is extremely dangerous. It is very easy to get into infinite loops or exponential-
time searches, i.e., to generate candidate solutions almost indefinitely without
ever finding a good one. We advise you to write deterministic programs whenever
possible and to use nondeterminism only in those cases when it is indispensable.
Before running the program, verify that the solution you want is one of the
enumerated solutions.

9.3.4 Relation to pure Prolog

The relational computation model provides a form of nondeterministic logic pro-
gramming that is very close to what Prolog provides. To be precise, it is a subset
of Prolog called “pure Prolog” [182]. The full Prolog language extends pure
Prolog with operations that lack a logical semantics but that are useful for pro-
gramming a desired operational semantics (see the Prolog section in Chapter 9).
Programs written in either pure Prolog or the relational computation model can
be translated in a straightforward way to the other. There are three principal
differences between pure Prolog and the relational computation model:

• Prolog uses a Horn clause syntax with an operational semantics based on
resolution. The relational computation model uses a functional syntax with
an operational semantics tailored to that syntax.

• The relational computation model allows full higher-order programming.
This has no counterpart in first-order predicate calculus but is useful for
structuring programs. Higher-order programming is not supported at all in
pure Prolog and only partially in full Prolog.

• The relational computation model distinguishes between deterministic op-
erations (which do not use choice) and nondeterministic operations (which
use choice). In pure Prolog, both have the same syntax. Deterministic op-
erations efficiently perform functional calculations, i.e., it is known which
arguments are the inputs and which are the outputs. Nondeterministic
operations perform relational calculations, i.e., it is not known which argu-
ments are inputs and outputs, and indeed the same relation can be used in
different ways.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.3 Relation to logic programming 653

9.3.5 Logic programming in other models

So far we have seen logic programming in the declarative model, possibly extended
with a choice operation. What about logic programming in other models? In
other words, in how far is it possible to have a logical semantics in other models?
To have a logical semantics means that execution corresponds to deduction, i.e.,
execution can be seen as performing inference and the results of procedure calls
give valid tuples in a simple logical model, such as a model of the predicate
calculus. The basic principle is to enrich the control: we extend the operational
semantics, which allows to calculate new tuples in the same logical model. Let
us examine some other computation models:

• Adding concurrency to the declarative model gives the data-driven and
demand-driven concurrent models. These models also do logic program-
ming, since they only change the order in which valid tuples are calculated.
They do not change the content of the tuples.

• The nondeterministic concurrent model of Section 5.7.1 does logic pro-
gramming. It adds just one operation, WaitTwo , which can be given a
logical semantics. Logically, the call {WaitTwo X Y Z} is equivalent to
z = 1∨z = 2, since Z is bound to 1 or 2. Operationally, WaitTwo waits un-
til one of its arguments is determined. WaitTwo is used to manage control
in a concurrent program, namely to pick an execution path that does not
block.

The nondeterministic concurrent model is interesting because it combines
two properties. It has a straightforward logical semantics and it is al-
most as expressive as a stateful model. For example, it allows building
a client/server program with two independent clients and one server, which
is not possible in a declarative model. This is why the model was chosen as
the basis for concurrent logic programming.

• The stateful models are another story. There is no straightforward way to
give a logical meaning to a stateful operation. However, stateful models can
do logic programming if the state is used in a limited way. For example,
it can be encapsulated inside a control abstraction or it can be used as a
parameter to part of a program. In the first case we are just enriching the
control. In the second case, as long as the state does not change, we can
reason as if it were constant.

• The constraint-based computation model of Chapter 12 is the most pow-
erful model for doing logic programming that we see in this book. It gives
techniques for solving complex combinatoric optimization problems. It is
the most powerful model in the sense that it has the most sophisticated
mechanisms both for specifying and automatically determining the control
flow. From the logic programming viewpoint, it has the strongest deduction
abilities.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

654 Relational Programming

9.4 Natural language parsing

Section 3.4.8 shows how to do parsing with a difference list. The grammar that it
parses is deterministic with a lookahead of one token: it suffices to know the next
token to know what grammar rule will apply. This is sometimes a very strong
restriction. Some languages need a much larger lookahead to be parsed. This is
certainly true for natural languages, but can also be true for widely-used formal
languages (like Cobol and Fortran, see below).

The one-token lookahead restriction can be removed by using relational pro-
gramming. Relational programs can be written to parse highly ambiguous gram-
mars. This is one of the most flexible ways to do parsing. It can parse grammars
with absolutely no restriction on the form of the grammar. The disadvantage is
that if the grammar is highly ambiguous, the parser can be extremely slow. But if
the ambiguity is localized to small parts of the input, the efficiency is acceptable.

This section gives a simple example of natural language parsing in the rela-
tional style. This style was pioneered by the Prolog language in the early 1970’s.
It is fair to say that Prolog was originally invented for this purpose [40]. This sec-
tion only scratches the surface of what can be done in this area with the relational
computation model. For further reading, we recommend [48].

Examples in Cobol and Fortran

Using relational programming to parse ambiguous grammars is quite practical.
For example, it is being used successfully by Darius Blasband of Phidani Software
to build transformation tools for programs written in Fortran and Cobol [19].
These two languages are difficult to parse with more traditional tools such as the
Unix lex/yacc family. Let us see what the problems are with these two languages.

The problem with parsing Cobol The following fragment is legal Cobol
syntax:

IF IF=THEN THEN THEN=ELSE ELSE ELSE=IF

This IF statement uses variables named IF, THEN, and ELSE. The parser has to
decide whether each occurrence of the tokens IF, THEN, and ELSE is a variable
identifier or a keyword. The only way to make the distinction is to continue the
parse until only one unambiguous interpretation remains. The problem is that
Cobol makes no distinction between keywords and variable identifiers.

The problem with parsing Fortran Fortran is even more difficult to parse
than Cobol. To see why, consider the following fragment, which is legal Fortran
syntax:

DO 5 I = 1,10

...

5 CONTINUE

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 655

This defines a loop that iterates its body 10 times, where I is given consecutive
values from 1 to 10. Look what happens when the comma in the DO statement is
replaced by a period:

DO 5 I = 1.10

In Fortran, this has the same meaning as:

DO5I = 1.10

where DO5I is a new variable identifier that is assigned the floating point number
1.10. In this case, the loop body is executed exactly once with an undefined
(garbage) value stored in I. The problem is that Fortran allows whitespace within
a variable identifier and does not require that variable identifiers be declared in
advance. This means that the parser has to look far ahead to decide whether
there is one token, DO5I, or three, DO, 5, and I. The parser cannot parse the DO

statement unambiguously until the . or , is encountered.
This is a famous error that caused the failure of at least one satellite launch

worth tens of millions of dollars. An important lesson for designing programming
languages is that changing the syntax of a legal program slightly should not give
another legal program.

9.4.1 A simple grammar

We use the following simple grammar for a subset of English:

〈Sentence〉 ::= 〈NounPhrase〉 〈VerbPhrase〉
〈NounPhrase〉 ::= 〈Determiner〉 〈Noun〉 〈RelClause〉 | 〈Name〉
〈VerbPhrase〉 ::= 〈TransVerb〉 〈NounPhrase〉 | 〈IntransVerb〉
〈RelClause〉 ::= who 〈VerbPhrase〉 | ε

〈Determiner〉 ::= every | a

〈Noun〉 ::= man | woman

〈Name〉 ::= john | mary

〈TransVerb〉 ::= loves

〈IntransVerb〉 ::= lives

Here ε means that the alternative is empty (nothing is chosen). Some examples
of sentences in this grammar are:

“john loves mary”
“a man lives”
“every woman who loves john lives”

Let us write a parser that generates an equivalent sentence in the predicate cal-
culus. For example, parsing the sentence “a man lives” will generate the term
exists(X and(man(X) lives(X)) in the syntax of the relational computation
model, which represents ∃x.man(x) ∧ lives(x). The parse tree is a sentence in
predicate calculus that represents the meaning of the natural language sentence.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

656 Relational Programming

9.4.2 Parsing with the grammar

The first step is to parse with the grammar, i.e., to accept valid sentences of the
grammar. Let us represent the sentence as a list of atoms. For each nonterminal
in the grammar, we write a function that takes an input list, parses part of it,
and returns the unparsed remainder of the list. For 〈TransVerb〉 this gives:

proc {TransVerb X0 X}
X0=loves|X

end

This can be called as:

{TransVerb [loves a man] X}

which parses “loves” and binds X to [a man] . If the grammar has a choice, then
the procedure uses the choice statement to represent this. For 〈Name〉 this gives:

proc {Name X0 X}
choice X0=john|X [] X0=mary|X end

end

This picks one of the two alternatives. If a nonterminal requires another nonter-
minal, then the latter is called as a procedure. For 〈VerbPhrase〉 this gives:

proc {VerbPhrase X0 X}
choice X1 in

{TransVerb X0 X1} {NounPhrase X1 X}
[] {IntransVerb X0 X}
end

end

Note how X1 is passed from TransVerb to NounPhrase . Continuing in this way
we can write a procedure for each of the grammar’s nonterminal symbols.

To do the parse, we execute the grammar with encapsulated search. We would
like the execution to succeed for correct sentences and fail for incorrect sentences.
This will not always be the case, depending on how the grammar is defined and
which search we do. For example, if the grammar is left-recursive then doing a
depth-first search will go into an infinite loop. A left-recursive grammar has at
least one rule whose first alternative starts with the nonterminal, like this:

〈NounPhrase〉 ::= 〈NounPhrase〉 〈RelPhrase〉 | 〈Noun〉

In this rule, a 〈NounPhrase〉 consists first of a 〈NounPhrase〉! This is not necessarily
wrong; it just means that we have to be careful how we parse with the grammar.
If we do a breadth-first search or an iterative deepening search instead of a depth-
first search, then we are guaranteed to find a successful parse, if one exists.

9.4.3 Generating a parse tree

We would like our parser to do more than just succeed or fail. Let us extend it to
generate a parse tree. We can do this by making our procedures into functions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 657

For example, let us extend 〈Name〉 to output the name it has parsed:

fun {Name X0 X}
choice

X0=john|X john
[] X0=mary|X mary
end

end

When 〈Name〉 parses “john”, it outputs the atom john . Let us extend 〈TransVerb〉
to output the predicate loves(x, y), where x is the subject and y is the object.
This gives:

fun {TransVerb S O X0 X}
X0=loves|X
loves(S O)

end

Note that 〈TransVerb〉 also has two new inputs, S and O. These inputs will be
filled in when it is called.

9.4.4 Generating quantifiers

Let us see one more example, to show how our parser generates the quantifiers
“for all” and “there exists”. They are generated for determiners:

fun {Determiner S P1 P2 X0 X}
choice

X0=every|X
all(S imply(P1 P2))

[] X0=a|X
exists(S and(P1 P2))

end
end

The determiner “every” generates a “for all”. The sentence “every man loves
mary” gives the term all(X imply(man(X) loves(X mary))) , which corre-
sponds to ∀x.man(x) → loves(x, mary). In the call to 〈Determiner〉, P1 will be
bound to man(X) and P2 will be bound to loves(X mary) . These bindings are
done inside 〈NounPhrase〉, which finds out what the 〈Noun〉 and 〈RelClause〉 are,
and passes this information to 〈Determiner〉:

fun {NounPhrase N P1 X0 X}
choice P P2 P3 X1 X2 in

P={Determiner N P2 P1 X0 X1}
P3={Noun N X1 X2}
P2={RelClause N P3 X2 X}
P

[] N={Name X0 X}
P1

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

658 Relational Programming

fun {Determiner S P1 P2 X0 X}
choice

X0=every|X
all(S imply(P1 P2))

[] X0=a|X
exists(S and(P1 P2))

end
end

fun {Noun N X0 X}
choice

X0=man|X
man(N)

[] X0=woman|X
woman(N)

end
end

fun {Name X0 X}
choice

X0=john|X
john

[] X0=mary|X
mary

end
end

fun {TransVerb S O X0 X}
X0=loves|X
loves(S O)

end

fun {IntransVerb S X0 X}
X0=lives|X
lives(S)

end

Figure 9.5: Natural language parsing (simple nonterminals)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 659

fun {Sentence X0 X}
P P1 N X1 in

P={NounPhrase N P1 X0 X1}
P1={VerbPhrase N X1 X}
P

end

fun {NounPhrase N P1 X0 X}
choice P P2 P3 X1 X2 in

P={Determiner N P2 P1 X0 X1}
P3={Noun N X1 X2}
P2={RelClause N P3 X2 X}
P

[] N={Name X0 X}
P1

end
end

fun {VerbPhrase S X0 X}
choice O P1 X1 in

P1={TransVerb S O X0 X1}
{NounPhrase O P1 X1 X}

[] {IntransVerb S X0 X}
end

end

fun {RelClause S P1 X0 X}
choice P2 X1 in

X0=who|X1
P2={VerbPhrase S X1 X}
and(P1 P2)

[] X0=X
P1

end
end

Figure 9.6: Natural language parsing (compound nonterminals)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

660 Relational Programming

end

Since P1 and P2 are single-assignment variables, they can be passed to 〈Determiner〉
before they are bound. In this way, each nonterminal brings its piece of the puzzle
and the whole grammar fits together.

9.4.5 Running the parser

The complete parser is given in Figures 9.5 and 9.6. Figure 9.5 shows the simple
nonterminals, which enumerate atoms directly. Figure 9.6 shows the compound
nonterminals, which call other nonterminals. To run the parser, feed both figures
into Mozart. Let us start by parsing some simple sentences. For example:

fun {Goal}
{Sentence [mary lives] nil}

end
{Browse {SolveAll Goal}}

The SolveAll call will calculate all possible parse trees. This displays:

[lives(mary)]

This is a list of one element since there is only a single parse tree. How about
the following sentence:

fun {Goal}
{Sentence [every man loves mary] nil}

end

Parsing this gives:

[all(X imply(man(X) loves(X mary)))]

To see the unbound variable X, choose the Minimal Graph representation in the
browser. Let us try a more complicated example:

fun {Goal}
{Sentence [every man who lives loves a woman] nil}

end

Parsing this gives:

[all(X
imply(and(man(X) lives(X))

exists(Y and(woman(Y) loves(X Y)))))]

9.4.6 Running the parser “backwards”

So far, we have given sentences and parsed them. This shows only part of what
our parser can do. In general, it can take any input to Sentence that contains
unbound variables and find all the parses that are consistent with that input.
This shows the power of the choice statement. For example, let us find all
sentences of three words:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.4 Natural language parsing 661

fun {Goal}
{Sentence [_ _ _] nil}

end

Executing this goal gives the following eight parse trees:

[all(A imply(man(A) lives(A)))
all(B imply(woman(B) lives(B)))
exists(C and(man(C) lives(C)))
exists(D and(woman(D) lives(D)))
loves(john john)
loves(john mary)
loves(mary john)
loves(mary mary)]

See if you can find out which sentence corresponds to each parse tree. For exam-
ple, the first tree corresponds to the sentence “every man lives”.

The ability to compute with partial information, which is what our parser
does, is an important step in the direction of constraint programming. Chapter 12
gives an introduction to constraint programming.

9.4.7 Unification grammars

Our parser does more than just parse; it also generates a parse tree. We did
this by extending the code of the parser, “piggybacking” the generation on the
actions of the parser. There is another, more concise way to define this: by
extending the grammar so that nonterminals have arguments. For example, the
nonterminal 〈Name〉 becomes 〈Name〉(N), which means “the current name is N”.
When 〈Name〉 calls its definition, N is bound to john or mary , depending on
which rule is chosen. Other nonterminals are handled in the same way. For
example, 〈TransVerb〉 becomes 〈TransVerb〉(S O P), which means “the current
verb links subject S and object O to make the phrase P”. When 〈TransVerb〉
calls its definition, the corresponding arguments are bound together. If S and
O are inputs, 〈TransVerb〉 constructs P, which has the form loves(S O) . After
extending the whole grammar in similar fashion (following the parser code), we
get the following rules:

〈Sentence〉(P) ::= 〈NounPhrase〉(N P1 P) 〈VerbPhrase〉(N P1)
〈NounPhrase〉(N P1 P) ::= 〈Determiner〉(N P2 P1 P) 〈Noun〉(N P3)

〈RelClause〉(N P3 P2)
〈NounPhrase〉(N P1 P1) ::= 〈Name〉(N)
〈VerbPhrase〉(S P) ::= 〈TransVerb〉(S O P1) 〈NounPhrase〉(O P1 P)
〈VerbPhrase〉(S P) ::= 〈IntransVerb〉(S P)
〈RelClause〉(S P1 and(P1 P2)) ::= who 〈VerbPhrase〉(S P2)
〈RelClause〉(S P1 P1) ::= ε

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

662 Relational Programming

〈Determiner〉(S P1 P2 all(S imply(P1 P2))) ::= every

〈Determiner〉(S P1 P2 exists(S and(P1 P2)) ::= a

〈Noun〉(N man(N)) ::= man

〈Noun〉(N woman(N)) ::= woman

〈Name〉(john) ::= john

〈Name〉(mary) ::= mary

〈TransVerb〉(S O loves(S O)) ::= loves

〈IntransVerb〉(S lives(S)) ::= lives

These rules correspond exactly to the parser program we have written. You can
see the advantage of using the rules: they are more concise and easier to under-
stand than the program. They can be automatically translated into a program.
This translation is so useful that the Prolog language has a built-in preprocessor
to support it.

This kind of grammar is called a definite clause grammar, or DCG, because
each rule corresponds to a kind of Horn clause called a definite clause. Each
nonterminal can have arguments. When a nonterminal is matched with a rule,
the corresponding arguments are unified together. DCGs are a simple example
of a very general kind of grammar called unification grammar. Many different
kinds of unification grammar are used in natural language parsing. The practical
ones use constraint programming instead of relational programming.

9.5 A grammar interpreter

The previous section shows how to build simple parser and how to extend it
to return a parse tree. For each new grammar we want to parse, we have to
build a new parser. The parser is “hardwired”: its implementation is based
on the grammar it parses. Wouldn’t it be nice to have a generic parser that
would work for all grammars, simply by passing the grammar definition as an
argument? A generic parser is easier to use and more flexible than a hardwired
parser. To represent the grammar in a programming language, we encode it as
a data structure. Depending on how flexible the language is, the encoding will
look almost like the grammar’s EBNF definition.

The generic parser is an example of an interpreter. Recall that an interpreter
is a program written in language L1 that accepts programs written in another
language L2 and executes them. For the generic parser, L1 is the relational
computation model and L2 is a grammar definition.

The generic parser uses the same execution strategy as the hardwired parser.
It keeps track of two extra arguments: the token sequence to be parsed and
the rest of the sequence. It uses a choice operation to choose a rule for each
nonterminal. It is executed with encapsulated search.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.5 A grammar interpreter 663

9.5.1 A simple grammar

To keep things simple in describing the generic parser, we use a small gram-
mar that defines s-expressions. An s-expression starts with a left parenthesis,
followed by a possibly empty sequence of atoms or s-expressions, and ends in
a right parenthesis. Two examples are (a b c) and (a (b) () (d (c))). S-
expressions were originally used in Lisp to represent nested lists. Our grammar
will parse s-expressions and build the list that they represent. Here is the gram-
mar’s definition:

〈sexpr〉(s(As)) ::= ’(’ 〈seq〉(As) ’)’
〈seq〉(nil) ::= ε
〈seq〉(A|As) ::= 〈atom〉(A) 〈seq〉(As)
〈seq〉(A|As) ::= 〈sexpr〉(A) 〈seq〉(As)
〈atom〉(X) ::= X & (X is an atom different from ’(’ and ’)’)

This definition extends the EBNF notation by allowing terminals to be variables
and by adding a boolean condition to check whether a rule is valid. These exten-
sions occur in the definition of 〈atom〉(X). The argument X represents the actual
atom that is parsed. To avoid confusion between an atom and the left or right
parenthesis of an s-expression, we check that the atom is not a parenthesis.

9.5.2 Encoding the grammar

Let us encode this grammar as a data structure. We will first encode rules. A rule
is a tuple with two parts, a head and a body. The body is a list of nonterminals
and terminals. For example, the rule defining 〈sexpr〉 could be written as:

local As in
rule(sexpr(s(As)) [´ (´ seq(As) ´) ´])

end

The unbound variable As will be bound when the rule is used. This representation
is not quite right. There should be a fresh variable As each time the rule is used.
To implement this, we encode the rule as a function:

fun {$} As in
rule(sexpr(s(As)) [´ (´ seq(As) ´) ´])

end

Each time the function is called, a tuple is returned containing a fresh variable.
This is still not completely right, since we cannot distinguish nonterminals with-
out arguments from terminals. To avoid this confusion, we wrap terminals in a
tuple with label t . (This means that we cannot have a nonterminal with label
t .) This gives the final, correct representation:

fun {$} As in
rule(sexpr(s(As)) [t(´ (´) seq(As) t(´) ´)])

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

664 Relational Programming

r(sexpr:[fun {$} As in
rule(sexpr(s(As)) [t(´ (´) seq(As) t(´) ´)])

end]
seq: [fun {$}

rule(seq(nil) nil)
end
fun {$} As A in

rule(seq(A|As) [atom(A) seq(As)])
end
fun {$} As A in

rule(seq(A|As) [sexpr(A) seq(As)])
end]

atom: [fun {$} X in
rule(atom(X)

[t(X)
fun {$}

{IsAtom X} andthen X\= ´ (´ andthen X\= ´) ´
end])

end])

Figure 9.7: Encoding of a grammar

Now that we can encode rules, let us encode the complete grammar. We represent
the grammar as a record where each nonterminal has one field. This field contains
a list of the nonterminal’s rules. We have seen that a rule body is a list containing
nonterminals and terminals. We add a third kind of entry, a boolean function
that has to return true for the rule to be valid. This corresponds to the condition
we used in the definition of 〈atom〉(X).

Figure 9.7 gives the complete grammar for s-expressions encoded as a data
structure. Note how naturally this encoding uses higher-order programming:
rules are functions that themselves may contain boolean functions.

9.5.3 Running the grammar interpreter

Let us define an ADT for the grammar interpreter. The function NewParser

takes a grammar definition and returns a parser:

Parse={NewParser Rules}

Rules is a record like the grammar definition in Figure 9.7. Parse takes as
inputs a goal to be parsed, Goal , and a list of tokens, S0. It does the parse and
returns the unparsed remainder of S0 in S:

{Parse Goal S0 S}

While doing the parse, it can also build a parse tree because it unifies the argu-
ments of the nonterminal with the head of the chosen rule.

The parser is executed with encapsulated search. Here is an example:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.5 A grammar interpreter 665

{Browse {SolveOne
fun {$} E in

{Parse sexpr(E)
[´ (´ hello ´ (´ this is an sexpr ´) ´ ´) ´] nil}

E
end }}

This returns a list containing the first solution:

[s([hello s([this is an sexpr])])]

9.5.4 Implementing the grammar interpreter

Figure 9.8 gives the definition of the grammar interpreter. NewParser creates
a parser Parse that references the grammar definition in Rules . The parser is
written as a case statement. It accepts four kinds of goals:

• A list of other goals. The parser is called recursively for all goals in the list.

• A procedure, which should be a zero-argument boolean function. The func-
tion is called and its result is unified with true . If the result is false , then
the parser fails, which causes another alternative to be chosen.

• A terminal, represented as the tuple t(X) . This terminal is unified with the
next element in the input list.

• A nonterminal, represented as a record. Its label is used to look up the
rule definitions in Rules . Then a rule is chosen nondeterministically with
ChooseRule and Parse is called recursively.

This structure is typical of interpreters. They examine the input and decide what
to do depending on the input’s syntax. They keep track of extra information
(here, the arguments S0 and S) to help do the work.

Dynamic choice points

The parser calls ChooseRule to choose a rule for a nonterminal. Using the
choice statement, we could write ChooseRule as follows:

proc {ChooseRule Rs Goal Body}
case Rs of nil then fail
[] R|Rs2 then

choice
rule(Goal Body)={R}

[]
{ChooseRule Rs2 Goal Body}

end
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

666 Relational Programming

fun {NewParser Rules}
proc {Parse Goal S0 S}

case Goal
of nil then S0=S
[] G|Gs then S1 in

{Parse G S0 S1}
{Parse Gs S1 S}

[] t(X) then S0=X|S
else if {IsProcedure Goal} then

{Goal}= true
S0=S

else Body Rs in /* Goal is a nonterminal */
Rs=Rules.{Label Goal}
{ChooseRule Rs Goal Body}
{Parse Body S0 S}

end end
end
proc {ChooseRule Rs Goal Body}

I={Space.choose {Length Rs}}
in

rule(Goal Body)={{List.nth Rs I}}
end

in
Parse

end

Figure 9.8: Implementing the grammar interpreter

This definition creates a series of binary choice points. (Note that it calls the
rule definition R to create a fresh rule instance.) There is another, more flexible
and efficient way to write ChooseRule . Instead of using the choice statement,
which implies a statically fixed number of choices, we use another operation,
Space.choose , which works with any number of choices. Space.choose is
part of the Space module, which defines operations on computation spaces. The
curious reader can skip ahead to Chapter 12 to find out more about them. But it
is not necessary to understand computation spaces to understand Space.choose .

The call I={Space.choose N} creates a choice point with N alternatives and
returns I , the alternative that is picked by the search strategy. I ranges from
1 to N. The number of alternatives can be calculated at run-time, wherease in
the choice statement it is statically known as part of the program’s syntax. In
fact, the choice statement is a linguistic abstraction that is implemented with
Space.choose . The following statement:

choice
〈stmt〉1

[] ... []

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 667

〈stmt〉n
end

is translated as:

case {Space.choose N}
of 1 then 〈stmt〉1
...
[] N then 〈stmt〉n
end

So the Space.choose operation is the real basic concept and the choice state-
ment is a derived concept.

Meta-interpreters

Our interpreter is actually a special kind of interpreter called a meta-interpreter
since it uses the relational model’s unify operation directly to implement the
grammar’s unify operation. In general, any interpreter of L2 that uses opera-
tions of L1 directly to implement the same operations in L2 is called a meta-
interpreter. Writing meta-interpreters is a standard programming technique in
languages whose primitive operations are complex. It avoids having to reimple-
ment these operations and it is more efficient. A popular case is Prolog, which
has unification and search as primitives. It is easy to explore extensions to Prolog
by writing meta-interpreters.

9.6 Databases

A database is a collection of data that has a well-defined structure. Usually, it
is assumed that the data are long-lived, in some loose sense, e.g., they survive
independently of whether the applications or the computer itself is running. (The
latter property is often called persistence.)

There are many ways to organize the data in a database. One of the most
popular ways is to consider the data as a set of relations, where a relation is a
set of tuples. A database organized as a set of relations is called a relational
database. For example, a graph can be defined by one relation, which is a set of
tuples where each tuple represents one edge (see Figure 9.9):

edge(1 2) edge(2 1) edge(2 3) edge(3 4)
edge(2 5) edge(5 6) edge(4 6) edge(6 7)
edge(6 8) edge(1 5) edge(5 1)

A relational database explicitly stores these tuples so that we can calculate with
them. We can use the relational computation model of this chapter to do these
calculations. Typical operations on a relational database are query (reading the
data) and update (modifying the data):

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

668 Relational Programming

• A query is more than just a simple read, but is a logical formula whose
basic elements are the relations in the database. It is the role of the DBMS
(database management system) to find all tuples that satisfy the formula.

• An update means to add information to the database. This information
must be of the right kind and not disturb the organization of the database.
The update is usually implemented as a transaction (see Section 8.5).

This section touches on just a few parts of the area of databases. For more
information, we refer the reader to the comprehensive introduction by Date [42].

Relational programming is well-suited for exploring the concepts of relational
databases. There are several reasons for this:

• It places no restrictions on the logical form of the query. Even if the query is
highly disjunctive (it has many choices), it will be treated correctly (albeit
slowly).

• It allows to experiment with deductive databases. A deductive database
is a database whose implementation can deduce additional tuples that are
not explicitly stored. Typically, the deductive database allows defining new
relations in terms of existing relations. No tuples are stored for these new
relations, but they can be used just like any other relation.

The deep reason for these properties is that the relational computation model is
a form of logic programming.

9.6.1 Defining a relation

Let us first define an abstraction to calculate with relations. For conciseness, we
use object-oriented programming to define the abstraction as a class, RelationClass .

• A new relation is an instance of RelationClass , e.g., Rel={New RelationClass

init} creates the initially empty relation Rel .

• The following operations are possible:

– {Rel assert(T)} adds the tuple T to Rel . Assert can only be done
outside a relational program.

– {Rel assertall(Ts)} adds the list of tuples Ts to Rel . Assertall
can only be done outside a relational program.

– {Rel query(X)} binds X to one of the tuples in Rel . X can be any
partial value. If more than one tuple is compatible with X, then search
can enumerate all of them. Query can only be done inside a relational
program.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 669

1 2 3 4 5 6 7 8

Figure 9.9: A simple graph

These operations are similar to what a Prolog system provides. For example,
assert is a limited version of Prolog’s assert/1 that can assert facts (i.e., tu-
ples), not complete clauses. For the examples that follow, we assume that Rel

has efficiency similar to a good Prolog implementation [29]. That is, the set of
tuples is stored in a dictionary that indexes them on their first argument. This
makes it possible to write efficient programs. Without this indexing, even simple
lookups would need to do linear search. More sophisticated indexing is possible,
but in practice first-argument indexing is often sufficient. Section 9.6.3 gives an
implementation of RelationClass that does first-argument indexing.

9.6.2 Calculating with relations

An example relation

Let us show an example of this abstraction for doing calculations on graphs. We
use the example graph of Figure 9.9. We define this graph as two relations: a set
of nodes and a set of edges. Here is the set of nodes:

NodeRel={New RelationClass init}
{NodeRel

assertall([node(1) node(2) node(3) node(4)
node(5) node(6) node(7) node(8)])}

The tuple node(1) represents the node 1. Here is the set of edges:

EdgeRel={New RelationClass init}
{EdgeRel

assertall([edge(1 2) edge(2 1) edge(2 3) edge(3 4)
edge(2 5) edge(5 6) edge(4 6) edge(6 7)
edge(6 8) edge(1 5) edge(5 1)])}

The tuple edge(1 2) represents an edge from node 1 to node 2. We can query
NodeRel or EdgeRel with the message query . Let us define the procedures
NodeP and EdgeP to make this more concise:

proc {NodeP A} {NodeRel query(node(A))} end
proc {EdgeP A B} {EdgeRel query(edge(A B))} end

With these definitions of NodeP and EdgeP we can write relational programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

670 Relational Programming

Some queries

Let us start with a very simple query: what edges are connected to node 1? We
define the query as a one-argument procedure:

proc {Q ?X} {EdgeP 1 X} end

This calls EdgeP with first argument 1. We calculate the results by using Q as
argument to a search operation:

{Browse {SolveAll Q}}

This displays:

[2 5]

Here is another query, which defines paths of length three whose nodes are in
increasing order:

proc {Q2 ?X} A B C D in
{EdgeP A B} A<B= true
{EdgeP B C} B<C= true
{EdgeP C D} C<D=true
X=path(A B C D)

end

We list all paths that satisfy the query:

{Browse {SolveAll Q2}}

This displays:

[path(3 4 6 7) path(3 4 6 8) path(2 3 4 6)
path(2 5 6 7) path(2 5 6 8) path(1 2 3 4)
path(1 2 5 6) path(1 5 6 7) path(1 5 6 8)]

The query Q2 has two kinds of calls, generators (the calls to EdgeP) and testers
(the conditions). Generators can return several results. Testers can only fail. For
efficiency, it is a good idea to call the testers as early as possible, i.e., as soon as
all their arguments are bound. In Q2, we put each tester immediately after the
generator that binds its arguments.

Paths in a graph

Let us do a more realistic calculation. We will calculate the paths in our example
graph. This is an example of a deductive database calculation, i.e., we will perform
logical inferences on the database. We define a path as a sequence of nodes such
that there is an edge between each node and its successor and no node occurs more
than once. For example, [1 2 5 6] is a path in the graph defined by EdgeP.
We can define path as a derived relation PathP , i.e., a new relation defined in
terms of EdgeP. Figure 9.10 shows the definition.

The relation {PathP A B Path} is true if Path is a path from A to B. PathP

uses an auxiliary definition, Path2P , which has the extra argument Trace , the
list of already-encountered nodes. Trace is used to avoid using the same node

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.6 Databases 671

proc {PathP ?A ?B ?Path}
{NodeP A}
{Path2P A B [A] Path}

end

proc {Path2P ?A ?B Trace ?Path}
choice

A=B
Path={Reverse Trace}

[] C in
{EdgeP A C}
{Member C Trace}= false
{Path2P C B C|Trace Path}

end
end

Figure 9.10: Paths in a graph

twice and also to accumulate the path. Let us look more closely at Path2P . It
has two choices, each of which has a logical reading:

• In the first choice, A=B, which means the path is complete. In that case,
the path is simply the reverse of Trace .

• In the second choice, we extend the path. We add an edge from A to another
node C. The path from A to B consists of an edge from A to C and a path
from C to B. We verify that the edge C is not in Trace .

The definition of Path2P is an example of logic programming: the logical defi-
nition of Path2P is used to perform an algorithmic calculation. Note that the
definition of Path2P is written completely in the relational computation model.
It is an interesting combination of deterministic and nondeterministic calculation:
EdgeP and Path2P are both nondeterministic and the list operations Reverse

and Member are both deterministic.

9.6.3 Implementing relations

Figure 9.11 shows the implementation of RelationClass . It is quite simple:
it uses a dictionary to store the tuples and the choice statement to enumerate
query results. The choice is done in the procedure Choose , which successively
chooses all elements of a list. First-argument indexing is a performance optimiza-
tion. It is implemented by using a new operation, IsDet , to check whether the
argument is bound or unbound. If the first argument is unbound, then all tuples
are possible results. If the first argument is bound, then we can use it as an index
into a much smaller set of possible tuples.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

672 Relational Programming

proc {Choose ?X Ys}
choice Ys=X|_
[] Yr in Ys=_|Yr {Choose X Yr} end

end

class RelationClass
attr d
meth init

d:={NewDictionary}
end
meth assertall(Is)

for I in Is do { self assert(I)} end
end
meth assert(I)

if {IsDet I.1} then
Is={Dictionary.condGet @d I.1 nil} in
{Dictionary.put @d I.1 {Append Is [I]}}

else
raise databaseError(nonground(I)) end

end
end
meth query(I)

if {IsDet I} andthen {IsDet I.1} then
{Choose I {Dictionary.condGet @d I.1 nil}}

else
{Choose I {Flatten {Dictionary.items @d}}}

end
end

end

Figure 9.11: Implementing relations (with first-argument indexing)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 673

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| choice 〈s〉1 [] ... [] 〈s〉n end Choice
| fail Failure
| {IsDet 〈x〉 〈y〉} Boundness test
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange

Table 9.3: The extended relational kernel language

Extended relational computation model

The implementation in Figure 9.11 extends the relational computation model
in two ways: it uses stateful dictionaries (i.e., explicit state) and the operation
IsDet .2 This is a general observation: to implement useful relational abstrac-
tions, we need state (for modularity) and the ability to detect whether a variable
is still unbound or not (for performance optimization). Table 9.3 shows the kernel
language of this extended computation model. Because of encapsulated search,
a running relational program can only read state, not modify it. The boolean
function {IsDet X} returns true or false depending on whether X is not an un-
bound variable or is an unbound variable. A variable that is not unbound is called
determined. IsDet corresponds exactly to the Prolog operation nonvar(X).

9.7 The Prolog language

Despite many extensions and new ideas, Prolog is still the most popular language
for practical logic programming [182]. This is partly because Prolog has a quite
simple operational model that easily accommodates many extensions and partly
because no consensus has yet been reached on a successor. The computation
model of the “pure” subset of Prolog, i.e., Prolog minus its extralogical features,
is exactly the relational computation model.

Modern implementations of Prolog are efficient and provide rich functionality
for application development (e.g., [29]). It is possible to compile Prolog with
similar execution efficiency as C; the Aquarius and Parma systems are construc-

2Leaving aside exceptions, since they are only used for detecting erroneous programs.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

674 Relational Programming

tive proof of this [194, 188]. The successful series of conferences on Practical
Applications of Prolog is witness to the usefulness of Prolog in industry.

Prolog is generally used in application areas in which complex symbolic manip-
ulations are needed, such as expert systems, specialized language translators, pro-
gram generation, data transformation, knowledge processing, deductive databas-
es, and theorem proving. There are two application areas in which Prolog is still
predominant over other languages: natural language processing and constraint
programming. The latter in particular has matured from being a subfield of log-
ic programming into being a field in its own right, with conferences, practical
systems, and industrial applications.

Prolog has many advantages for such applications. The bulk of programming
can be done cleanly in its pure declarative subset. Programs are concise due to
the expressiveness of unification and the term notation. Memory management is
dynamic and implicit. Powerful primitives exist for useful non-declarative opera-
tions. The call/1 provides a form of higher-orderness (first-class procedures, but
without lexical scoping). The setof/3 provides a form of encapsulated search
that can be used as a database query language.

The two programming styles

Logic programming languages have traditionally been used in two very different
ways:

• For algorithmic problems, i.e., for which efficient algorithms are known.
Most applications written in Prolog, including expert systems, are of this
kind.

• For search problems, i.e., for which efficient algorithms are not known, but
that can be solved with search. For example, combinatoric optimization or
theorem proving. Most applications in constraint programming are of this
kind.

Prolog was originally designed as a compromise between these two styles. It
provides backtracking execution, which is just built-in depth-first search. This
compromise is not ideal. For algorithmic problems the search is not necessary. For
search problems the search is not good enough. This problem has been recognized
to some extent since the original conception of the language in 1972. The first
satisfactory solution, encapsulating search with computation spaces, was given
by the AKL language in 1990 [70, 92]. The unified model of this book simplifies
and generalizes the AKL solution (see Chapter 12).

9.7.1 Computation model

The Prolog computation model has a layered structure with three levels:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 675

• The core consists of a simple theorem prover that uses Horn clauses and
that executes with SLDNF resolution [114]. The acronym SLDNF has a long
history; it means approximately “Selection in Linear resolution for Definite
clauses, augmented by Negation as Failure”. It defines a theorem prover
that executes like the relational computation model. Negation as failure
is a practical technique to deduce some negative information: if trying to
prove the atom 〈a〉 fails finitely, then deduce ¬〈a〉. Finite failure means
that the search tree (defined in Section 9.1.2) has only a finite number of
leaves (no infinite loops) and all are failed. This can easily be detected in
the relational model: it means simply that Solve finds no solutions and
does not loop. Negation as failure is incomplete: if the theorem prover loops
indefinitely or blocks trying to prove 〈a〉 then we cannot deduce anything.

• The second level consists of a series of extralogical features that are used to
modify and extend the resolution-based theorem prover. These features con-
sist of the freeze/2 operation (giving data-driven execution, implemented
with coroutining), the bagof/3 and setof/3 operations (giving aggregate
operations similar to database querying), the call/1 operation (giving a
limited form of higher-order programming), the cut operation “!” (used to
prune search), and the var/1 and nonvar/1 operations (also used to prune
search).

• The third level consists of the assert/1 and retract/1 operations, which
provide explicit state. This is important for program design and modularity.

The Prolog computation model is the heart of a whole family of extensions. One
of the most important extensions is constraint logic programming. It retains the
sequential search strategy of Prolog, but extends it with new data structures and
constraint solving algorithms. See Chapter 12 for more information.

There is a second family of computation models for logic programming, called
concurrent logic programming. These are centered around the nondeterministic
concurrent model, which is explained in Section 5.7.1. This model allows to write
logic programs for long-lived concurrent calculations that interact amongst each
other and with the real world. This makes it possible to write operating systems.

In the late 1980’s, the first deep synthesis of these two families was done by
Maher and Saraswat, resulting in concurrent constraint programming [117, 163].
This model was first realized practically by Haridi and Janson [70, 92]. The
general computation model of this book is a concurrent constraint model. For
more information about the history of these ideas, we recommend [196].

Future developments

There are three major directions in the evolution of logic programming languages:

• Mercury. An evolution of Prolog that is completely declarative, statically
typed and moded, and higher-order. It focuses on the algorithmic program-
ming style. It keeps the Horn clause syntax and global backtracking.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

676 Relational Programming

• Oz. An evolution of Prolog and concurrent logic programming that cleanly
separates the algorithmic and search programming styles. It also cleanly
integrates logic programming with other computation models. It replaces
the Horn clause syntax with a syntax that is closer to functional languages.

• Constraint programming. An evolution of Prolog that consists of a set
of constraint algorithms and ways to combine them to solve complex op-
timization problems. This focuses on the search programming style. Con-
straint techniques can be presented as libraries (e.g., ILOG Solver is a C++
library) or language extensions (e.g., SICStus Prolog and Oz).

9.7.2 Introduction to Prolog programming

Let us give a brief introduction to programming in Prolog. We start with a simple
program and continue with a more typical program. We briefly explain how to
write good programs, which both have a logical reading and execute efficiently.
We conclude with a bigger program that shows Prolog at its best: constructing a
KWIC index. For more information on Prolog programming, we recommend one
of many good textbooks, such as [182, 21].

A simple predicate

Let us once again define the factorial function, this time as a Prolog predicate.

factorial(0, 1).

factorial(N, F) :- N>0,

N1 is N-1, factorial(N1, F1), F is N*F1.

A Prolog program consists of a set of predicates, where each predicate consists
of a set of clauses. A predicate corresponds roughly to a function or procedure
in other languages. Each clause, when considered by itself, should express a
property of the predicate. This allows us to do purely logical reasoning about the
program. The two clauses of factorial/2 satisfy this requirement. Note that
we identify the predicate by its name and its number of arguments.

A particularity about Prolog is that all arguments are terms, i.e., tuples in our
terminology. This shows up clearly in its treatment of arithmetic. The syntax
N-1 denotes a term with label ’-’ and two arguments N and 1. To consider the
term as a subtraction, we pass it to the predicate is/2, which interprets it and
does the subtraction.3 This is why we have to use the extra variables N1 and F1.
Let us call the predicate with N bound and F unbound:

| ?- factorial(10, F).

3Most Prolog compilers examine the term at compile time and generate a sequence of in-
structions that does the arithmetic without constructing the term.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 677

(The notation | ?- is part of the Prolog system; it means that we are perform-
ing an interactive query.) This returns with F bound to 3628800. How is this
answer obtained? The Prolog system considers the clauses as precise operational
instructions on how to execute. When calling factorial, the system tries each
clause in turn. If the clause head unifies with the caller, then the system executes
the calls in the clause body from left to right. If the clause head does not unify
or a body call fails, then the system backtracks (i.e., undoes all bindings done in
the clause) and tries the next clause. If the last clause has been tried, then the
whole predicate fails.

Calculating logically with lists

Factorial is a rather atypical Prolog predicate, since it does not use the power
of unification or search. Let us define another predicate that is more in the
spirit of the language, namely sublist(L1, L2), which is true for lists L1 and
L2 whenever L1 occurs as a contiguous part of L2:

sublist(L1, L2) :- append(V, T, L2), append(H, L1, V).

Logically, this says “L1 is a sublist of L2 if there exist lists H and T such that
appending together H, L1, and T gives L2”. These variables do not need an
explicit declaration; they are declared implicitly with a scope that covers the
whole clause. The order of the append/3 calls might seem strange, but it does
not change the logical meaning. We will see later why this order is important.
We define append/3 as follows:

append([], L2, L2).

append([X|M1], L2, [X|M3]) :- append(M1, L2, M3).

In Prolog syntax, [] denotes the empty list nil and [X|M1] denotes the list
pair X|M1. In the relational model of Chapter 9, this program can be written as
follows:

proc {Sublist L1 L2} H V T in
{Append V T L2} {Append H L1 V}

end

proc {Append L1 L2 L3}
choice

L1=nil L3=L2
[] X M1 M3 in

L1=X|M1 L3=X|M3 {Append M1 L2 M3}
end

end

Each clause is an alternative in a choice statement. All the local variables in
the clause bodies are declared explicitly.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

678 Relational Programming

There are many ways that sublist/2 can execute, depending on which ar-
guments are instantiated when it is called. Some of these will be efficient; others
may go into infinite loops. Let us execute the call:

| ?- sublist(L1, [a,b]).

(Prolog lists are written with commas separating the elements.) We can execute
this in the relational model as follows:

{Browse {SolveAll
proc {$ X} {Sublist X [a b]} end }}

This displays a list of six solutions:

[nil [a] nil [a b] [b] nil]

These are the same solutions in the same order as would be calculated by a Prolog
system. Why are the solutions returned in this order? Why is nil returned three
times? Trace through the execution of the program to find out.

The order of the append/3 calls in the definition of sublist/2 might seem
strange. The following definition is more intuitive:

sublist(L1, L2) :- append(H, L1, V), append(V, T, L2).

That is, we first append H and L1 to get V, and then we append V and T to get
L2. What happens if we execute sublist(L1, [a,b]) with this definition?

From this example, we can see that programming solely by reasoning about
the logic can lead to inefficient programs. To get efficiency, we have to take
the execution order into account. The art of programming in Prolog is to write
definitions that are both logical and efficient [139, 182]. Let us see how to achieve
this.

How to write Prolog programs

One way to write good Prolog programs is to follow these three steps:

• First write the program as if it were a statement in pure logic. The resulting
program is logically correct but it might be inefficient or go into an infinite
loop as a result of Prolog’s depth-first search strategy.

• Second, rewrite (part of) the program for efficiency, taking care not to break
the logical semantics. This step introduces algorithmic knowledge into the
program’s logic. The program remains purely logical, however. In the case
of sublist/2, changing the order of the append/3 calls changes efficiency
but does not change the logical meaning. The best order is the one in which
the append/3 with fewest solutions comes first.

• Third, add extralogical operations where they are needed. These operations
are needed for various reasons, such as efficiency, adjusting execution order,
modularity, or parameterizing the program. They should be used in a
disciplined way, so that the logical view holds as much as possible.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 679

Let us look again at factorial/2 in the light of this methodology. It needs
to be rewritten slightly for efficiency reasons. As it stands, if the first clause is
chosen, then the system might still store information allowing to backtrack to the
second clause.4 To avoid this inefficiency, we add a pruning operator called “cut”
(written as “!”). Executing a cut commits to the current clause, by discarding
the information needed to backtrack. This gives the following definition:

factorial(0, F) :- !, F=1.

factorial(N, F) :- N>0,

N1 is N-1, factorial(N1, F1), F is N*F1.

Note that the cut is placed exactly at the earliest moment that we know the
current clause is correct, and any output variables are bound after it. A cut
placed in this way does not change the logical semantics; it is called a blue cut
(see Section 9.7.3 below).

For programs that do complex symbolic manipulations (such as compilers, in-
terpreters, database managers, parsers, and other data processors) this method-
ology is quite practical. The logical view is usually much easier to understand.
Things get complicated only when we try to deduce exactly when the operations
are done.

A bigger program

To finish our introduction to Prolog, let us look at a Prolog program that is
logical, efficient, and does useful work. The program takes a list of article titles
and calculates a KWIC (keyword in context) index for them. The program is a
modified version of an original from The Art of Prolog [182]. It uses unification,
backtracking, and the aggregate operation setof/3.

kwic(T, K) :-

setof(Ys, Xs^(member(Xs,T),rotFilter(Xs,Ys)), K).

rotFilter(Xs, Ys) :-

append(As, [Key|Bs], Xs),

not insignificant(Key),

append([Key|Bs], [’.’|As], Ys).

insignificant(a). insignificant(the).

insignificant(in). insignificant(of).

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

4Whether or not it does so depends on the sophistication of the compiler. Many Prolog
compilers index only on the first argument of a predicate and do not look inside clause bodies.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

680 Relational Programming

The predicate rotFilter(Xs,Ys) is true if Ys is a rotated version of Xs whose
first element is a reasonable candidate to be a keyword (i.e., it is not insignificant).
We translate this program as follows into the relational model:

proc {Kwic T K} B in
{SolveAll

proc {$ Ys} Xs in {Member Xs T} {RotFilter Xs Ys} end B}
{Sort B fun {$ X Y} X.1<Y.1 end K}

end

proc {RotFilter Xs Ys}
As Key Bs in

{Append As Key|Bs Xs}
{Insignificant Key}= false
{Append Key|Bs ´ . ´ |As Ys}

end

fun {Insignificant Key}
Key==a orelse Key==the orelse Key== ´ in ´ orelse Key== ´ of ´

end

We translate setof/3 as an all-solutions search followed by a list sort. This
translation is explained in Section 9.7.3. We translate insignificant/1 as a
boolean function, which is more efficient than choice to express how it is used.
We leave the translation of member/2 up to the reader. Here is an example
execution:

{Kwic [[the principle ´ of ´ relativity]
[the design ´ of ´ everyday things]] K}

Browsing K displays:

[[design ´ of ´ everyday things ´ . ´ the]
[everyday things ´ . ´ the design ´ of ´]
[principle ´ of ´ relativity ´ . ´ the]
[relativity ´ . ´ the principle ´ of ´]
[things ´ . ´ the design ´ of ´ everyday]]

Given a keyword, scanning this sorted list allows to find the title in which it is
used. For more efficiency, we can put the titles in a dictionary indexed by the
keywords:

D={NewDictionary}
for Key|Ys in K do D.Key:=Key|Ys end

If the dictionary is stateful, this lets us access the titles in constant time. If we
use a dictionary, we can omit the Sort operation without affecting efficiency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 681

9.7.3 Translating Prolog into a relational program

We show how to translate any pure Prolog program into a relational program
with the same logical semantics and operational semantics. The translation is a
purely syntactic one. Translating in the opposite direction is not possible because
the declarative model is higher-order and compositional, which is not true of
pure Prolog. We also show how to translate Prolog programs with cut (if they
are properly written) and with bagof/3 into relational programs. The Queens

program of Section 9.2.2 was originally written in Prolog. We translated it into
the relational computation model using the rules of this section.

Translating pure Prolog

To translate a pure Prolog program to a relational program in the declarative
model, follow these three rules for each of the program’s predicates:

• Translate deterministic predicates, i.e., those that do not do backtracking,
into relational programs using if and case but not choice .

• Translate nondeterministic predicates, i.e., those that are backtracked into,
into procedures with choice . Each clause is one alternative of the choice

statement.

• If you have doubts whether the predicate is deterministic or nondeterminis-
tic, then your Prolog program may have a memory leak. This is because it
may be accumulating choice points forever. We strongly suggest that you
rewrite the predicate so that it is clearly deterministic or nondeterministic.
If you do not or cannot do this, then translate it as if it were nondeter-
ministic. The resulting relational program will have a memory leak if the
Prolog program does.

Here are examples of a deterministic and a nondeterministic Prolog predicate,
translated according to these rules. Consider the following deterministic Prolog
predicate:

place_queens(0, _, _, _) :- !.

place_queens(I, Cs, Us, [_|Ds]) :-

I>0, J is I-1,

place_queens(J, Cs, [_|Us], Ds),

place_queen(I, Cs, Us, Ds).

This predicate has a blue cut according to O’Keefe [139], i.e., the cut is needed to
inform naive implementations that the predicate is deterministic, so they can im-
prove efficiency, but it does not change the program’s results. The factorial/2

predicate of the previous section uses a blue cut. The predicate is translated as:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

682 Relational Programming

proc {PlaceQueens N ?Cs ?Us ?Ds}
if N==0 then skip
elseif N>0 then Ds2 Us2=_|Us in

Ds=_|Ds2
{PlaceQueens N-1 Cs Us2 Ds2}
{PlaceQueen N Cs Us Ds}

else fail end
end

The following nondeterministic Prolog predicate:

placequeen(N, [N|_], [N|_], [N|_]).

placequeen(N, [_|Cs2], [_|Us2], [_|Ds2]) :-

placequeen(N, Cs2, Us2, Ds2).

is translated as:

proc {PlaceQueen N ?Cs ?Us ?Ds}
choice N|_ =Cs N|_ =Us N|_ =Ds
[] _|Cs2=Cs _|Us2=Us _|Ds2=Ds in

{PlaceQueen N Cs2 Us2 Ds2}
end

end

In both examples, the logical semantics and the operational semantics of the
Prolog and relational versions are identical.

The cut operation (“!”)

If your Prolog program uses cut “!”, then the translation to a relational program
is often simple if the cut is a grue cut, i.e., a blue or green cut, as defined by
O’Keefe [139]. A green cut removes irrelevant solutions. Grue cuts do not have
any effect on logical semantics but they improve the program’s efficiency. Let us
translate the following predicate:

foo(X, Z) :- guard1(X, Y), !, body1(Y, Z).

foo(X, Z) :- guard2(X, Y), !, body2(Y, Z).

The guards must not bind any head variables. We say that the guards are quiet.
It is good Prolog style to postpone binding head variables until after the cut. The
translation has two cases, depending on whether the guards are deterministic or
not. If a guard is deterministic (it has no choice), then write it as a deterministic
boolean function. This gives the following simple translation:

proc {Foo X ?Z}
if Y in {Guard1 X Y} then {Body1 Y Z}
elseif Y in {Guard2 X Y} then {Body2 Y Z}
else fail end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.7 The Prolog language 683

If a guard is nondeterministic (it uses choice), then write it so that it has one
input and one output argument, like this: {Guard1 In Out} . It should not bind
the input argument. This gives the following translation:

proc {Foo X ?Z}
case {SolveOne fun {$} {Guard1 X} end } of [Y] then

{Body1 Y Z}
elsecase {SolveOne fun {$} {Guard2 X} end } of [Y] then

{Body2 Y Z}
else fail then

end

If neither of these two cases apply to your Prolog program, e.g., either your guards
bind head variables or you use cuts in other ways (i.e., as red cuts), then it likely
does not have a logical semantics. A red cut prunes away logical solutions, i.e.,
it changes the logical semantics. A program with red cuts is defined only by
its operational semantics. When that happens, the translation is not automatic.
You will have to understand the program’s operational semantics and use this
knowledge to translate into an equivalent relational program.

The bagof/3 and setof/3 predicates

Prolog’s bagof/3 predicate corresponds to using SolveAll inside a relational
program. Its extension setof/3 sorts the result and removes duplicates. We
show how to translate bagof/3; for setof/3 it is straightforward to follow this
with the Sort operation (see Appendix B.5). Consider the following small biblical
database (taken from [182]):

father(terach, abraham).

father(terach, nachor).

father(terach, haran).

father(abraham, isaac).

father(haran, lot).

father(haran, milcah).

father(haran, yiscah).

This can be written as follows as a relational program:

proc {Father ?F ?C}
choice F=terach C=abraham
[] F=terach C=nachor
[] F=terach C=haran
[] F=abraham C=isaac
[] F=haran C=lot
[] F=haran C=milcah
[] F=haran C=yiscah
end

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

684 Relational Programming

Calling bagof/3 without existential quantification, for example:

children1(X, Kids) :- bagof(K, father(X,K), Kids).

is defined as follows with SolveAll :

proc {Children1 X ?Kids}
{SolveAll proc {$ K} {Father X K} end Kids}

end

The Children1 definition is deterministic; it assumes X is known and it returns
Kids . To search over different values of X the following definition should be used
instead:

proc {Children1 ?X ?Kids}
{Father X _}
{SolveAll proc {$ K} {Father X K} end Kids}

end

The call {Father X _} creates a choice point on X. The “_” is syntactic sugar
for local X in X end , which is just a new variable with a very small scope.

Calling bagof/3 with existential quantification, for example:

children2(Kids) :- bagof(K, X^father(X,K), Kids).

is defined as follows with SolveAll :

proc {Children2 ?Kids}
{SolveAll proc {$ K} {Father _ K} end Kids}

end

The relational solution uses _ to add a new existentially-scoped variable. The
Prolog solution, on the other hand, introduces a new concept, namely the “exis-
tential quantifier” X^, which only has meaning in terms of setof/3 and bagof/3.
The fact that this notation denotes an existential quantifier is arbitrary. The
relational solution introduces no new concepts. It really does existential quantifi-
cation inside the search query.

In addition to doing all-solutions bagof/3, relational programs can do a lazy
bagof/3, i.e., where each new solution is calculated on demand. Lazy bagof/3

can be done by using the list returned by Solve .

9.8 Exercises

1. Natural language parsing and databases. For this exercise, combine
the techniques of Sections 9.4 and 9.6 to build a natural language parser
with a large vocabulary that can be updated at run-time. In other words,
write a natural language parser that uses a dynamic database.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

9.8 Exercises 685

2. Parsing the EBNF syntax. Section 9.5 shows how to write a generic
parser that takes any definite clause grammar and returns a parser for
that grammar. Unfortunately, the grammar has to be encoded as a data
structure. This makes it harder to read than the usual EBNF syntax. For
this exercise, write a parser that takes the grammar written in EBNF syntax
and returns its encoding. In this way, the grammar input to the generic
parser can be written in the usual EBNF syntax instead of encoded. As a
first step, give an EBNF definition of the extended EBNF syntax itself.

3. Meta-interpreters and virtual machines. Virtual machines achieve
efficiency by executing virtual instructions directly on the underlying hard-
ware (see Section 2.1.2). Meta-interpreters achieve simplicity by execut-
ing interpreted operations directly by the underlying language (see Sec-
tion 9.5.4). For this exercise, compare and contrast these two approaches.

4. (research project) Relational programming with state. In the relation-
al computation model of this chapter, explicit state that is created outside
of a relational program can only be read, not modified, during the execution
of the relational program. This restriction exists because of encapsulated
search (see, e.g., [172, 169]). For this exercise, investigate how to remove
this restriction while maintaining the desirable properties of the relational
computation model, i.e., its simple logical semantics and efficient imple-
mentation.

5. (research project) Relational programming and transactions. A trans-
action can do an abort, which cancels the current calculation (see Sec-
tion 8.5). In relational programming, one can do a fail, which says that
the current calculation is wrong (see Section 9.1). For this exercise, exam-
ine the relationship between abort and failure. In what cases can you give
a transactional meaning to a relational program or a relational meaning
to a transactional program? Can you design a computation model that
combines the abilities of the transactional and relational models?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

686 Relational Programming

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part III

Specialized Computation Models

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 10

Graphical User Interface
Programming

“Nowadays the growth of a graphic image can be divided into two
sharply defined phases. The process begins with the search for a
visual form that will interpret as clearly as possible one’s train of
thought. [...] After this, to my great relief, there dawns the second
phase, that is the making of the graphic print; for now the spirit can
take its rest while the work is taken over by the hands.”
– The Graphic Work of M.C. Escher, M.C. Escher (1898–1972)

This chapter shows a particularly simple and powerful way to do graphical user
interface (GUI) programming. We combine the declarative model together with
the shared-state concurrent model in an approach that takes advantage of the
good properties of each model. To introduce the approach, let us first summarize
the existing approaches:

• Purely procedural. The user interface is constructed by a sequence of graph-
ics commands. These commands can be purely imperative, as in tcl/tk,
object-oriented, as in the Java AWT (Abstract Window Toolkit) package or
its extension, the Swing components, or even functional, as in Haskell fud-
gets. The object-oriented or functional style is preferable to an imperative
style because it is easier to structure the graphics commands.

• Purely declarative. The user interface is constructed by choosing from a set
of predefined possibilities. This is an example of descriptive declarativeness,
as explained in Section 3.1. A well-known example is HTML (HyperText
Markup Language), the formatting language used for Web pages.

• Using an interface builder. The user interface is constructed manually by
the developer, using a direct manipulation interface. A well-known example
is Microsoft Visual Studio.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

690 Graphical User Interface Programming

The procedural approach is expressive (anything at all can be done at run time)
but is complex to use. The declarative approach is easy to use (a few simple
declarations suffice to create an interface) but lacks expressiveness. The interface
builder approach is easy to use and gives immediate feedback on the interface,
but it lacks expressiveness and the interface is hard to change at run time. None
of these approaches is satisfactory. In our view, this is because each is limited to
a single computation model.

This chapter gives an approach to building graphical user interfaces (GUIs)
that combines a declarative base together with a selected set of procedural con-
cepts including objects and threads. We provide a user interface toolkit that is
both expressive and easy to use. In the context of the book, this has two goals:

• To present the ideas underlying a practical tool for GUI design that gives
the user a high level of abstraction. It turns out that the combination of
declarative and non-declarative (i.e., procedural) techniques is particularly
appropriate for graphical user interface design.

• To give a realistic example that shows the advantages of programming with
concepts instead of programming in models. We start from the declarative
programming techniques of Chapter 3 and add state and concurrency ex-
actly where it is needed. This is a practical example of combining several
computation models.

To a first approximation, our user interface specifications are just data structures,
which can be calculated at run time. The declarative model makes it easy to
calculate with symbolic data structures such as records and lists. This means
that we can easily define and manipulate quite sophisticated user interfaces. For
example:

• We build a context-sensitive clock widget, that changes its shape and pre-
sentation depending on an external parameter, which is the window size.
Other widgets and external parameters are just as easily programmed.

• We show how to generate user interfaces quickly starting from program
data. It requires just a few simple data structure manipulations.

The ideas in this chapter are embodied in the QTk module, which is part of the
Mozart system [65]. QTk (“Quick Tk”) is a full-featured GUI design tool based
on the declarative approach [66, 67]. QTk is implemented as a front end to the
tcl/tk graphics package. It has been used to build GUIs for real applications.
All the examples we give can be run directly with QTk. This chapter gives most
of the key ideas underlying QTk but only shows a small fraction of the available
widgets.

Structure of the chapter

The chapter consists of four sections:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.1 Basic concepts 691

• Section 10.1 introduces the basic concepts underlying declarative and pro-
cedural approaches and how we propose to combine them.

• Section 10.2 gives an introduction to the principles of QTk and how to use
it to build user interfaces.

• Section 10.3 gives four case studies to progressively illustrate different as-
pects of the approach: a simple progress monitor, a calendar widget, the
automatic generation of a user interface from a data set, and a context-
sensitive clock.

• Section 10.4 says a few words about how QTk is implemented.

10.1 Basic concepts

What are the relative merits of the declarative and procedural approaches to
specifying user interfaces? The trade-off is between manipulability and expres-
siveness:

• The declarative approach defines a set of possibilities for different attributes.
The developer chooses among this set and defines a data structure that de-
scribes the interface. A purely declarative approach makes it easy to formal-
ly manipulate the user interface definitions, e.g., to translate raw data into
a user interface or to change representations. However, the expressiveness
is limited because it is only possible to express what the designers initially
thought of.

• The procedural approach gives a set of primitive operations and the ability
to write programs with them. These programs construct the interface. A
purely procedural approach has no limits on expressiveness, since in its
general form it defines a full-fledged programming language. However, this
makes it harder to do formal manipulations on the user interface definitions,
i.e., to calculate the user interface.

This trade-off is not a temporary state of affairs, to be solved by some ingenious
new approach. It is a deep property of computation models. As a language
becomes more expressive, its programs become less amenable to formal manipu-
lation. This is illustrated by the Halting Problem.1

However, this trade-off is not as bad as it seems on first glance. It is still
possible to define a model that is both manipulable and expressive. We can do it
by combining the declarative and procedural approaches. We use the declarative

1Assume a language as expressive as a Turing machine, i.e., it is based on a general-purpose
computer with potentially unbounded memory. Then it is impossible to write a program that,
when given an input program, determines in finite time whether or not the input program will
halt.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

692 Graphical User Interface Programming

approach in those areas where manipulability is important but a limited expres-
siveness is sufficient. We use the procedural approach for those areas where
expressiveness is essential. To be precise, for each window we define four parts
declaratively:

• The static structure of the window as a set of nested widgets, where a widget
is a primitive component of a graphical user interface.

• The widget types.

• The initial states of the widgets.

• The resize behavior of the window, i.e., how the widgets change size and
relative position when the window size changes.

We define two parts procedurally:

• Procedures that are executed when external events happen. These proce-
dures are called actions. Events are external activities that are detected by
the window.

• Objects that can be called to change the interface in various ways. These
objects are called handlers.

The complete definition of the interface is a nested record value with embedded
procedures and objects. Since it is a record, all the declarative parts can be
formally manipulated. Since it has procedures and objects, it can do arbitrary
computations.

When designing a graphical user interface, we recommend to use the declar-
ative approach as the primary approach, and to supplement it with procedural
aspects to increase expressiveness exactly where it is needed. There is a recent
standard for Web design, Dynamic HTML, that also makes it possible to combine
the declarative and procedural approaches [61]. It uses character strings instead
of records for the declarative part. It is not as tightly integrated with a pro-
gramming language as the approach of this chapter. At the time this book was
written, the performance of the declarative part was not yet adequate to support
the design approach we recommend.

10.2 Using the declarative/procedural approach

As much of the interface as possible is defined declaratively as record values.
Records are a good choice for two reasons: they are very general data structures
and it is easy to calculate with them. The GUI consists of a set of widgets, where
each widget is specified by a record. Specifying a GUI is done not by defining a
new mini-language, but by using records in the existing language. Programming
a complex GUI then becomes a simple matter of doing calculations with records
and lists. Since both are strongly supported by the declarative model, these
calculations are easy to specify and efficient.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.2 Using the declarative/procedural approach 693

User interface description: record
containing action procedures and

unbound variables (for handler objects)

Window on screen

Build user interface

Actions and handler objects

(interpret description to create
handler objects and event thread)

Data to be displayed

Calculate user interface description

ApplicationHuman user

Figure 10.1: Building the graphical user interface

10.2.1 Basic user interface elements

The GUI model of this chapter has five basic elements:

• Windows and widgets. A window is a rectangular area of the screen that
contains a set of widgets arranged hierarchically according to a particular
layout. A widget is a GUI primitive that is represented visually on the screen
and that contains an interaction protocol, which defines its interactions with
a human user. A widget is specified by a record, which gives its type, initial
state, a reference to its handler, and some of the actions it can invoke (see
below). An interaction protocol defines what information is displayed by
the widget and what sequences of user commands and widget actions are
acceptable.

• Events and actions. An event is a well-defined discrete interaction by the
external world on the user interface. An event is defined by its type, the
time at which it occurs, and possibly some additional information (such as
the mouse coordinates). Events are not seen directly by the program, but
only indirectly by means of actions. An event can trigger the invocation of
an action. An action is a procedure that is invoked when a particular event
occurs.

• Handlers. A handler is an object with which the program can control a
widget. Each widget can have a corresponding handler.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

694 Graphical User Interface Programming

Figure 10.2: Simple text entry window

10.2.2 Building the graphical user interface

Figure 10.1 shows how a graphical user interface is built. It starts with the data
to be displayed. This data is manipulated to create a record data structure, the
user interface description. This description defines the logical structure of the
interface as a nested record. The record contains embedded action procedures
and unbound variables which will become references to handler objects. The
record is passed to a procedure QTk.build , which interprets it and builds the
interface. QTk.build does two things.

• It builds a window using its underlying graphics package.

• It sets up an internal mechanism so that the application can interact with
the window. For this, it creates one handler object per widget and one
thread per window. It registers the action procedures with the widgets
and the events they are triggered on. The action procedures are executed
sequentially in the thread as window events arrive.

An example

The easiest way to see how this works is by means of an example. Here is a simple
user interface description defined as a record:

D=button(text:"Click this button")

The record D defines a widget of button type and the content of the text field
gives the initial text in the button. Other widgets follow the same conventions.
The record label denotes the widget type, the field names denote widget param-
eters, and the field contents denote either the parameters initial values or the
procedural parts of the interface (actions or handlers).

Some of the widgets are able to contain other widgets. By using these, the
complete user interface is a nested record that defines all the widgets and their
logical organization on the screen. For example, here is a simple interface for
doing text entry (see Figure 10.2):

D=td(lr(label(text:"Type your name:")
entry(handle:H))

button(text:"Ok" action: proc {$} {W close} end))

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.2 Using the declarative/procedural approach 695

fun {GetText A}
H T D Win

D=td(lr(label(text:A) entry(handle:H))
button(text:"Ok"

action: proc {$} T={H get($)} {W close} end))
W={QTk.build D}
{W show} {W wait}
T

end

Figure 10.3: Function for doing text entry

Figure 10.4: Windows generated with the lr and td widgets

The td widget organizes its member widgets in top-down fashion. The lr widget
is similar, but goes left to right. This example has one action, proc {$} {W

close} end , and a handle, H, which we will explain later. At this point, both
H and Ware still unbound variables. Create the window by passing D to the
QTk.build procedure:

W={QTk.build D}

This creates a window, a window object Wthat represents it, and a handler object
H. Now we display the window:

{W show}

The user can type text in this window. At any time, the text in the window can
be read by calling the handler H:

T={H get($)}

This is usually done when the window is closed. To make sure it is done when
the window is closed, we can put it inside the action procedure.

To complete this example, let us encapsulate the whole user interface in a
function called GetText . Figure 10.3 shows the resulting code. Calling GetText

will wait until the user types a line of text and then return the text:

{Browse {GetText "Type your name:"}}

Note that GetText does a {W wait} call to wait until the window is closed
before returning. Leaving out this call will return immediately with an unbound
variable that is bound later, when the user clicks the button.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

696 Graphical User Interface Programming

Figure 10.5: Window generated with newline and continue codes

10.2.3 Declarative geometry

In addition to the widgets themselves, there are two other aspects of a window
that are defined declaratively: the geometric arrangement of its widgets and the
behavior of its widgets when the window is resized. We describe each in turn. The
geometric arrangement of widgets is defined by means of three special widgets
that can contain other widgets:

• The lr and td widgets arrange their member widgets left-right or top-down.
Figure 10.4 shows the two windows that are displayed with the following
two commands:

D=lr(label(text:"left")
label(text:"center")
label(text:"right"))

W1={QTk.build D}
{W1 show}

E=td(label(text:"top")
label(text:"center")
label(text:"down"))

W2={QTk.build E}
{W2 show}

• The placeholder widget defines a rectangular area in the window that can
contain any other widget as long as the window exists. The placeholder’s
content can be changed at any time during execution. A placeholder may be
put inside a placeholder, to any level of recursion. In the following example,
the window alternatively contains a label and a pushbutton:

placeholder(handle:P)
...
{P set(label(text:"Hello"))}
...
{P set(button(text:"World"))}

Calling {P set(D)} is almost the same as calling {QTk.build D} , i.e., it
interprets the nested record D and creates handler objects, but the visible
effect is limited to the rectangular area of the placeholder widget.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.2 Using the declarative/procedural approach 697

W
w e

n

s

Figure 10.6: Declarative resize behavior

• The lr and td widgets support the special codes newline , empty , and
continue , which allows to organize their member widgets in a grid struc-
ture with aligned rows and columns of the same size (see Figure 10.5). The
code newline makes the subsequent contained widgets jump to a new row
(for lr) or column (for td). All the widgets in the new row or column are
aligned with the widgets in the previous row or column. The empty spe-
cial code leaves an empty box the size of a widget. The continue special
code lets the previous widget span over an additional box. The following
description:

lr(button(text:"One" glue:we)
button(text:"Two" glue:we)
button(text:"Three" glue:we) newline
button(text:"Four" glue:we)
button(text:"Five" glue:we)
button(text:"Six" glue:we) newline
button(text:"Seven" glue:we)
button(text:"Eight" glue:we)
button(text:"Nine" glue:we) newline
empty button(text:"Zero" glue:we) continue)

gives the window of Figure 10.5.

10.2.4 Declarative resize behavior

When the size of a window is changed, the interface has to define how the internal
widgets rearrange themselves. This is called the resize behavior. The resize
behavior is dynamic, i.e., it defines a behavior over time. But it is a sufficiently
restricted kind of dynamic behavior that we can define it using a descriptive
declarative model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

698 Graphical User Interface Programming

Figure 10.7: Window generated with the glue parameter

We define the resize behavior of a widget by an optional glue parameter, whose
value is an atom made up of any combination of the letters n, s , w, and e. The
glue parameter places constraints on how the widget is placed and how it resizes.
As Figure 10.6 illustrates, a widget W is always placed inside a rectangular area
and has a “natural” size defined by its contents. One can choose for the widget
to occupy its natural size in either direction (horizontally or vertically) or to be
expanded to take as much space as possible in either direction. For the left-
right direction, the w value, when present, will attach the widget to the left side
(“west”). The same for the e value (“east”) and the right side. If w and e are
present simultaneously, then the widget is expanded. Otherwise, it takes up just
its natural size. For the top-down direction, the n and s values play the same
roles (“north” and “south”). For example, the description:

lr(label(text:"Name" glue:w) entry(glue:we) glue:nwe)

gives the window of Figure 10.7.

10.2.5 Dynamic behavior of widgets

The dynamic behavior of widgets is defined by means of action procedures and
handler objects. Look again at the example of Section 10.2.2:

declare E D Win
D=td(lr(label(text:"Type your name:")

entry(handle:E))
button(text:"Ok" action:toplevel#close))

W={QTk.build D}
{W show}

The action toplevel#close is part of the button; when the button is clicked
then this causes the window to be closed. Generally, actions are zero-argument
procedures, except that short-cuts are given for a few common actions such as
closing the window. The handle E is an object that allows to control the text
entry widget. For example, here’s how to set the value of the widget’s text entry
field:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 699

{E set("Type here")}

Here is how to read and display the value of the field:

{Browse {E get($)}}

Actions can also be attached to events such as mouse clicks:

proc {P} {Browse ´ clicked with third mouse button! ´ } end
{E bind(event:"<3>" action:P)}

The event "<3>" means a click of the third mouse button. Attaching it to E

means that the button has to be clicked when the mouse is over E’s widget. A
complete list of possible events is given in the QTk documentation in the Mozart
system.

10.3 Case studies

We present four case studies that show different techniques of user interface de-
sign:

• The first is a simple progress monitor. This example has no special features
except to show how simple it is to build a custom display for a particular
purpose.

• The second builds a simple calendar widget. It is based on an lr widget
with gridding ability. It shows the flexibility of the gridding. It also shows
how to use a placeholder and how state can be introduced to optimize
execution of what is originally a purely declarative calculation.

• The third derives two different GUIs by transforming one data model into
two GUI specifications. The user can switch between the two at any time.
This shows the advantage of tightly integrating the GUI tool with the lan-
guage, since different data models can be represented with the same data
structures (e.g., records and lists) and transformed with the same opera-
tions.

• The fourth defines a clock with an interface that adapts itself according to
an external condition. The best view of the clock data is chosen dynamically
depending on the window size. Because of the mixed declarative/procedural
approach, each view can be completely defined in just a few lines of code.

The second through fourth case studies were originally written by Donatien Gro-
laux.

10.3.1 A simple progress monitor

We start by defining the simple interface that we used in Section 5.5.1 to monitor
the progress of a message-passing program. The interface has a check button

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

700 Graphical User Interface Programming

fun {NewProgWindow CheckMsg}
InfoHdl See={NewCell true }
H D=td(label(text:nil handle:InfoHdl)

checkbutton(
text:CheckMsg handle:H init: true
action: proc {$} See:={H get($)} end))

in
{{QTk.build D} show}
proc {$ Msg}

if @See then {Delay 50} {InfoHdl set(text:Msg)} end
end

end

Figure 10.8: A simple progress monitor

that can be enabled and disabled. Enabling and disabling this button is done
concurrently with the monitored program. When enabled, the interface displays
a message that can be updated dynamically. The program is slowed down so
that each new message appears for at least 50 ms. When disabled, the inter-
face freezes and lets the program run at full speed. This allows to monitor the
progress of a running program without unduly perturbing the program. Fig-
ure 10.8 shows the definition. A screenshot is given in Section 5.5.1. Calling
InfoMsg={NewProgWindow Msg} creates a new window with checkbutton mes-
sage Msg. During program execution, {InfoMsg Msg} can be called as often as
desired to display Msg in the window. With the checkbutton, the user can choose
to track these calls or to freeze the display.

10.3.2 A simple calendar widget

The grid structure of Section 10.2.3 can be used to build widgets with data
arranged in rectangular form. We show how by building a simple calendar widget.
Figure 10.9 shows what it looks like. We define the procedure Calendar that
returns the calendar widget and its display procedure:

proc {Calendar ?Cal ?Redraw}
P in

Cal=placeholder(handle:P)
proc {Redraw T}

...
{P set(...)}

end
end

The calendar widget is a placeholder that is updated by calling {Redraw T} with
a time argument T. The redraw procedure should be called at least once a day to
update the calendar. For simplicity, we will redraw the complete calendar each
time.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 701

Figure 10.9: A simple calendar widget

Let us now see what is inside the Redraw procedure. It has a time argument
T. Assume that the time has the format of the {OS.localTime} call, which is a
record that looks like this:

time(hour:11 isDst:0 mDay:12 min:5 mon:11 sec:7
wDay:2 yDay:346 year:100)

For the calendar we need only the fields wDay (weekday, 0 to 6, where 0 is Sunday),
mDay(day of month, 1 to 31), mon (month, 0 to 11), and year (years since 1900).

The calendar is a rectangular grid of weekday names and day numbers. Redraw

builds this grid by using an lr widget. We first make a list of all the calendar
elements and use newline to go to the next line in the calendar. We start by
defining the calendar’s header:

Header=[label newline
label(text:"Mo") label(text:"Tu") label(text:"We")
label(text:"Th") label(text:"Fr") label(text:"Sa")
label(text:"Su") newline
lrline(glue:we) continue continue continue
continue continue continue newline]

This displays the weekday names and underlines them. We now make a list that
contains all calendar numbers. First, we calculate the number of days in the
month, taking leap years into account:2

ML={List.nth [31
if (T.year div 4)==0 then 29 else 28 end
31 30 31 30 31 31 30 31 30 31] T.mon+1}

Second, we calculate the number of blank spots in the grid before the calendar
day with number “1”:

2As an exercise, correct the leap year calculation according to the complete rules for the
Gregorian calendar.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

702 Graphical User Interface Programming

SD=(((7-(T.mDay mod 7))+T.wDay) mod 7)

With these two numbers, we can make a list of calendar days, correctly offset in
the month:

fun {Loop Skip Col Nu}
if Nu>ML then nil
elseif Col==8 then

newline|{Loop Skip 1 Nu}
elseif Skip>0 then

label|{Loop Skip-1 Col+1 Nu}
elseif Nu==T.mDay then

label(text:Nu bg:black fg:white)|{Loop 0 Col+1 Nu+1}
else

label(text:Nu)|{Loop 0 Col+1 Nu+1}
end

end
R={Append Header {Loop SD 1 1}}

Here, Col gives the column (from 1 to 7) and Nu is today’s day number. Finally,
we can update the placeholder:

{P set({List.toTuple lr R})}

This completes the inside of Redraw . Let us now create and display a calendar:

declare Cal Redraw W in
{Calendar Cal Redraw}
W={QTk.build td(Cal)}
{Redraw {OS.localTime}}
{W show}

The calendar can be redrawn at any time by calling Redraw .

Memoization: using state to avoid repeating work

This redraw procedure will redraw the whole calendar each time it is called. For
many clocks this will be once per second or once per minute. This is very wasteful
of computational resources. We can avoid the repetitive redraw by storing the
yDay , year , and mon fields together in a cell, and redrawing only if the content
changes:

proc {Calendar ?Cal ?Redraw}
P Date={NewCell r(yDay:0 year:0 mon:0)}

in
Cal=placeholder(handle:P)
proc {Redraw T}

TOld=@Date
TNew=r(yDay:T.yDay year:T.year mon:T.mon)

in
if TOld==TNew then skip
else

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 703

Figure 10.10: Automatic generation of a user interface

Date:=TNew
... % Recalculate and redisplay as before

end
end

end

If we leave out the final call to P, then the original Redraw procedure has a
declarative implementation and the new Redraw procedure has a stateful im-
plementation. Yet, both have identical behavior when viewed from the outside.
The state is used just to memorize the previous calendar calculation so that the
procedure can avoid doing the same calculation twice. Paraphrasing philosopher
George Santayana, we can say this is remembering the past to avoid repeating it.
This technique is called memoization. It is a common use of state. It is particu-
larly nice because it is modular: the use of state is hidden inside the procedure
(see Section 6.7.2).

10.3.3 Automatic generation of a user interface

Using records to specify the user interface makes it possible to calculate the us-
er interface directly from the data. This is a powerful technique that supports
advanced approaches to GUI design. One such approach is model-based design.
In this approach, different aspects of a GUI design are specified in separate for-
malisms called models. A running GUI is then obtained from all the models taken
together [145]. Typical models include a domain model, a presentation model, a
dialog model, a task model, a user model, a platform model, and a help model.
These models can be represented within the language as data structures consist-
ing of nested records and procedure values. From the records, it is possible to
calculate QTk records. It is particularly easy to translate the domain model into
the presentation and dialog models, because the latter are directly supported by
QTk.

The domain model is very similar to the application’s data model. It defines
the data entities that the user can manipulate. The presentation model is a
representation of the visual, auditive and other elements that the UI offers to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

704 Graphical User Interface Programming

EditPresentation

Original data

UI
Read−only view Editable view

widget (QTk)
Placeholder

UI

ViewPresentation

Figure 10.11: From the original data to the user interface

the users. The dialog model defines how the presentation model interacts with
the user. It represents the actions that a user can initiate via the presentation
elements and the responses of the application.

We give an example to show how one domain model can be automatically
mapped to two presentation models: a read-only view and an editable view of the
data. The user can freely switch between the views by clicking a check button (see
Figure 10.10). The mapping from the domain model to the presentation models
is done in a natural way by means of functions, using declarative programming.
There are two functions, ViewPresentation and EditPresentation , each of
which calculates the QTk presentation model from the same original data (see
Figure 10.11). The presentation model is encapsulated in a common interface
for the two views. A placeholder is used to dynamically display one of the two
views. Because of the common interface, keeping coherence between views is
straightforward.

Let us write a simple example program to illustrate these ideas. We use a
very simple domain model: a list of pairs of the form identifier#value , which
represents the known information about some entity. The purpose of the GUI is
to display or edit this information. Let us take the following information to start
with:

Data=[name#"Roger"
surname#"Rabbit"
age#14]

Now we define the two functions that translate this domain representation into the
view information needed by QTk. The first function, ViewPresentation , builds
the read-only view. It builds a representation where each pair identifier#value

is mapped to a label widget whose text is the identifier followed by a colon “:”
and the corresponding value. Figure 10.12 gives the source code. The function
returns a record with four fields:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 705

fun {ViewPresentation Data}
Hdl In={NewCell Data}
HR={MakeRecord hr {Map Data fun {$ D#_} D end }}

in
r(spec: {Adjoin

{List.toTuple td
{Map Data fun {$ D#V}

label(glue:we handle:HR.D text:D#":"#V) end }}
td(glue:nswe handle:Hdl)}

handle: Hdl
set: proc {$ Ds}

In:=Ds
for D#V in Ds do {HR.D set(text:D#":"#V)} end

end
get: fun {$} @In end)

end

Figure 10.12: Defining the read-only presentation

fun {EditPresentation Data}
Hdl Feats={Map Data fun {$ D#_} D end }
HR={MakeRecord hr Feats}
fun {Loop Ds}

case Ds of D#V|Dr then
label(glue:e text:D#":") |
entry(handle:HR.D init:V glue:we) |
newline | {Loop Dr}

else nil end
end

in
r(spec: {Adjoin

{List.toTuple lr {Loop Data}}
lr(glue:nswe handle:Hdl)}

handle: Hdl
set: proc {$ Ds}

for D#V in Ds do {HR.D set(V)} end end
get: fun {$}

{Map Feats fun {$ D} D#{HR.D get($)} end } end)
end

Figure 10.13: Defining the editable presentation

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

706 Graphical User Interface Programming

• Field spec : the interface specification, which describes the widget in QTk

format.

• Field handle : the widget’s handle, when the interface is created.

• Field set : a one-argument procedure that updates the information dis-
played by the widget. During execution, this lets us change the data that
is displayed.

• Field get : a zero-argument function that returns the data that is displayed,
in the same format as it was input. Since ViewPresentation does not
change the data, this simply returns the last information that was set. (In
EditPresentation it will return the new information that the user has
typed.)

The get and set operations are used to keep coherence of the data when switch-
ing between the two views. The HR record collects all the data items’ handles,
for the use of the get and set operations.

The second function, EditPresentation , builds the editable view. It builds
a representation where each pair identifier#value is mapped to a label con-
taining the identifier followed by ”:” and an entry widget. Figure 10.13 gives
the source code. This function also returns a record with four fields, like the
ViewPresentation function. This time, the result of the get function is ob-
tained from the widgets themselves.

The main application calls both of these functions on the same data. The
main window contains a placeholder widget and a checkbox widget. Once
the window is built, the specifications of both views are put in the placeholder

widget. Subsequently they can be put back at any time by using just their
handles. Checking or unchecking the checkbox switches between the two views.
Data integrity between the views is maintained by using their associated set and
get operations. Here is the source code:

P C
V1={ViewPresentation Data}
V2={EditPresentation Data}
{{QTk.build

td(placeholder(glue:nswe handle:P)
checkbutton(text:"Edit" init: false handle:C

action:
proc {$}

Old#New= if {C get($)} then V1#V2 else V2#V1 end
in {New.set {Old.get}} {P set(New.handle)} end))}

show}
{P set(V2.spec)}
{P set(V1.spec)}

This example shows the advantages of tightly integrating an executable model-
based GUI with an expressive programming language. The different models can

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 707

Figure 10.14: Three views of FlexClock, a context-sensitive clock

(uses minimum size)...(refreshes each widget
once a second)

procedure
Refresh Widget

(record)
Minimum

size

(each definition has three parts)

Definition of views

Placeholder
selector
View

widget

events
Window resize

Clock

Figure 10.15: Architecture of the context-sensitive clock

all be expressed as data structures of the language. The mappings between the
different models can then be done easily within the language.

10.3.4 A context-sensitive clock

This section defines a simple clock utility, FlexClock, that dynamically displays
a different view depending on the size of the window. When the window is
resized, the “best” view for the new size is chosen. The application defines six
different views and takes about 100 lines of code. It dynamically chooses the
best view among the six. The best view is the one that gives the most detailed
time information in the available window size. Figure 10.14 shows three of the
six views. A more elaborate version with 16 views, an analog clock widget, and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

708 Graphical User Interface Programming

a calendar widget, is available as part of the Mozart demos.

Figure 10.15 shows the architecture of the clock. Each view consists of three
parts: a refresh procedure, a widget definition, and a minimum size. A clock calls
all the refresh procedures once a second with the current time. A view selector
picks one of the views and puts it in a placeholder widget to display it. Each
time the window is resized, i.e., whenever a resize event occurs, then the view
selector chooses the best view and displays it. The refresh procedures and the
view selector run concurrently. This is acceptable because there is no interference
between them.

Let us implement the clock according to this architecture. We first set up a
small server that periodically calls each procedure in a list of procedures:

NotifyClock
local

Clocks={NewCell nil}
proc {Loop}

T={OS.localTime}
in

for I in @Clocks do {I T} end
{Delay 1000}
{Loop}

end
in

proc {NotifyClock P}
Clocks:=P|@Clocks

end
thread {Loop} end

end

The period is almost exactly once per second.3 Calling {NotifyClock P} adds
P to the list of procedures to be notified. The refresh procedure of each view
will be put in this list. The OS.localTime call returns a record that contains
all the time information. To help in calculating the views, we define some utility
functions to format the time information in various ways:

fun {TwoPos I} if I<10 then "0"#I else I end end
fun {FmtTime T} {TwoPos T.hour}#":"#{TwoPos T.min} end
fun {FmtTimeS T} {FmtTime T}#":"#{TwoPos T.sec} end
fun {FmtDate T} {TwoPos T.mDay}#"/"#{TwoPos T.mon+1} end
fun {FmtDateY T} {FmtDate T}#"/"#(1900+T.year) end
fun {FmtDay T}

{List.nth ["Sunday" "Monday" "Tuesday" "Wednesday"
"Thursday" "Friday" "Saturday"] T.wDay+1}

end
fun {FmtMonth T}

{List.nth ["January" "February" "March" "April" "May"

3Section 4.6.2 explains how to do it exactly once per second.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 709

"June" "July" "August" "September" "October"
"November" "December"]

T.mon+1}
end

Now we define each view as a record with three elements:

• Field refresh : a procedure that is called with a time argument to update
the view’s display.

• Field spec : a declarative specification of the widgets comprising the view.

• Field surface : the minimal size (horizontally and vertically) that is re-
quired to correctly display the view.

Figure 10.16 defines all six views in one list. Alert readers will notice that there
is a seventh, empty view that will be displayed in case the window is too small to
display a text. The window that displays a view contains just a single placeholder
widget. A placeholder, as we saw before, is a container that can contain any
widget and that can change the displayed widget at any time as long as the
window exists. Here is the window:

declare P W in
W={QTk.build

td(title:"FlexClock demo"
placeholder(handle:P width:1 height:1 glue:nswe))}

To initialize the application, all views are placed once in the placeholder. After
this is done, any view can be displayed again in the placeholder by a single
command using the view’s handle. We also register each refresh procedure with
NotifyClock . The result is a list, Views , that has one triple per view, containing
the minimal width, minimal height, and a handle for the view:

Views={Map ViewList
fun {$ R}

Width#Height=R.surface
in

{P set(R.spec)}
{NotifyClock R.refresh}
Width#Height#(R.spec).handle

end }

Now we have initialized the placeholder and registered all the refresh procedures.
The next step is to set up the mechanism to calculate the best view and display
it. We will assume the best view is the one that satisfies the following three
conditions:

• The window size is big enough to display the view, i.e., window width ≥
minimal view width and window height ≥ minimal view height.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

710 Graphical User Interface Programming

declare
H0 H1 H2 H3 H4 H5 H6
ViewList=

[r(refresh: proc {$ T} skip end
spec:label(handle:H0 glue:nswe bg:white)
surface:0#0)

r(refresh: proc {$ T} {H1 set(text:{FmtTime T})} end
spec:label(handle:H1 glue:nswe bg:white)
surface:40#10)

r(refresh: proc {$ T} {H2 set(text:{FmtTimeS T})} end
spec:label(handle:H2 glue:nswe bg:white)
surface:80#10)

r(refresh:
proc {$ T}

{H3 set(text:{FmtTime T}# ´ \n ´ #{FmtDate T})} end
spec:label(handle:H3 glue:nswe bg:white)
surface:40#30)

r(refresh:
proc {$ T}

{H4 set(text:{FmtTimeS T}# ´ \n ´ #{FmtDateY T})}
end

spec:label(handle:H4 glue:nswe bg:white)
surface:80#30)

r(refresh:
proc {$ T}

{H5 set(text:{FmtTimeS T}# ´ \n ´ #{FmtDay T}#", "#
{FmtDateY T})} end

spec:label(handle:H5 glue:nswe bg:white)
surface:130#30)

r(refresh:
proc {$ T}

{H6 set(text:{FmtTimeS T}# ´ \n ´ #{FmtDay T}#", "#
T.mDay#" "#{FmtMonth T}#" "#(1900+T.year))}

end
spec:label(handle:H6 glue:nswe bg:white)
surface:180#30)]

Figure 10.16: View definitions for the context-sensitive clock

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

10.3 Case studies 711

Minimal size for view 3

Area in which view 3 is chosen(3)

3

1501000
0

(1)(0) (2) (2) (2)

(0) (3) (4) (5) (6)

50

50

(0) (0) (0) (0) (0)

Width

Height

30

40 80 130 180

0

1 2

4 5 63

10

Figure 10.17: The best view for any size clock window

• The distance between the bottom right corner of the minimal view and the
bottom right corner of the window is minimized. It suffices to minimize the
square of this distance.

• If no view satisfies the above two conditions, the smallest view is chosen by
default.

Figure 10.17 shows how this divides up the plane among the seven views. The
procedure Place does the calculation and displays the best view in the place-
holder:

proc {Place}
WW={QTk.wInfo width(P)}
WH={QTk.wInfo height(P)}
_#Handle={List.foldRInd Views

fun {$ I W#H#Handle Min#CH}
This=(W-WW)*(W-WW)+(H-WH)*(H-WH)

in
if W<WWandthen H<WHandthen

(Min==inf orelse This<Min) then This#Handle
else Min#CH end

end
inf# local (_#_#H)|_=Views in H end }

in
{P set(Handle)}

end

This starts with a minimum of inf , representing infinity, and is reduced for each
view with a smaller distance. When the window is resized, Place has to be called
to set the correct view according to the new size of the window. This is done by
binding the <Configure> event of QTk:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

712 Graphical User Interface Programming

{P bind(event: ´ <Configure> ´ action:Place)}

The window is now completely set up, but it is still hidden. We display it as
follows:

{W show}

10.4 Implementing the GUI tool

The GUI tool is implemented as three layers: a front end, a middle layer, and
a back end. The front end is the QTk module, which is an interpreter for the
declarative specifications. The middle layer is the Tk module, which offers an
object-oriented interface to the underlying graphics package. The back end is the
graphics package, which is tcl/tk.

When a specification is given to the interpreter by calling QTk.build , the
interpreter builds the user interface by giving commands to the graphics package
using a model that is almost completely procedural. The interpretation overhead
is only paid once. The only overhead in the calls to the handler objects is the
run-time type checking of their arguments.

The placeholder widget deserves a mention because a new widget can be put
in it at any time during execution. When a widget is first put in, it is like calling
QTk.build , i.e., there is an interpretation overhead. The placeholder reduces
this overhead by caching the interpretation of each widget that is put in. To put
a widget in a placeholder again, it suffices to put in the widget’s handler. This is
enough for the placeholder to identify which widget is meant.

10.5 Exercises

1. Calendar widget. Section 10.3.2 gives a formula for calculating the num-
ber of blank spots in the grid before day 1. Why is this formula correct?

2. Clock with calendar. Extend the context-sensitive clock of Section 10.3
with a calendar and add views so that the calendar is shown only when the
window is big enough. You can use the calendar widget defined in the same
section.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 11

Distributed Programming

A distributed system is a set of computers that are linked together by a network.
Distributed systems are ubiquitous in modern society. The canonical example
of such a system, the Internet, has been growing exponentially ever since its
inception in the late 1970’s. The number of host computers that are part of
it has been doubling each year since 1980. The question of how to program a
distributed system is therefore of major importance.

This chapter shows one approach to programming a distributed system. For
the rest of the chapter, we assume that each computer has an operating system
that supports the concept of process and provides network communication. Pro-
gramming a distributed system then means to write a program for each process
such that all processes taken together implement the desired application. For the
operating system, a process is a unit of concurrency. This means that if we ab-
stract away from the fact that the application is spread over different processes,
this is just a case of concurrent programming. Ideally, distributed programming
would be just a kind of concurrent programming, and the techniques we have
seen earlier in the book would still apply.

Distributed programming is complicated

Unfortunately, things are not so simple. Distributed programming is more com-
plicated than concurrent programming for the following reasons:

• Each process has its own address space. Data cannot be transferred from
one process to another without some translation.

• The network has limited performance. Typically, the basic network opera-
tions are many orders of magnitude slower than the basic operations inside
one process. At the time of publication of this book, network transfer time
is measured in milliseconds, whereas computational operations are done in
nanoseconds or less. This enormous disparity is not projected to change for
the foreseeable future.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

714 Distributed Programming

• Some resources are localized. There are many resources that can only be
used at one particular computer due to physical constraints. Localized
resources are typically peripherals such as input/output (display screen,
keyboard/mouse, file system, printer). They can be more subtle, such as
a commercial application that can only be run on a particular computer
because it is licensed there.

• The distributed system can fail partially. The system consists of many
components that are only loosely connected. It might be that part of the
network stops working or that some of the computers stop working.

• The distributed system is open. Independent users and computations co-
habit the system. They share the system’s resources and they may compete
or collaborate. This gives problems of security (protection against malicious
intent) and naming (finding one another).

How do we manage this complexity? Let us attempt to use the principle of
separation of concerns. According to this principle, we can divide the problem
into an ideal case and a series of non-ideal extensions. We give a solution for the
ideal case and we show how to modify the solution to handle the extensions.

The network transparency approach

In the ideal case, the network is fast, resources can be used everywhere, all com-
puters are up and running, and all users trust one another. In this case there
is a solution to the complexity problem: network transparency. That is, we im-
plement the language so that a program will run correctly independently of how
it is partitioned across the distributed system. The language has a distributed
implementation to guarantee this property. Each language entity is implemented
by one or more distribution protocols, which all are carefully designed to respect
the language semantics. For example, the language could provide the concept of
an object. An object can be implemented as a stationary object, which means
that it resides on one process and other processes can invoke it with exactly the
same syntax as if it were local. The behavior will be different in the nonlocal case
(there will be a round trip of network messages), but this difference is invisible
from the programmer’s point of view.

Another possible distribution protocol for an object is the cached object. In
this protocol, any process invoking the object will first cause the object to become
local to it. From then on, all invocations from that process will be local ones (until
some other process causes the object to move away). The point is that both
stationary and cached objects have exactly the same behavior from the language
point of view.

With network transparency, programming a distributed system becomes sim-
ple. We can reuse all the techniques of concurrent programming we saw through-
out the book. All the complexity is hidden inside the language implementation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

715

This is a real complexity, but given the conditions of the ideal case, it can be
realistically implemented. It provides all the distribution protocols. It translates
data between the address spaces of the processes. Translating to serial form is
called marshaling and translating back is called unmarshaling. The term serial-
ization is also used. It does distributed garbage collection, i.e., not reclaiming a
local entity if there is still some remote reference.

The idea of making a distributed language operation similar to a local lan-
guage operation has a long history. The first implementation was the Remote
Procedure Call (RPC), done in the early 1980’s [18]. A call to a remote procedure
behaves in the same way, under ideal conditions, as a local procedure. Recently,
the idea has been extended to object-oriented programming by allowing methods
to be invoked remotely. This is called Remote Method Invocation (RMI). This
technique has been made popular by the Java programming language [186].

Beyond network transparency

Network transparency solves the problem in the ideal case. The next step is to
handle the non-ideal extensions. Handling all of them at the same time while
keeping things simple is a research problem that is still unsolved. In this chapter
we only show the tip of the iceberg of how it could be done. We give a practical
introduction to each of the following extensions:

• Network awareness (i.e., performance). We show how choosing the dis-
tribution protocol allows to tune the performance without changing the
correctness of the program.

• Openness. We show how independent computations can connect togeth-
er. In this we are aided because Oz is a dynamically-typed language: all
type information is part of the language entities. This makes connecting
independent computations relatively easy.

• Localized resources. We show how to package a computation into a
component that knows what localized resources it needs. Installing this
component in a process should connect it to these resources automatically.
We already have a way to express this, using the concept of functor. A
functor has an import declaration that lists what modules it needs. If
resources are visible as modules, then we can use this to solve the problem
of linking to localized resources.

• Failure detection. We show how to detect partial failure in a way usable
to the application program. The program can use this information to do
fault confinement and possibly to repair the situation and continue work-
ing. While failure detection breaks transparency, doing it in the language
allows to build abstractions that hide the faults, e.g., using redundancy to
implement fault tolerance. These abstractions, if desired, could be used to
regain transparency.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

716 Distributed Programming

This brief introduction leaves out many issues such as security, naming, resource
management, and building fault tolerance abstractions. But it gives a good
overview of the general issues in the area of distributed programming.

Structure of the chapter

This chapter consists of the following parts:

• Sections 11.1 and 11.2 set the stage by giving a taxonomy of distributed
systems and by explaining our distributed computation model.

• Sections 11.3–11.6 show how to program in this distribution model. We
first show how to program with declarative data and then with state. We
handle state separately because it involves more sophisticated and expensive
distribution protocols. We then explain the concept of network awareness,
which is important for performance reasons. Finally, we show some common
distributed programming patterns.

• Section 11.7 explains the distributed protocols in more detail. It singles out
two particularly interesting protocols, the mobile state protocol and the
distributed binding protocol.

• Section 11.8 introduces partial failure. It explains and motivates the two
failures we detect, permanent process failure and temporary network inac-
tivity. It gives some simple programming techniques including an abstrac-
tion to create resilient server objects.

• Section 11.9 briefly discusses the issue of security and how it affects writing
distributed applications.

• Section 11.10 summarizes the chapter by giving a methodology how to build
distributed applications.

11.1 Taxonomy of distributed systems

This chapter is mainly about a quite general kind of distributed system, the open
collaborative system. The techniques we give can also be used for other kinds of
distributed system, such as cluster computing. To explain why this is so, we give
a taxonomy of distributed systems that situates the different models. Figure 11.1
shows four types of distributed system. For each type, there is a simple diagram to
illustrate it. In these diagrams, circles are processors or computers, the rectangle
is memory, and connecting lines are communication links (a network). The figure
starts with a shared-memory multiprocessor, which is a computer that consists
of several processors attached to a memory that is shared between all of them.
Communication between processors is extremely fast; it suffices for one processor

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.1 Taxonomy of distributed systems 717

(partial failure)
?

Distributed memory
multiprocessor

Shared memory
multiprocessor

multiprocessor
Distributed memory

with partial failure

Add distribution

Add partial failure

Add openness

Collaboration
(‘‘Internet computing’’)

Open distributed system

(naming and security)

High performance
(‘‘cluster computing’’)

Figure 11.1: A simple taxonomy of distributed systems

to write a memory cell and another to read it. Coordinating the processors, so
that, e.g., they all agree to do the same operation at the same time, is efficient.

Small shared-memory multiprocessors with one to eight processors are com-
modity items. Larger scalable shared-memory cache-coherent multiprocessors
are also available but are relatively expensive. A more popular solution is to
connect a set of independent computers through their I/O channels. Another
popular solution is to connect off-the-shelf computers with a high-speed network.
The network can be implemented as a shared bus (similar to Ethernet) or be
point-to-point (separately connecting pairs of processors). It can be custom or
use standard LAN (local-area network) technology. All such machines are usual-
ly called clusters or distributed-memory multiprocessors. They usually can have
partial failure, i.e., where one processor fails while the others continue. In the
figure, a failed computer is a circle crossed with a large X. With appropriate
hardware and software the cluster can keep running, albeit with degraded perfor-
mance, even if some processors are failed. That is, the probability that the cluster
continues to provide its service is close to 1 even if part of the cluster is failed.
This property is called high availability. A cluster with the proper hardware and
software combines high performance with high availability.

In the last step, the computers are connected through a wide-area network
(WAN) such as the Internet. This adds openness, in which independent compu-
tations or computers can find each other, connect, and collaborate meaningfully.
Openness is the crucial difference between the world of high-performance com-
puting and the world of collaborative computing. In addition to partial failure,
openness introduces two new issues: naming and security. Naming is how compu-
tations or computers find each other. Naming is usually supported by a special

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

718 Distributed Programming

b

●

● Threads, ports, cells, and
variables are localized to
home processes {a, b, ..., n, ...}

Threads...

b

(ST1) (ST2) (STn)a b n

b

Immutable store Mutable store

a

Values are not localized

(dataflow variables and values) (cells and ports)

n (c1:W)
(c2:Z)

(X)

U=c2Y=c1
(p1:X)

Z=person(age: Y)

W=atom(V)

Figure 11.2: The distributed computation model

part of the system called the name server. Security is how computations or
computers protect themselves from each other.

11.2 The distribution model

We consider a computation model with both ports and cells, combining the mod-
els of Chapters 5 and 8. We refine this model to make the distribution model,
which defines the network operations done for language entities when they are
shared between Oz processes [71, 197, 72, 201, 73]. If distribution is disregarded
(i.e., we do not care how the computation is spread over processes) and there
are no failures, then the computation model of the language is the same as if it
executes in one process.

We assume that any process can hold a reference to a language entity on any
other process. Conceptually, there is a single global computation model that en-
compasses all running Mozart processes and Mozart data world-wide (even those
programs that are not connected together!). The global store is the union of all
the local stores. In the current implementation, connected Mozart processes pri-
marily use TCP to communicate. To a first approximation, all data and messages
sent between processes travel through TCP.

Figure 11.2 shows the computation model. To add distribution to this global
view, the idea is that each language entity has a distribution behavior, which de-
fines how distributed references to the entity interact. In the model, we annotate
each language entity with a process, which is the “home process” of that entity. It
is the process that coordinates the distribution behavior of the entity. Typically,
it will be the process at which the entity was first created.1 We will sometimes
use the phrase consistency protocol to describe the distribution behavior of an en-

1In Mozart, the coordination of an entity can be explicitly moved from one process to
another. This issue will not be discussed in this introductory chapter.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.2 The distribution model 719

tity. The distribution behavior is implemented by exchanging messages between
Mozart processes.

What kinds of distribution behavior are important? To see this, we first
distinguish between stateful, stateless, and single-assignment language entities.
Each of them has a different distribution behavior:

• Stateful entities (threads, cells, ports, objects) have an internal state. The
distribution behavior has to be careful to maintain a globally coherent view
of the state. This puts major constraints on the kinds of efficient behavior
that are possible. The simplest kind of behavior is to make them stationary.
An operation on a stationary entity will traverse the network from the
invoking process and be performed on the entity’s home process. Other
kinds of behavior are possible.

• Single-assignment entities (dataflow variables, streams) have one essential
operation, namely binding. Binding a dataflow variable will bind all its
distributed references to the same value. This operation is coordinated
from the process on which the variable is created.

• Stateless entities, i.e., values (procedures, functions, records, classes, func-
tors) do not need a process annotation because they are constants. They
can be copied between processes.

Figure 11.3 shows a set of processes with localized threads, cells, and unbound
dataflow variables. In the stateful concurrent model, the other entities can be
defined in terms of these and procedure values. These basic entities have a default
distributed behavior. But this behavior can be changed without changing the
language semantics. For example, a remote operation on a cell could force the
cell to migrate to the calling process, and thereafter perform the operation locally.

For all derived entities except for ports, the distributed behaviors of the de-
fined entities can be seen as derived behavior from the distributed behavior of
their parts. In this respect ports are different. The default distribution behavior
is asynchronous (see Section 5.1). This distributed behavior does not follow from
the definition of ports in terms of cells. This behavior cannot be derived from
that of a cell. This means that ports are basic entities in the distribution model,
just like cells.

The model of this section is sufficient to express useful distributed programs,
but it has one limitation: partial failures are not taken into account. In Sec-
tion 11.8 we will extend the basic model to overcome this limitation.

Depending on the application’s needs, entities may be given different dis-
tributed behaviors. For example “mobile” objects (also known as “cached” ob-
jects) move to the process that is using them. These objects have the same
language semantics but a different distributed hehavior. This is important for
tuning network performance.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

720 Distributed Programming

Process b

... SnS2
S3

S1
X

Threads

Cell

c1:X

Dataflow variable

c2:Z Z

W

Sx
Y

Process a Process n

Figure 11.3: Process-oriented view of the distribution model

11.3 Distribution of declarative data

Let us show how to program with the distribution model. In this section we show
how distribution works for the declarative subset of the stateful concurrent model.
We start by explaining how to get different processes to talk to each other.

11.3.1 Open distribution and global naming

We say a distributed computation is open if a process can connect independently
with other processes running a distributed computation at run time, without
necessarily knowing beforehand which process it may connect with nor the type
of information it may exchange. A distributed computation is closed if it is
arranged so that a single process starts and then spawns other processes on various
computers it has access to. We will talk about closed distribution later.

An important issue in open distributed computing is naming. How do in-
dependent computations avoid confusion when communicating with each other?
They do so by using globally-unique names for things. For example, instead
of using print representations (character strings) to name procedures, ports, or
objects, we use globally-unique names instead. The uniqueness should be guar-
anteed by the system. There are many possible ways to name entities:

• References. A reference is an unforgeable means to access any language
entity. To programs, a reference is transparent, i.e., it is dereferenced when
needed to access the entity. References can be local, to an entity on the
current process, or remote, to an entity on a remote process. For example,
a thread can reference an entity that is localized on another process. The
language does not distinguish local from remote references.

• Names. A name is an unforgeable constant that is used to implement
abstract data types. Names can be used for different kinds of identity
and authentication abilities (see Sections 3.7.5 and 6.4). All language en-
tities with token equality, e.g., objects, classes, procedures, functors, etc.,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.3 Distribution of declarative data 721

implement their identity by means of a name embedded inside them (see
Chapter 13).

• Tickets. A ticket, in the terminology of this chapter, is a global means to
access any language entity. A ticket is similar to a reference, except that it is
valid anywhere including outside a Mozart process. It is represented by an
ASCII string, it is explicitly created and dereferenced, and it is forgeable. A
computation can get a reference to an independent computation by getting
a ticket from that computation. The ticket is communicated using any
communication protocol between the processes (e.g., TCP, IP, SMTP, etc.)
or between the users of these processes (e.g., sneakernet, telephone, PostIt
notes, etc.). Usually, these protocols can only pass simple datatypes, not
arbitrary language references. But in almost all cases they support passing
information coded in ASCII form. If they do, then they can pass a ticket.

• URLs (Uniform Resource Locators). A URL is a global reference to
a file. The file must be accessible by a World-Wide Web server. A URL
encodes the hostname of a machine that has aWeb server and a file name on
that machine. URLs are used to exchange persistent information between
processes. A common technique is to store a ticket in a file addressed by
URL.

Within a distributed computation, all these four kinds of names can be passed be-
tween processes. References and names are pure names, i.e., they do not explicitly
encode any information other than being unique. They can be used only inside a
distributed computation. Tickets and URLs are impure names since they explic-
itly encode the information needed to dereference them–they are ASCII strings
and can be read as such. Since they are encoded in ASCII, they can be used
both inside and outside a distributed computation. In our case we will connect
different processes together using tickets.

The Connection module

Tickets are created and used with the Connection module. This module has
three basic operations:

• {Connection.offer X ?T} creates a ticket T for any reference X. The
ticket can be taken just once. Attempting to take a ticket more than once
will raise an exception.

• {Connection.offerUnlimited X ?T} creates a ticket T for any reference
X. The ticket can be taken any number of times.

• {Connection.take T ?X} creates a reference X when given a valid ticket in
T. The X refers to exactly the same language entity as the original reference
that was offered when the ticket was created. A ticket can be taken at any

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

722 Distributed Programming

process. If taken at a different process than where the ticket was offered,
then network communication is initiated between the two processes.

With Connection , connecting computations in different processes is extreme-
ly simple. The system does a great deal of work to give this simple view. It
implements the connection protocol, transparent marshaling and unmarshaling,
distributed garbage collection, and a carefully-designed distribution protocol for
each language entity.

11.3.2 Sharing declarative data

Sharing records

We start with a simple example. The first process has a big data structure, a
record, that it wants to share. It first creates the ticket:2

X=the_novel(text:"It was a dark and stormy night. ..."
author:"E.G.E. Bulwer-Lytton"
year:1803)

{Show {Connection.offerUnlimited X}}

This example creates the ticket with Connection.offerUnlimited and displays
it in the Mozart emulator window (with Show). Any other process that wants to
get a reference to X just has to know the ticket. Here is what the other process
does:

X2={Connection.take ´ ...ticket comes here... ´ }

(To make this work, you have to replace the text ´ticket comes here.... ´

by what was displayed by the first process.) That’s it. The operation Connection.take

takes the ticket and returns a language reference, which we put in X2. Because
of network transparency, both X and X2 behave identically.

Sharing functions

This works for other data types as well. Assume the first process has a function
instead of a record:

fun {MyEncoder X} (X*4449+1234) mod 33667 end
{Show {Connection.offerUnlimited MyEncoder}}

The second process can get the function easily:

E2={Connection.take ´ ...MyEncoders ticket... ´ }
{Show {E2 10000}} % Call the function

2Here, as in the subsequent examples, we leave out declare for brevity, but we keep
declare ... in for clarity.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.3 Distribution of declarative data 723

Sharing dataflow variables

In addition to records and functions, the ticket can also be used to pass unbound
variables. Any operation that needs the value will wait, even across the network.
This is how we do distributed synchronization [71]. The first process creates the
variable and makes it globally accessible:

declare X in
{Show {Connection.offerUnlimited X}}

But the process does not bind the variable yet. Other processes can get a reference
to the variable:

declare X in
X={Connection.take ´ ...Xs ticket... ´ }
{Browse X*X}

The multiplication blocks until X is bound. Try doing X=111 in the first process.
The binding will become visible on all processes that reference the variable.

11.3.3 Ticket distribution

In the above examples we copied and pasted tickets between windows of the
interactive environment. A better way to distribute tickets is to store them in a
file. To successfully connect with the ticket, the destination process just has to
read the file. This not only makes the distribution easier, it also can distribute
over a larger part of the network. There are two basic ways:

• Local distribution. This uses the local file system. The destination pro-
cess has to be connected to the same file system as the source process. This
works well on a LAN where all machines have access to the same file system.

• Global distribution. This uses the global Web infrastructure. The file
can be put in a directory that is published by a Web server, e.g., in a
~/public_html directory on Unix. The file can then be accessed by URL.

Using a URL to make connections is a general approach that works well for
collaborative applications on the Internet. To implement these techniques we
need an operation to store and load a ticket from a file or URL. This is already
provided by the Pickle module as described in Chapter 2. Any stateless value
can be stored on a file and retrieved by other process that has a read access-right
to the file.

The Pickle module We recall that the Pickle module has two operations:

• {Pickle.save X FN} saves any value X in the file whose name is FN.

• {Pickle.load FNURL ?X} loads into X the value stored in FNURL, which
can be a file name or a URL.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

724 Distributed Programming

Pickle can store any stateless entity. For example, it can be used to store
records, procedures, classes, and even functors, all of which are pure values. An
attempt to save stateful data in a pickle will raise an exception. An attempt to
save a partial value in a pickle will block until the partial value is complete. The
following code:

{Pickle.save MyEncoder ´ ˜/public_html/encoder ´ }

saves the function MyEncoder in a file. Files in the ˜/public_html directory are
often publicly-accessible by means of URLs. Anyone who needs the MyEncoder

function can just load the file by giving the right URL:

MyEnc={Pickle.load ´ http://www.info.ucl.ac.be/˜pvr/encoder ´ }

MyEncoder and MyEnc are absolutely identical from the program’s point of view.
There is no way to distinguish them. The ability to store, transfer, and then exe-
cute procedure values across a network is the essential property of what nowadays
is known as “applets”. A value saved in a pickle continues to be valid even if
the process that did the save is no longer running. The pickle itself is a file
that contains complete information about the value. This file can be copied and
transferred at will. It will continue to give the same value when loaded with
Pickle.load .

The main limitation of pickles is that only values can be saved. One way
to get around this is to make a snapshot of stateful information, i.e., make a
stateless data structure that contains the instantaneous states of all relevant
stateful entities. This is more complex than pickling since the stateful entities
must be locked and unlocked, and situations such as deadlock must be avoided.

However, we do not need such a complete solution in this case. There is a
simple technique for getting around this limitation that works for any language
entity, as long as the process that did the save is still running. The idea is to
store a ticket in a pickle. This works since tickets are strings, which are values.
This is a useful technique for making any language entity accessible worldwide.
The URL is the entry point for the entity addressed by the ticket.

The Offer and Take operations Using Pickle and Connection , we de-
fine two convenience operations Offer and Take that implement this technique.
These operations are available in the module Distribution , which can be found
on the book’s Web site. The procedure Offer makes language entity X available
through file FN:

proc {Offer X FN}
{Pickle.save {Connection.offerUnlimited X} FN}

end

The function Take gets a reference to the language entity by giving the file FNURL:

fun {Take FNURL}
{Connection.take {Pickle.load FNURL}}

end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.3 Distribution of declarative data 725

This uses Pickle.load , which can load any stateless data from a file. The
argument FNURLcan either be a file name or a URL.

11.3.4 Stream communication

Declarative programming with streams, as in Chapter 4, can be made distributed
simply by starting the producer and consumer in different processes. They only
have to share a reference to the stream.

Eager stream communication

Let us first see how this works with an eager stream. First create the consumer
in one process and create a ticket for its stream:

declare Xs Sum in
{Offer Xs tickfile}
fun {Sum Xs A}

case Xs of X|Xr then {Sum Xr A+X} [] nil then A end
end
{Browse {Sum Xs 0}}

Then create the producer in another process. It takes the ticket to get a reference
to Xs and then creates the stream:

declare Xs Generate in
Xs={Take tickfile}
fun {Generate N Limit}

if N<Limit then N|{Generate N+1 Limit} else nil end
end
Xs={Generate 0 150000}

This creates the stream 0|1|2|3|... and binds it to Xs. This sends the stream
across the network from the producer process to the consumer process. This
is efficient since stream elements are sent asynchronously across the network.
Because of thread scheduling, the stream is created in “batches” and each batch
is sent across the network in one message.

Lazy stream communication

We can run the same example with lazy stream communication. Take the exam-
ples with programmed triggers (Section 4.3.3) and implicit triggers (Section 4.5)
and run them in different processes, as we showed above with eager streams.

Message passing and ports

A port is a basic data type; it is a FIFO channel with an asynchronous send
operation. Asynchronous means that the send operation completes immediately,
without waiting for the network. FIFO means that successive sends in the same

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

726 Distributed Programming

thread will appear in the same order in the channel’s stream. Ports generalize
streams by allowing many-to-one communication. It is the difference between
the declarative concurrent model and the message-passing model. Let us create
a port, make it globally accessible, and display the stream contents locally:

declare S P in
{NewPort S P}
{Offer P tickfile}
for X in S do {Browse X} end

The for loop causes dataflow synchronization to take place on elements appearing
on the stream S. Each time a new element appears, an iteration of the loop is
done. Now we can let a second process send to the port:

P={Take tickfile}
{Send P hello}
{Send P ´ keep in touch ´ }

Since the Send operation is asynchronous, it sends just a single message on the
network.

11.4 Distribution of state

Stateful entities are more expensive to distribute than stateless entities in a
network-transparent system. It is because changes in state have to be visible
to all processes that use the entity.

11.4.1 Simple state sharing

Sharing cells

The simplest way to share state between processes is by sharing a cell. This can
be done exactly in the same way as for the other types.

declare
C={NewCell unit }
{Offer C tickfile}

Any other process can access C by doing:

declare
C1={Take tickfile}

C and C1 are indistinguishable in the language. Any process that references the
cell in this way can do operations on it. The system guarantees that this is
globally coherent. I.e., if process 1 first puts foo in the cell, and then process 2
does an exchange, then process 2 will see foo . Knowing how the system does this
is important for efficiency (e.g., network hops). We will see later how the global
coherence is maintained and how the programmer can control what the network
operations are.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.4 Distribution of state 727

fun {CorrectSimpleLock}
Token={NewCell unit }
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
try {P} finally New=unit end

end
in

´ lock ´ (´ lock ´ :Lock)
end

Figure 11.4: Distributed locking

Distributed locking

Now that we know the distributed behavior of cells, let us it to implement a well-
known distributed locking algorithm, also known as distributed mutual exclusion
using token passing.3 When locking a critical section, multiple requests should
all correctly block and be queued, independent of whether the threads are on the
same process or on another process. We show how to implement this concisely
and efficiently in the language. Figure 11.4, taken from Section 8.3, shows one
way to implement a lock that handles exceptions correctly.4 If multiple threads
attempt to access the lock body, then only one is given access, and the others are
queued. The queue is a sequence of dataflow variables. Each thread suspends on
one variable in the sequence, and will bind the next variable after it has executed
the lock body. Each thread desiring the lock therefore references two variables:
one to wait for the lock and one to pass the lock to the next thread. Each variable
is referenced by two threads.

When the threads are on different processes, the definition of Figure 11.4
implements distributed token passing, a well-known distributed locking algo-
rithm [33]. We explain how it works. When a thread tries to enter the lock
body, the Exchange gives it access to the previous thread’s New variable. The
previous thread’s process is New’s owner. When the previous thread binds New,
the owner sends the binding to the next thread’s process. This requires a single
message.

Sharing objects and other data types

A more sophisticated way to share state is to share objects. In this way, we
encapsulate the shared state and control what the possible operations on it are.
Here is an example:

class Coder

3The built-in distributed locks of Mozart use this algorithm.
4For simplicity, we leave out reentrancy since it does only local execution.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

728 Distributed Programming

attr seed
meth init(S) seed:=S end
meth get(X)

X=@seed
seed:=(@seed*1234+4449) mod 33667

end
end
C={New Coder init(100)}
{Offer C tickfile}

This defines the class Coder and an object C. Any process that takes the object’s
ticket will reference it. The Mozart system guarantees that the object will behave
exactly like a centralized object. For example, if the object raises an exception,
then the exception will be raised in the thread calling the object.

11.4.2 Distributed lexical scoping

One of the important properties of network transparency is distributed lexical
scoping: a procedure value that references a language entity will continue to
reference that entity, independent of where the procedure value is transferred
across the network. This causes remote references to be created implicitly, by
the simple act of copying the procedure value from one process to another. For
example:

declare
C={NewCell 0}
fun {Inc X} X+@C end
{Offer C tickfile1}
{Offer Inc tickfile2}

Inc will always reference C, no matter from which process it is called. A third
process can take C’s ticket and change the content. This will change the behavior
of Inc . The following scenario can happen: (1) process 1 defines C and Inc , (2)
process 2 gets a reference to Inc and calls it, and (3) process 3 gets a reference
to C and changes its content. When process 2 calls Inc again it will use the new
content of C. Semantically, this behavior is nothing special: it is a consequence of
using procedure values with network transparency. But how is it implemented?
In particular, what network operations are done to guarantee it? We would like
the network behavior to be simple and predictable. Fortunately, we can design
the system so that this is indeed the case, as Section 11.7 explains.

Distributed lexical scoping, like lexical scoping, is important for reasons of
software engineering. Entities that are moved or copied between processes will
continue to behave according to their specification, and not inadvertently change
because some local entity happens to have the same name as one of their external
references. The importance of distributed lexical scoping was first recognized by
Luca Cardelli and realized in Obliq, a simple functional language with object-
based extensions that was designed for experimenting with network-transparent

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.5 Network awareness 729

distribution [28].

11.5 Network awareness

With these examples it should be clear how network transparency works. Before
going further, let us give some insight into the distributed behavior of the various
language entities. The distributed implementation of Mozart does many different
things. It uses a wide variety of distributed algorithms to provide the illusion of
network transparency (e.g., see Section 11.7). At this point, you may be getting
uneasy about all this activity going on behind the scenes. Can it be understood,
and controlled if need be, to do exactly what we want it to do? There are in fact
two related questions:

• What network operations does the system do to implement transparency?

• Are the network operations simple and predictable, i.e., is it possible to
build applications that communicate in predictable ways?

As we will see, the network operations are both few and predictable; in most
cases exactly what would be achieved by explicit message passing. This property
of the distribution subsystem is called network awareness.

We now give a quick summary of the network operations done by the most-
used language entities; later on in Section 11.7 we will define the distributed
algorithms that implement them in more detail.5 The basic idea is the following:
stateless entities are copied, bindings of dataflow variables are multicast, ports are
stationary with FIFO sends, and other stateful entities use a consistency protocol.
Here is a more detailed description:

• Numbers, records, and literals are stateless entities with structure equal-
ity. That is, separately-created copies cannot be distinguished. The values
are copied immediately whenever a source process sends a message to a
target process. This takes one network hop. Many copies can exist on the
target process, one for each message sent by the source process.

• Procedures, functions, classes, and functors are stateless entities with
token equality. That is, each entity when created comes with a globally
unique name. The default protocol needs one message possibly followed by
one additional round trip. In the first message, just the name is sent. If this
name already exists in the target process, then the value is already present
and the protocol is finished. If not, then the value is immediately requested
with a round trip. This means that at most one copy of these entities can
exist on each process.

5The distribution behavior we give here is the default behavior. It is possible to change this
default behavior by explicit commands to the Mozart implementation; we will not address this
issue in this chapter.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

730 Distributed Programming

• Dataflow variables. When binding the variable, one message is sent to
the process coordinating the variable protocol. This process then multicasts
one message to each process that references the variable. This means that
the coordinating process implicitly knows all processes that reference the
variable.

• Objects, cells, and locks. Objects are a particular case of distributed
state. There are many ways to implement distributed state in a network
transparent way. This chapter singles out three protocols in particular:
mobile cached objects (the default), stationary objects, and asynchronous
objects. Each protocol gives good network behavior for a particular pattern
of use. The Coder example we gave before defines a mobile cached object.
A mobile cached object is moved to each process that uses it. This requires
a maximum of three messages for each object move. Once the object has
moved to a process, no further messages are needed for invocations in that
process. Later on, we will redo the Coder example with a stationary object
(which behaves like a server) and an asynchronous object (which allows
message streaming).

• Streams. A stream is a list whose tail is an unbound variable. Sending
on a stream means to add elements by binding the tail. Receiving means
reading the stream’s content. Sending on a stream will send stream elements
asynchronously from a producer process to a consumer processes. Stream
elements are batched when possible for best network performance.

• Ports. Sending to a port is both asynchronous and FIFO. Each element
sent causes one message to be sent to the port’s home process. This kind of
send is not possible with RMI, but it is important to have: in many cases,
one can send things without having to wait for a result.

It is clear that the distributed behavior of these entities is both simple and well-
defined. To a first approximation, we recommend that a developer just ignore it
and assume that the system is being essentially as efficient as a human program-
mer doing explicit message passing. There are no hidden inefficiencies.

11.6 Common distributed programming patterns

11.6.1 Stationary and mobile objects

In the Coder example given above, the object is mobile (i.e., cached). This
gives good performance when the object is shared between processes, e.g., in a
collaborative application. The object behaves like a cache. On the other hand, it
is often useful to have an object that does not move, i.e., a stationary object. For
example, the object might depend on some external resources that are localized
to a particular process. Putting the object on that process can give orders of

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.6 Common distributed programming patterns 731

magnitude better performance than putting it elsewhere. A stationary object is
a good way to define a server, since servers often use localized resources.

Whether or not an object is mobile or stationary is defined independently of
the object’s class. It is defined when the object is created. Using New creates a
mobile cached object and using NewStat creates a stationary object. The system
supports NewStat in the implementation as a basic primitive, e.g., all objects that
are system resources (such as file descriptor objects) are stationary. NewStat has
actually already been defined, in Chapter 7 when we introduce active objects. We
give the definition again, because we will use it to understand the distribution
behavior:

fun {NewStat Class Init}
P Obj={New Class Init} in

thread S in
{NewPort S P}
for M#X in S do

try {Obj M} X=normal
catch E then X=exception(E) end

end
end
proc {$ M}
X in

{Send P M#X}
case X of normal then skip
[] exception(E) then raise E end end

end
end

Let us see how the distributed behavior of NewStat is derived from the default
behavior of its component parts. Let us make a stationary version of the Coder

object:

C={NewStat Coder init(100)}
{Offer C tickfile}

This creates a thread and a port situated on the home process. C is a reference
to a one-argument procedure. Now assume another process gets a reference to C:

C2={Take tickfile}

This will transfer the procedure to the second process. That is, the second process
now has a copy of the procedure C, which it references by C2. Now let the second
process call C2:

local A in
{C2 get(A)} {Browse A}

end

This creates a dataflow variable A and then calls C2 locally. This does a port send
{Send get(A)#X} . The references to A and X are transferred to the first process.
At the home process, {Obj get(A)} is executed, where Obj is the actual Coder

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

732 Distributed Programming

object. If this execution is successful, then A is bound to a result and X is bound
to normal . Both bindings are transferred back to the second process. If the
execution would have raised an exception E, then it would be transferred back as
the tuple exception(E) .

What we have described is a general algorithm for remote method invocation
of a stationary object. For example, the object on the home process, while serving
a request, could call another object at a third process, and so on. Exceptions will
be passed correctly.

We can also see that remote calls to stationary objects are more complex
than calls to mobile cached objects! Mobile objects are simpler, because once
the object arrives at the caller process, the subsequent execution will be local
(including any raised exceptions).

How many network hops does it take to call a remote stationary object? Once
the caller has a reference to the object, it takes two hops: one to send the tuple
M#Xand one to send the results back. We can see the difference in performance
between mobile and stationary objects. Do the following in a second process,
preferably on another machine:

C2={Take tickfile}
for I in 1..100000 do {C2 get(_)} end
{Show done}

This does 100000 calls to C2. Try doing this for both mobile and stationary
objects and measure the difference in execution time. How do you explain the
difference?

11.6.2 Asynchronous objects and dataflow

We have seen how to share an object among several processes. Because of network
transparency, these objects are synchronous. That is, each object call waits until
the method completes before continuing. Both mobile and stationary objects are
synchronous. Calling a stationary object requires two messages: first from the
caller to the object, and then from the object to the caller. If the network is slow,
this can take long.

One way to get around the network delay is to do an asynchronous object
call. First do the send without waiting for the result. Then wait for the result
later when it is needed. This technique works very well together with dataflow
variables. The result of the send is an unbound variable that is automatically
bound as soon as its value is known. Because of dataflow, the variable can be
passed around, stored in data structures, used in calculations, etc., even before
its value is known. Let us see how this works with the Coder object. First, create
an asynchronous object:

C={NewActive Coder init(100)}
{Offer C tickfile}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.6 Common distributed programming patterns 733

Need values

Use values

Waiting
time

Call object
synchronously when

results are needed

Need values

Use values

Call object
asynchronously when

results are needed

Need values

Use values

Call object
asynchronously before

results are needed

time
Waiting

Waiting
time

Figure 11.5: The advantages of asynchronous objects with dataflow

(We use the definition of NewActive given in Section 7.8.) This object has exactly
the same behavior as a standard object, except that an object call does not wait
until the method completes. Assume that the second process needs three random
numbers and calls C three times:

C1={Take tickfile}
X={C1 get($)}
Y={C1 get($)}
Z={C1 get($)}
...
% use X, Y, and Z as usual

These three calls all return immediately without waiting for the network. The
three results, X, Y, and Z, are still unbound variables. They can be used as if
they were the results:

S=X+Y+Z
{Show S}

Because of dataflow, this addition will automatically block until the three results
have arrived. Figure 11.5 shows the three possibilities:

• In the first scenario (using NewStat), the program does three synchronous
calls at the moment it needs their results. This takes three round-trip
message delays before it can calculate with the results.

• The second scenario does better by using asynchronous calls. This takes
slightly more than one round-trip message delay before the calculation.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

734 Distributed Programming

• The third scenario is best of all. Here the asynchronous calls are initiated
before we need them. When we need them, their calculation is already in
progress. This can take much less than one round-trip message delay.

The first scenario is standard sequential object-oriented programming. Because
of dataflow, the second scenario can be done without changing any program code
except for using NewActive instead of New to define the object. Again because
of dataflow, the third scenario is possible without changing any program code
except for making the calls earlier. For both the second and third scenarios, the
dataflow behavior is automatic and can be ignored by the programmer.

Asynchronous objects with exceptions

The asynchronous objects defined above differ in one crucial aspect from standard
synchronous objects. They never raise exceptions. We can solve this problem by
using NewActiveExc , which is also defined in Section 7.8. The object call then
looks like {Obj M X} , where the extra argument X is used to inform the caller
whether the execution terminated normally or raised an exception. The caller
can then catch the exception at a time that is suitable to it.

Separating timing from functionality

Now we have seen most of what the distributed computation model provides for
object-oriented programming. Let us summarize the possibilities. We have seen
that exactly the same program code can be executed with synchronous objects
(either mobile or stationary) or asynchronous objects (either called on need or
called early). In other words, the distributed model completely separates timing
issues from programming techniques. This is a remarkable result. It is made
possible because of implicit synchronization with dataflow variables.

11.6.3 Servers

A compute server

One of the promises of distributed computing is making computations go faster
by exploiting the parallelism inherent in networks of computers. A first step is
to create a compute server, which uses its computational resources to do any
computation that is given it. Here is one way to create a compute server:

class ComputeServer
meth init skip end
meth run(P) {P} end

end
C={NewStat ComputeServer init}

Assume that a client gets a reference to C as shown before. Here is how the client
can use the compute server:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.6 Common distributed programming patterns 735

fun {Fibo N}
if N<2 then 1 else {Fibo N-1}+{Fibo N-2} end

end

local F in
{C run(proc {$} F={Fibo 30} end)}
{Browse F}

end

local F in
F={Fibo 30}
{Browse F}

end

This first does the computation {Fibo 30} remotely and then repeats it locally.
In the remote case, the variable F is shared between the client and server. When
the server binds it, its value is immediately sent to the server. This is how the
client gets a result from the server.

This compute server can execute almost any statement 〈stmt〉 remotely. Just
make a zero-argument procedure out of it:

P=proc {$} 〈stmt〉 end

and execute {C run(P)} . Because of network transparency, 〈stmt〉 can be almost
any statement in the language. For example, 〈stmt〉 can define new classes inher-
iting from client classes. 〈stmt〉 can have references to other language entities at
the client, e.g., variables for passing back results. During the remote execution,
these references become distributed.

Access to remote resources

The compute server shown in the previous section cannot use the server’s re-
sources. Let us remove this limitation. We define a resource as a module whose
use is restricted to one process. For example, the Open module (the file system)
and the QTk module (the graphics display) are resources.

To remotely execute a statement that contains resources, we first have to
specify which resources it needs. This can be done with functors. A functor
is a module specification that defines which resources the module needs. While
functors are the basis for standalone compilation (compiling a file that defines a
functor), they are also first-class data types, i.e., values in the language. For the
compute server, we can define a functor on the fly at the client and pass it to the
compute server. For example, the following statement:

declare T F in
functor F

import OS
define

T={OS.time}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

736 Distributed Programming

end

defines a functor that is referenced by F. It specifies a module that imports the
resource OSand binds T to the result of calling OS.time . The resource OScontains
basic operating system functionality. The function OS.time returns the current
time in seconds since Jan. 1, 1970. The purpose of functor F is to tell us what
time the compute server thinks it is.

To pass this functor to the compute server, we have to modify the server to
accept functors instead of procedures. That is, the server has to install the functor
locally, i.e., create a module that is connected to all the resources mentioned in
the import clause. As we saw in Section 6.7, the System module Module is able
to do this. The new class ComputeServer looks like this:

class ComputeServer
meth init skip end
meth run(F) {Module.apply [F] _} end

end

This compute server is called in exactly the same way as the previous one.
Module.apply takes a list of functors, installs them in a shared environment,
and returns a list of modules. For this application we are not interested in the
resulting module, but just in the computation.

This compute server can execute any statement 〈stmt〉 remotely. Just make
a functor out of it, specifying which resources it needs:

F=functor import 〈resourceList〉 define 〈stmt〉 end

where 〈resourceList〉 is a list of resources. Then execute {C run(F)} .
The definition we give here allows the computation to access all the serv-

er’s resources. This is because it uses the default module manager provided by
Module . We can use Module to create another module manager that allows only
restricted access to resources. For example, it might allow the computation to
do file operations only to a given directory. This can be important for reasons of
security.

A dynamically-upgradable compute server

Sometimes a server has to be upgraded, for example to add extra functionali-
ty or to fix a bug. As a final server example, we show how to write a server
that can be upgraded without stopping it. The upgrade can even be done in-
teractively. A person sits down at a terminal anywhere in the world, starts up
an interactive Mozart session, and upgrades the running server. First define a
generic upgradable server:

proc {NewUpgradableStat Class Init ?Upg ?Srv}
Obj={New Class Init}
C={NewCell Obj}

in

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.6 Common distributed programming patterns 737

Srv={MakeStat
proc {$ M} {@C M} end }

Upg={MakeStat
proc {$ Class2#Init2} C:={New Class2 Init2} end }

end

(MakeStat is defined in the supplements file on the book’s Web site.) This
definition must be executed on the server process. It returns a server Srv and a
stationary procedure Upg used for upgrading the server. The server is upgradable
because it does all object calls indirectly through the cell C.

An upgradable compute server is created almost exactly as a fixed compute
server, namely by executing the following on the server process:

declare Srv Upg in
Srv={NewUpgradableStat ComputeServer init Upg}

Now we can upgrade the compute server while it is running. Let us define a new
class CComputeServer . We upgrade the server with an object of the new class:

class CComputeServer from ComputeServer
meth run(P Prio<=medium)

thread
{Thread.setThisPriority Prio}
ComputeServer,run(P)

end
end

end
{Upg CComputeServer#init}

That’s all there is to it. The upgraded compute server overrides the run method
with a new method that has a default. The new method supports the original
call run(P) and adds a new call run(P Prio) , where Prio sets the priority of
the thread doing the computation P.

The compute server can be upgraded as many times as desired since garbage
collection will remove any unused old compute server code. For example, it would
be nice if the client could find out how many active computations there are on
the compute server before deciding whether or not to do a computation there.
We leave it to the reader to upgrade the server to add a new method that returns
the number of active computations at each priority level.

11.6.4 Closed distribution

Closed distribution is when an application completely manages its distribution
structure. For example, a server application that runs on a cluster can itself create
all the processes that will run on the cluster machines. Just as the Connection

module provides the basic primitives for open distribution, the Remote module
provides the basic primitives for closed distribution. Remote is an extension of
Module . It creates a remote process along with the means to install new functors
there. Executing the following:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

738 Distributed Programming

R={New Remote.manager init}

creates a remote process and a local object R which is the remote process’s “man-
ager”. If no arguments are given, then the remote process is created on the same
machine as the caller process. With the right arguments it is possible to create
processes on other machines. For example, the call:

R={New Remote.manager init(host: ´ norge.info.ucl.ac.be ´)}

creates a remote process on the host norge.info.ucl.ac.be. By default, the
remote process will be created using rsh (remote shell). In order for this to work,
the host must have been set up properly beforehand. The remote process can
also be created with ssh (secure shell). For information on this and other aspects
of Remote , please see the Mozart documentation [129].

Once a remote process has been created, it can be controlled through the
manager object R. This object has an interface that closely resembles that of
Module , i.e., it controls the instantiation of functors at the remote process. Call-
ing the manager with {R apply(F X)} installs functor F on the remote process
and returns the module in X.

There is a kind of “master-slave” relationship between the original process and
the new process. The original process can observe the new process’s behavior,
for example, to keep track of its resource consumption. The original process can
change the new process’s process priority, put it to sleep, and even terminate it if
necessary. The original process can give the new process limited versions of some
critical system modules, so that the new process behaves like a sand box.

11.7 Distribution protocols

We now briefly summarize the distribution protocols implemented in Mozart.
We first give an overview of all the different protocols for the different language
entities. We then focus on two particularly interesting protocols: the mobile state
protocol (used for cached cells and objects) and the distributed binding protocol
(used for dataflow variables). We end with a quick look at the distributed garbage
collector.

11.7.1 Language entities

Each language entity is implemented by one or more distributed algorithms. Each
algorithm respects the entity’s semantics if distribution is disregarded. The lan-
guage entities have the following protocols:

• Stateful entities are implemented with one of the following three protocols:

– Stationary state. All operations always execute on the process
where the state resides, called the target process. Remote invocations
send messages to this process. Conceptually, it is as if the invoking

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.7 Distribution protocols 739

thread moves to the target process. When seen in this way, distribut-
ed exceptions and reentrant locking work correctly. Operations are
synchronous. Asynchronous operations require explicit programming,
e.g., by using thread ... end .

– Mobile state. In this case the invoking thread is stationary. The
right to update the state moves from one process to another. We call
this right the state pointer or content edge. An exchange operation will
first cause the state pointer to move to the executing process, so that
the exchange is always local [201, 197]. The mobile state protocol can
be seen as implementing a cache, i.e., it is a cache coherence protocol.

– Invalidation. This protocol optimizes the mobile state protocol when
reading is much more frequent than updating. A process that wants
to read the state sends a message to the target process and gets the
state in reply, thus creating a local replica of the state. A process
that wants to update the state must first explicitly invalidate all these
replicas by sending them an invalidation message. This guarantees
that the interleaving semantics of state updates is maintained. The
right to update the state still moves from one process to another.

• Single-assignment entities are implemented with a distributed unification
algorithm [71]. The key operation of this algorithm is a distributed bind
operation, which replaces the variable by whatever it is bound to, on all the
processes that know the variable. There are two variants of this algorithm:

– Lazy binding (on demand). The replacement is done on a process
only when the process needs the variable. This variant reduces the
number of network messages, but increases latency and keeps a depen-
dency on the variable’s home process.

– Eager binding (on supply). The replacement is done on a process
as soon as the variable is bound, whether or not the process needs the
variable.

The Mozart system currently implements just the eager binding algorithm.

• Stateless entities are implemented with one of the following three proto-
cols [3]:

– Lazy copying (on demand). The value is copied to a process only
when the process needs it. This reduces the number of network mes-
sages, but increases latency and keeps a dependency on the original
process.

– Eager copying (on supply, sent if not present). The value is not
sent as part of the message, but if upon reception of the message the
value is not present, then an immediate request is made for it. In most

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

740 Distributed Programming

Kind of entity Algorithm Entity
Stateless Eager immediate copying record, integer

Eager copying procedure, class, functor
Lazy copying object-record

Single assignment Eager binding dataflow variable, stream
Stateful Stationary state port, thread, object-state

Mobile state cell, object-state

Table 11.1: Distributed algorithms

cases, this is the optimal protocol, since the value will be present on
the receiving process for all except the first message referencing it.

– Eager immediate copying (on supply, always sent). The value is
sent as part of the message. This has minimum latency, but can over-
load the network since values will be repeatedly sent to processes. It
is used to send record structures.

• In addition to these algorithms, there is a distributed garbage collection
algorithm. This algorithm works alongside the local garbage collection. The
algorithm does no global operations and is able to remove all garbage except
for cross-process cycles between stateful entities. The algorithm consists of
two parts: a credit mechanism and a time-lease mechanism. The credit
mechanism works well when there are no failures. It is a kind of weighted
reference counting [151]. Each language entity with remote references has a
supply of “credits”. Each remote reference to the entity must have at least
one credit. When a local garbage collection reclaims a remote reference,
then its credits are sent back. When the entity has no outstanding remote
credits and no local references, then it can be reclaimed. In the time-lease
mechanism, each distributed entity exists only for a limited time unless it
is periodically renewed by a message sent from a remote reference. This
handles the case of partial failure.

Table 11.1 shows the algorithms used by the current system for each language
entity. In this table, an object consists of two parts, the object-record (which
contains the class) and the object-state (the object’s internal cell). We conclude
that network operations6 are predictable for all language entities, which gives the
programmer the ability to manage network communications.

11.7.2 Mobile state protocol

The mobile state protocol is one of the distributed algorithms used to implement
stateful entities. Objects, cells, and locks are implemented with this protocol.
This section gives the intuition underlying the protocol and explains the network

6In terms of the number of network hops.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.7 Distribution protocols 741

state pointer

cell content

T

M

P

X

P
P

Figure 11.6: Graph notation for a distributed cell

T

cell content

state pointer
(2)

M

P
P

X

P

get(1)
forward

put(3)

Figure 11.7: Moving the state pointer

operations it does. A formal definition of the protocol and a proof that it respects
the language semantics are given in [201]. An extension that is well-behaved in
case of network and process failure is given together with proof in [20]. The
Mozart system implements this extended protocol.

We use a graph notation to describe the protocol. Each (centralized) language
entity, i.e., record, procedure value, dataflow variable, thread, and cell, is repre-
sented by a node in the graph. To represent a distributed computation, we add
two additional nodes, called proxy and manager. Each language entity that has
remote references is represented by a star-like structure, with one manager and a
set of proxies. The proxy is the local reference of a remote entity. The manager
coordinates the protocol that implements the distribution behavior of the entity.
The manager is also called the coordinator.

Figure 11.6 shows a cell that has remote references on three processes. The cell
consists of three proxies P and one manager M. The cell content X is accessible
from the first proxy through the state pointer. A thread T on the third process
references the cell, which means that it references the third proxy.

What happens when T does an exchange operation? The state pointer is on a
different process from T, so the mobile state protocol is initiated to bring the state
pointer to T’s process. Once the state pointer is local to T, then the exchange
is performed. This implies the remarkable property that all cell operations are
always performed locally in the thread that initiates them.

The protocol to move the state pointer consists of three messages: get, put,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

742 Distributed Programming

1 2T T

M

P

PP

Figure 11.8: Graph notation for a distributed dataflow variable

1 2T T

P P
M

P

requestbinding

binding
(2)(2)

binding

(1)
(2)

W=V+1 V=10

Figure 11.9: Binding a distributed dataflow variable

and forward. Figure 11.7 shows how they are sent. The third proxy initiates the
move by sending a get request to M. The manager M plays the role of a serializer:
all requests pass through it. After receiving the get, M sends a forward message
to the first proxy. When the first proxy receives the forward, it sends a put to
the third proxy. This atomically transfers the state pointer from the first to the
third proxy.

11.7.3 Distributed binding protocol

The distributed binding protocol is used to bind dataflow variables that have
references on several processes. The general binding algorithm is called unifi-
cation; the distributed version does distributed unification. A formal definition
of the protocol and a proof that it respects the language semantics are given
in [71]. The Mozart system implements an extended version of this protocol that
is well-behaved in case of network and process failure.

When unification is made distributed it turns out that the whole algorithm
remains centralized except for one operation, namely binding a variable. To give
the intuition underlying distributed unification it is therefore sufficient to explain
distributed binding.

Figure 11.8 shows a dataflow variable V that has remote references on three
processes. Like the distributed cell, there are three proxies P and one manager
M. The manager has references to all proxies. On the first process, thread T1

references V and is suspended on the operation W=V+1. On the third process,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.7 Distribution protocols 743

thread T2 also references V and is about to do the binding V=10.

The protocol to bind V consists of two messages: request(X) and binding(X).
Figure 11.9 shows how they are sent. The third proxy initiates the protocol
by sending request(10) to M. The first such request received by M causes a
binding(10) to be sent to all proxies. This action is the heart of the algorithm.
The rest is details to make it work in all cases. If M is already bound when it
receives the request, then it simply ignores the request. This is correct since the
proxy that sent the request will receive a binding in due course. If a new proxy is
created on a fourth process, then it must register itself with the manager. There
are a few more such cases; they are all explained in [71].

This algorithm has several good properties. In the common case where the
variable is on just two processes, for example where the binding is used to return
the result of a computation, the algorithm’s latency is a single round trip. This is
the same as explicit message passing. A binding conflict (an attempt to bind the
same variable to two incompatible values) will cause an exception to be raised on
the process that is responsible for the conflict.

11.7.4 Memory management

When distribution is taken into account, the Mozart system has three levels of
garbage collection:

• A local garbage collector per process. This collector coordinates its work
with the distributed collectors.

• A distributed garbage collector that uses weighted reference counting.

• A distributed garbage collector based on a time-lease mechanism.

Weighted reference counting The first level of distributed garbage collec-
tion uses weighted reference counting [151]. This collector works when there are
no failures. It can rapidly remove all distributed garbage except for cross-process
cycles between stateful entities on different owner processes. Each remote ref-
erence has a nonzero amount of credit, that implies the continued aliveness of
the entity. When the remote reference is reclaimed, the credit is returned to the
owner. When the owner sees there is no longer any outstanding credit, then the
entity can be reclaimed if there are no more local references.

Weighted reference counting is efficient and scalable. First, creating a new
remote reference requires essentially zero network messages in addition to the
messages sent by the application. Second, each remote process does not need to
know any other process except the owner process. Third, the owner process does
not need to know any remote process.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

744 Distributed Programming

Time-lease mechanism The second level of distributed garbage collection
uses a time-lease mechanism. This collector works when there are permanent or
long-lived temporary failures. Each remote reference has only a limited lifetime (a
“lease on life”), and must periodically send a “lease renewal” message to the owner
process. If the owner process does not receive any lease renewal messages after a
given (long) time period, then it assumes that the reference may be considered
dead.

The time-lease mechanism is complementary to weighted reference counting.
The latter reclaims garbage rapidly in the case when there are no failures. The
former is much slower, but it is guaranteed in finite time to reclaim all garbage
created because of failure. This plugs the memory leaks due to failure.

Programmer responsibility The main problem with distributed garbage col-
lection is to collect cycles of data that exist on several processes and that contain
stateful entities. As far as we know, there does not exist an efficient and simple
distributed garbage collector that can collect these cycles.

This means that distributed memory management is not completely auto-
matic; the application has to do a little bit of work. For example, consider a
client/server application. Each client has a reference to the server. Often, the
server has references to the clients. This creates a cycle between each client and
the server. If the client and server are on different processes, they cannot be
reclaimed. To reclaim a client or a server, it is necessary to break the cycle. This
has to be done by the application. There are two ways to do it: either the server
has to remove the client reference or the client has to remove the server reference.

Creating a ticket with {Connection.offerUnlimited X T} makes X a per-
manent reference. That is, X is added to the root set and is never reclaimed.
Once-only tickets, i.e., those created with {Connection.offer X T} , can only
be taken once. As soon as they are taken, X is no longer a permanent reference
and is potentially reclaimable again.

It is possible to use distribution to reduce the time needed by local garbage
collection. With Remote , create a small process that runs the time-critical part
of the application. Since the process is small, local garbage collection in it will
be very fast.

11.8 Partial failure

Let us now extend the distribution model with support for partial failure. We
first explain the kinds of failures we detect and how we detect them. Then we
show some simple ways to use this detection in applications to handle partial
failure.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.8 Partial failure 745

11.8.1 Fault model

The fault model defines the kinds of failures that can occur in the system and
how they are reflected in the language by a failure detection mechanism. We have
designed a simple fault model that captures the most common kinds of failures on
the Internet. The Mozart system can detect just two kinds of failures, permanent
process failure and network inactivity:

• Permanent process failure is commonly known as fail-silent with failure
detection. It is indicated by the failure mode permFail . That is, a process
stops working instantaneously, does not communicate with other processes
from that point onwards, and the stop can be detected from the outside.
Permanent process failure cannot in general be detected on a WAN (e.g.,
the Internet), but only on a LAN.

• Network inactivity is a kind of temporary failure. It can be either temporary
or permanent, but even when it is supposedly permanent, one could imagine
the network being repaired. It is different from process failure because the
network does not store any state. Network inactivity is indicated by the
failure mode tempFail . The Mozart system assumes that it is always
potentially temporary, i.e., it never times out by default.

These failures are reflected in the language in two ways, either synchronously or
asynchronously:

• Synchronous (i.e., lazy) detection is done when attempting to do an oper-
ation on a language entity. If the entity is affected by a failure, then the
operation is replaced by another, which is predefined by the program. For
example, the operation can be replaced by a raised exception.

• Asynchronous (i.e., eager) detection is done independent of any operations.
A program first posts a “watcher” on an entity, before any problems occur.
Later, if the system detects a problem, then it enables the watcher, which
executes a predefined operation in a new thread. Watchers use the well-
known heart-beat mechanism for failure detection.

The two failure modes, detected either synchronously or asynchronously, are suf-
ficient for writing fault-tolerant distributed applications. They are provided by
Mozart’s primitive failure detection module Fault .

Network inactivity

The network inactivity failure mode allows the application to react quickly to
temporary network problems. It is raised by the system as soon as a network
problem is recognized. It is therefore fundamentally different from a time out. A
time out happens when a part of the system that is waiting for an event abandons
the wait. The default behavior of TCP is to give a time out after some minutes.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

746 Distributed Programming

This duration has been chosen to be very long, approximating infinity from the
viewpoint of the network connection. After the time out, one can be sure that
the connection is no longer working.

The purpose of tempFail is to inform the application of network problems,
not to mark the end of a connection. For example, if an application is connected
to a server and if there are problems with the server, then the application would
like to be informed quickly so that it can try connecting to another server. A
tempFail failure mode can therefore be relatively frequent, much more frequent
than a time out. In most cases, a tempFail fault state will eventually go away.

It is possible for a tempFail state to last forever. For example, if a user
disconnects the network connection of a laptop machine, then only he or she
knows whether the problem is permanent. The application cannot in general
know this. The decision whether to continue waiting or to stop the wait can cut
through all levels of abstraction to appear at the top level (i.e., the user). The
application might then pop up a window to ask the user whether to continue
waiting or not. The important thing is that the network layer does not make this
decision; the application is completely free to decide or to let the user decide.

Where to do time outs

A surprisingly large number of existing systems (both programming platforms
and applications) incorrectly handle prolonged network inactivity. When there
is a prolonged network inactivity during an operation, they do a time out: they
abort the waiting operation and invoke an error handling routine. Often, this
abort is irrevocable: it is impossible to continue the operation. Many operating
system utilities are of this type, e.g., ftp and ssh.

The mistake in this approach is that the decision to time out is made at the
wrong level. For example, assume there is a time out in a lower layer, e.g., the
transport layer (TCP protocol) of the network interface. This time out crosses
all abstraction boundaries to appear directly at the top level, i.e., to the user.
The user is informed in some way: the application stops, or at best a window is
opened asking confirmation to abort the application. The user does not have the
possibility to communicate back to the timed-out layer. This limits the flexibility
of the system.

The right approach is not to time out by default but to let the application
decide. The application might decide to wait indefinitely (avoiding an abort),
to abort immediately without waiting, or to let the user decide what to do.
This greatly increases the perceived quality of the system. For example, a hard-
mounted resource in the NFS file system offers the first possibility. The Stop
button in recent Web browsers offers the third possibility.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.8 Partial failure 747

11.8.2 Simple cases of failure handling

We show how to handle two cases, namely disconnected operation and failure
detection. We show how to use the Fault module in either case.

Disconnected operation

Assume that you are running part of an application locally on your machine
through a dialup connection. These connections are not meant to last for very
long times; they are made for conversations, which usually are short. There are
many ways a connection can be broken. For example, you might want to hang
up to make an urgent phone call, or you are connected in an airport and your
calling card runs out of cash, or the phone company just drops your connection
unexpectedly.

You would like your application to be impervious to this kind of fickleness.
That is, you would like the application to wait patiently until you reconnect and
then continue working as if nothing went wrong. In Mozart, this can be achieved
by setting the default failure detection to detect only permanent process failures:

% Each process executes this on startup:
{Fault.defaultEnable [permFail] _}

This means that operations will only raise exceptions on permanent process fail-
ures; on network inactivity they will wait indefinitely until the network problem
goes away.

Detecting a problem and taking action

On many computers, booting up is an infuriating experience. How many times
have you turned on a laptop, only to wait several minutes because the oper-
ating system expects a network connection, and has to time out before going
on? Mozart cannot fix your operating system, but it can make sure that your
application will not have the same brainless behavior.

Assume you want to use a remote port. If the remote port has problems
(intermittent or no access) then the application should be informed of this fact.
This is easy to set up:

% Get a reference to the port:
X={Take tickfile}

% Signal as soon as a problem is detected:
{Fault.installWatcher X [tempFail permFail]

proc {$ _ _}
{Browse X# ´ has problems! Its use is discouraged. ´ }

end _}

The procedure passed to Fault.installWatcher is called a watcher; it will be
called in its own thread as soon as the system detects a problem. It’s up to you to

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

748 Distributed Programming

fun {NewStat Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M#X in S do

try {Obj M} X=normal
catch E then

try X=exception(E)
catch system(dp(...) ...) then

skip /* client failure detected */
end

end
end

end
proc {$ M}
X in

try {Send P M#X} catch system(dp(...) ...) then
raise serverFailure end

end
case X of normal then skip
[] exception(E) then raise E end end

end
end

Figure 11.10: A resilient server

do what’s necessary, e.g., set an internal flag to indicate that no communication
will be done.

If the problem was tempFail , then it is possible that communication with
X will be restored. If that happens, Mozart allows you to continue using X as if
nothing wrong had happened.

11.8.3 A resilient server

We saw the NewStat operation for creating stationary objects. Let us show how
to extend it to be resilient to client failure and at the same time protect the client
against server failure. We use the exception-handling mechanism. Attempting to
perform an operation on an entity that requires coordination with a remote failed
process will raise an exception. We use this behavior to protect both the server
and the client from failures. We protect the server by using a try statement:

try {Obj M} X=normal catch ... end

This protects the server against a client that shares a variable with the server (in
this case X). We need a second try statement:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.9 Security 749

try X=exception(E) catch _ then skip end

since the statement X=exception(E) also binds X. We protect the client:

proc {$ M}
X in

try {Send P M#X}
catch _ then raise serverFailure end end
case X of normal then skip
[] exception(E) then raise E end end

end

The try {Send P M#X} ... end signals to the client that the server has failed.
In general, any operation on a distributed entity has to be wrapped in a try . The
complete definition of NewStat is given in Figure 11.10. Note that distribution
faults show up as exceptions of the form system(dp(...) ...) .

If tempFail detection is enabled, the stationary server defined here will be
will be slowed down if there are communication problems with the client, i.e., it
will wait until tempFail is raised (for example when try X=exception(E) is
executed). One way around this problem is to provide mutiple server objects to
allow serving multiple clients simultaneously.

11.8.4 Active fault tolerance

Applications sometimes need active fault tolerance, i.e., part of the application
is replicated on several processes and a replication algorithm is used to keep
the parts coherent with each other. Building ADTs to provide this is an active
research topic. For example, in Mozart we have built a replicated transactional
object store, called GlobalStore [128]. This keeps copies of a set of objects on
several processes and gives access to them through a transactional protocol. The
copies are kept coherent through the protocol. As long as at least one process is
alive, the GlobalStore will survive.

Because of the failure detection provided by the Fault module, the Mozart
system lets the GlobalStore and other fault-tolerant ADTs be written complete-
ly in Oz without recompiling the system. Ongoing research involves building
abstractions for active fault tolerance and improved failure detection.

11.9 Security

An application is secure if it can continue to fulfill its specification despite inten-
tional (i.e., malicious) failures of its components. Security is a global problem:
a weakness in any part of the system can potentially be exploited. Security is a
relative concept: no system is absolutely secure since with sufficient effort it can
always be compromised. All we can do is increase the effort required to break
the security, until it is not cost-effective for an adversary to attempt it. Security

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

750 Distributed Programming

issues appear at each layer of a distributed system. We identify the following
layers [72]:

• Application security. This is a property of the application program. The
application can continue to fulfill its specification despite adversaries whose
attacks stay within the permitted operations in the application itself.

• Language security. This is a property of the language. In a secure
language, applications can continue to fulfill their specifications despite ad-
versaries whose attacks stay within the language. As we explain in Sec-
tion 3.7.7, the kernel languages of this book provide language security be-
cause they have a rigorous semantics that permits the construction of secure
ADTs.

• Implementation security. This is a property of the language implemen-
tation in the process. In a secure implementation, applications can continue
to fulfill their specifications despite adversaries that attempt to interfere
with compiled programs and the language’s run-time system. Providing
implementation security requires cryptographic techniques that are outside
the scope of this book.

• Operating system security, network security, and hardware secu-
rity. We group these three together, although each of them is a big topic
that can be studied separately. The system is secure if applications can
continue to fulfill their specifications despite adversaries who attempt to
interfere with the operating system, the network, or the hardware. For the
operating system and network, we can rely to some degree on off-the-shelf
products. Hardware security is another matter entirely. Unless we have a
special “hardened” computer, giving physical access to the computer always
makes it possible to compromise security.

Each of these layers must be addressed to some degree, or otherwise the applica-
tion is not secure. To judge how much effort must be put in making each layer
secure, a threat model must be set up and a threat analysis done. Then a security
policy must be defined, implemented, and verified. These activities are called
security engineering. They are beyond the scope of this book. We recommend
Anderson’s book for an excellent overview [5].

Section 3.7 shows how to build secure abstract data types using language
security. These techniques are necessary for building secure applications on the
Internet, but they are not sufficient. We also have to address the other layers. For
implementation security, we need a secure Mozart implementation. The develop-
ment of such an implementation is ongoing research. Building implementation-
secure systems is a research area with a long tradition. As an entry point in
this area, we recommend the work on the E language and its secure implementa-
tion [123, 183].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.10 Building applications 751

11.10 Building applications

With the examples given in this chapter, you have enough technical knowledge
already to build fairly sophisticated distributed applications.

11.10.1 Centralized first, distributed later

Developing an application is done in two phases:

• First, write the application without partitioning the computation between
processes. Check the correctness and termination properties of the appli-
cation on one process. Most of the debugging is done here.

• Second, place the threads on the right processes and give the objects a
distributed semantics to satisfy the geographic constraints (placement of
resources, dependencies between processes) and the performance constraints
(network bandwidth and latency, machine memory and speed).

The large-scale structure of an application consists of a graph of threads and
objects. Threads are created on the processes that need them. Objects may
be stationary, mobile, or asynchronous. They exchange messages which may
refer to objects or other entities. Records and procedures, both stateless entities,
are the basic data structures of the application–they are passed automatically
between processes when needed. Dataflow variables and locks are used to manage
concurrency and dataflow execution.

11.10.2 Handling partial failure

The application must be able to handle partial failure. A good approach is to
design for fault confinement. That is, to design the application so that failures can
be confined, i.e., their effect will not propagate throughout the whole application
but will be limited. Fault confinement has to be part of the initial application
design. Otherwise the number of failure modes can be very large, which makes
fault confinement infeasible.

There is a trade-off between the communication mode (synchronous or asyn-
chronous) and the fault detection/confinement mechanism. Compared to syn-
chronous communication, asynchronous communication improves performance
but makes fault confinement harder. Consider a system with three active objects,
T1, T2, and T3. T1 does an asynchronous send to T2 and continues, assuming
that T2 is alive. Later, T1 sends a message to T3 under this assumption. But
the assumption might have been wrong. T1 might have been executing for a long
time under this wrong assumption. With synchronous sends this problem cannot
occur. T1 does a synchronous send to T2 and is informed that T2 has a problem
before continuing. This confines the fault to an earlier point of the program. The
trade-off between early fault detection and asynchronous communication is fun-
damental, like the choice between optimistic and pessimistic concurrency control.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

752 Distributed Programming

With asynchronous communication, the application must be prepared to correct
any false assumptions it makes about the rest of the system working correctly.

There are different ways to realize fault confinement. One way is to build
abstractions that do all the fault handling internally. If done well, this can hide
completely the complexities of handling faults, at the cost of having to use the
particular abstraction. The GlobalStore mentioned before takes this approach.
If we cannot hide the faults completely, the next best thing is to have narrow
interfaces (say, just one port) between processes. A final point is that a message-
passing programming style is preferable over a shared-state style. Fault handling
of distributed shared state is notoriously difficult.

11.10.3 Distributed components

Functors and resources are the key players in distributed component-based pro-
gramming. A functor is stateless, so it can be transparently copied anywhere
across the net and made persistent by pickling it on a file. A functor is linked on
a process by evaluating it there with the process resources that it needs (“plug-
ging it in” to the process). The result is a new resource, which can be used as
is or linked with more functors. Functors can be used as a core technology driv-
ing an open community of developers who contribute to a global pool of useful
components.

11.11 Exercises

1. Implementing network awareness. Explain exactly what happens in
the network (what messages are sent and when) during the execution of
the distributed lexical scoping example given in Section 11.4. Base your
explanation on the distributed algorithms explained in Section 11.7.

2. Distributed lift control system. Make the lift control system of Chap-
ter 5 into a distributed system. Put each component in a separate process.
Extend the system to handle partial failure, i.e., when one of the compo-
nents fails or has communication problems.

3. A simple chat room. Use the techniques of this chapter to write a simple
server-based chat application. Clients connect to the server, receive all
previous messages, and can send new messages. Extend your chat room
to handle client failures and server failure. If there is a server failure, the
client should detect this and allow the human user to connect to another
server.

4. A replicated server. To make a server resistant to failures, one technique
is to replicate it on two processes. Client requests are sent to both replicas,
each of which does the computation and returns a result. The client needs

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

11.11 Exercises 753

only to receive one result. This assumes that the server is deterministic. If
one of the replicas fails, the other replica detects this, starts a new second
replica using the Remote module, and informs the client. For this exercise,
write an abstraction for a replicated server that hides all the fault handling
activities from the clients.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

754 Distributed Programming

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 12

Constraint Programming

“Plans within plans within plans within plans.”
– Dune, Frank Herbert (1920–1986)

Constraint programming consists of a set of techniques for solving constraint
satisfaction problems.1 A constraint satisfaction problem, or CSP, consists of a set
of constraints on a set of variables. A constraint, in this setting, is simply a logical
relation, such as “X is less than Y” or “X is a multiple of 3”. The first problem is
to find whether there exists a solution, without necessarily constructing it. The
second problem is to find one or more solutions.

A CSP can always be solved with brute force search. All possible values of
all variables are enumerated and each is checked to see whether it is a solution.
Except in very small problems, the number of candidates is usually too large to
enumerate them all. Constraint programming has developed “smart” ways to
solve CSPs which greatly reduce the amount of search needed. This is sufficient
to solve many practical problems. For many problems, though, search cannot be
entirely eliminated. Solving CSPs is related to deep questions of intractability.
Problems that are known to be intractable will always need some search. The
hope of constraint programming is that, for the problems that interest us, the
search component can be reduced to an acceptable level.

Constraint programming is qualitatively different from the other programming
paradigms that we have seen, such as declarative, object-oriented, and concurrent
programming. Compared to these paradigms, constraint programming is much
closer to the ideal of declarative programming: to say what we want without
saying how to achieve it.

Structure of the chapter

This chapter introduces a quite general approach for tackling CSPs called propagate-
and-search or propagate-and-distribute. The chapter is structured as follows:

1This chapter was co-authored with Raphaël Collet.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

756 Constraint Programming

• Section 12.1 gives the basic ideas of the propagate-and-search approach by
means of an example. This introduces the idea of encapsulating constraints
inside a kind of container called a computation space.

• Section 12.2 shows how to specify and solve some example constraint prob-
lems using propagate-and-search.

• Section 12.3 introduces the constraint-based computation model and its two
parts: constraints (both basic and propagators) and computation spaces.

• Section 12.4 defines computation spaces and shows how to program propagate-
and-search with the computation space ADT.

• Section 12.5 shows how to implement the choice , fail , and Solve oper-
ations of the relational computation model with computation spaces.

12.1 Propagate and search

In this section, we introduce the basic ideas underlying the propagate-and-search
approach by means of a simple example. Sections 12.3 and 12.4 continue this pre-
sentation by showing how the stateful computation model is extended to support
this approach and how to program with the extended model.

12.1.1 Basic ideas

The propagate-and-search approach is based on three important ideas:

1. Keep partial information. During the calculation, we might have partial
information about a solution (such as, “in any solution, X is greater than
100”). We keep as much of this information as possible.

2. Use local deduction. Each of the constraints uses the partial information
to deduce more information. For example, combining the constraint “X is
less than Y” and the partial information “X is greater than 100”, we can
deduce that ”Y is greater than 101” (assuming Y is an integer).

3. Do controlled search. When no more local deductions can be done, then we
have to search. The idea is to search as little as possible. We will do just
a small search step and then we will try to do local deduction again. A
search step consists in splitting a CSP P into two new problems, (P ∧ C)
and (P ∧ ¬C), where C is a new constraint. Since each new problem
has an additional constraint, it can do new local deductions. To find the
solutions of P , it is enough to take the union of the solutions to the two
new problems. The choice of C is extremely important. A well-chosen C
will lead to a solution in just a few search steps.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.1 Propagate and search 757

12.1.2 Calculating with partial information

The first part of constraint programming is calculating with partial information,
namely keeping partial information and doing local deduction on it. We give
an example to show how this works, using intervals of integers. Assume that
x and y measure the sides of a rectangular field of agricultural land in integral
meters. We only have approximations to x and y. Assume that 90 ≤ x ≤ 110
and 48 ≤ y ≤ 53. Now we would like to calculate with this partial information.
For example, is the area of the field bigger than 4000 square meters? This is easy
to do with constraint programming. We first declare what we know about x and
y:

declare X Y in
X::90#110
Y::48#53

The notation X::90#110 means x ∈ {90, 91, ..., 110}. Now let us calculate with
this information. With constraint programming, xy > 4000 will return with true
immediately:2

declare A in
A::0#10000
A=:X*Y
{Browse A>:4000} % Displays 1

We can also display the area directly:

{Browse A} % Displays A{4320#5830}

From this we know the area must be in the range from 4320 to 5830 square meters.
The statement A=:X*Y does a constraint multiplication. Technically, it is called
a propagator: it looks at its arguments a, x, and y, and propagates information
between them. In this case, the propagation is simple: the minimal value of a
is updated to 90× 48 (which is 4320) and the maximal value of a is updated to
110× 53 (which is 5830). Note that we have to give the initial information about
a, for example that it is in the range from 0 to 10000. If we do not give this
information, the constraint multiplication A=:X*Y will block.

Now let us add some more information about x and y and see what we can
deduce from it. Assume we know that the difference x− 2y is exactly 11 meters.
We know this by fitting a rope to the y side. Passing the rope twice on the x side
leaves 11 meters. What can we deduce from this fact? Add the constraint:

X-2*Y=:11

Technically, this new constraint is also a propagator. It does a local deduction
with the information we know about x and y. The browser display is automat-
ically updated to A{5136#5341} . This considerably increases the accuracy of

2The program fragment will display the integer 1, which means true. The boolean is given
as an integer because we often need to do calculations with it.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

758 Constraint Programming

our measurement: we know the area must be from 5136 to 5341 square meters.
What do we know about x and y? We can display them:

{Browse X}
{Browse Y}

This displays X{107#109} for x and Y{48#49} for y. This is a very simple
example of calculating with partial information, but it can already be quite useful.

12.1.3 An example

We now look at an example of a complete constraint program, to see how propagate-
and-search actually works. Consider the following problem:

How can I make a rectangle out of 24 unit squares so that the perime-
ter is exactly 20?

Say that x and y are the lengths of the rectangle’s sides. This gives two equations:

x · y = 24

2 · (x + y) = 20

We can also add a third equation:

x ≤ y

Strictly speaking, the third equation is not necessary, but including it does no
harm (since we can always flip a rectangle over) and it will make the problem’s
solution easier (technically, it reduces the size of the search space). These three
equations are constraints. We call these equations propagators, since we will use
them to make local deductions, i.e., “propagate” partial information about a
solution.

To solve the problem, it is useful to start with some information about the
variables. We bound the possible values of the variables. This is not absolutely
necessary, but it is almost always possible and it often makes solving the problem
easier. For our example, assume that X and Y each range from 1 and 9. This
is reasonable since they are positive and less than 10. This gives two additional
equations:

x ∈ {1, 2, ..., 9}
y ∈ {1, 2, ..., 9}

We call these equations basic constraints since they are of the simple form “vari-
able in an explicit set”, which can be represented directly in memory.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.1 Propagate and search 759

The initial problem

Now let us start solving the problem. We have three propagators and two basic
constraints. This gives the following situation:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::1#9 Y::1#9

which we will call the computation space S1. A computation space contains the
propagators and the basic constraints on the problem variables. As in the previous
example, we use the notation X::1#9 to mean x ∈ {1, 2, ..., 9}. We have the three
propagators X*Y=:24 , X+Y=:10 , and X=<:Y . Syntactically, we show that these
are propagators by adding the colon : to their name.

Local deductions

Each propagator now tries to do local deductions. For example, the propagator
X*Y=:24 notices that since Y is at most 9, that X cannot be 1 or 2. Therefore X is
at least 3. It follows that Y is at most 8 (since 3*8=24). The same reasoning can be
done with X and Y reversed. The propagator therefore updates the computation
space:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#8 Y::3#8

Now the propagator X+Y=:10 enters the picture. It notices that since Y cannot
be 2, therefore X cannot be 8. Similarly, Y cannot be 8 either. This gives:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#7 Y::3#7

With this new information, the propagator X*Y=:24 can do more deduction.
Since X is at most 7, therefore Y must be at least 4 (because 3*7 is definitely less
than 24). If Y is at least 4, then X must be at most 6. This gives:

S1 : X*Y=:24 X+Y=:10 X=<:Y || X::4#6 Y::4#6

At this point, none of the propagators sees any opportunities for adding infor-
mation. We say that the computation space has become stable. Local deduction
cannot add any more information.

Using search

How do we continue? We have to make a guess. Let us guess X=4. To make sure
that we do not lose any solutions, we need two computation spaces: one in which
X=4 and another in which X6=4. This gives:

S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y::4#6

S3 : X*Y=:24 X+Y=:10 X=<:Y || X::5#6 Y::4#6

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

760 Constraint Programming

Each of these computation spaces now has the opportunity to do local deductions
again. For S2, the local deductions give a value of Y:

S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y=6

At this point, each of the three propagators notices that it is completely solved
(it can never add any more information) and therefore removes itself from the
computation space. We say that the propagators are entailed. This gives:

S2 : (empty) || X=4 Y=6

The result is a solved computation space. It contains the solution X=4 Y=6.
Let us see what happens with S3. Propagator X*Y=:24 deduces that X=6

Y=4 is the only possibility consistent with itself (we leave the reasoning to the
reader). Then propagator X=<:Y sees that there is no possible solution consistent
with itself. This causes the space to fail:

S3 : (failed)

A failed space has no solution. We conclude that the only solution is X=4 Y=6.

12.1.4 Executing the example

Let us run this example in Mozart. We define the problem by writing a one-
argument procedure whose argument is the solution. Running the procedure sets
up the basic constraints, the propagators, and selects a distribution strategy. The
distribution strategy defines the “guess” that splits the search in two. Here is the
procedure definition:

proc {Rectangle ?Sol}
sol(X Y)=Sol

in
X::1#9 Y::1#9
X*Y=:24 X+Y=:10 X=<:Y
{FD.distribute naive Sol}

end

The solution is returned as the tuple Sol , which contains the two variables X

and Y. Here X::1#9 and Y::1#9 are the two basic constraints and X*Y=:24 ,
X+Y=:10 , and X=<:Y are the three propagators. The FD.distribute call selects
the distribution strategy. The chosen strategy (naive) selects the first non-
determined variable in Sol , and picks the leftmost element in the domain as a
guess. To find the solutions, we pass the procedure to a general search engine:

{Browse {SolveAll Rectangle}}

This displays a list of all solutions, namely [sol(4 6)] since there is only one.
All the constraint operations used in this example, namely :: , =: , =<: , and

FD.distribute are predefined in the Mozart system. The full constraint pro-
gramming support of Mozart consists of several dozen operations. All of these

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.2 Programming techniques 761

operations are defined in the constraint-based computation model. This model
introduces just two new concepts to the stateful concurrent model: finite do-
main constraints (basic constraints like X::1#9) and computation spaces. All
the richness of constraint programming in Mozart is provided by this model.

12.1.5 Summary

The fundamental concept used to implement propagate-and-search is the compu-
tation space, which contains propagators and basic constraints. Solving a problem
alternates two phases. A space first does local deductions with the propagators.
When no more local deductions are possible, i.e., the space is stable, then a search
step is done. In this step, two copies of the space are first made. A basic constraint
C is then “guessed” according to a heuristic called the distribution strategy. The
constraint C is then added to the first copy and ¬C is added to the second copy.
We then continue with each copy. The process is continued until all spaces are
either solved or failed. This gives us all solutions to the problem.

12.2 Programming techniques

Now that we have seen the basic concepts, let us see how to program with them.
A constraint problem is defined by a one-argument procedure. The procedure
argument is bound to the solution of the problem. Inside the procedure, next to
the usual language operations, two new kinds of operations are possible:

• Constraints. These specify the relationships between the different parts of
the problem. They can be either basic constraints or propagators.

• Specification of the distribution strategy. This specifies how the search tree
is to be formed, i.e., which constraints C and ¬C are chosen at each node
when doing a search step.

In contrast to relational programming (see Chapter 9), there is no explicit creation
of choice points (no choice statement). This would be too crude a way to search;
what actually happens is that choice points are created dynamically in terms of
the distribution strategy that is specified.

12.2.1 A cryptarithmetic problem

Now that we have the basic concepts, let us see how we can program with them.
As example we take a well-known combinatoric puzzle, the Send+More=Money
problem.3 The problem is to assign digits to letters such that the following
addition makes sense:

3This example is taken from [174].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

762 Constraint Programming

proc {SendMoreMoney ?Sol}
S E N D M O R Y

in
Sol=sol(s:S e:E n:N d:D m:M o:O r:R y:Y) %1
Sol:::0#9 %2
{FD.distinct Sol} %3
S\=:0 %4
M\=:0

1000*S + 100*E + 10*N + D %5
+ 1000*M + 100*O + 10*R + E
=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Sol} %6

end

Figure 12.1: Constraint definition of Send-More-Money puzzle

S E N D
+ M O R E
M O N E Y

There are two conditions: each letter is assigned to a different digit and the
leading digits of the numbers are different from zero (S 6= 0 and M 6= 0).

To solve this problem with constraints, the first step is to model the problem,
i.e., to set up data structures and constraints that reflect the problem structure.
In this problem, it is easy: each digit is a variable and the problem conditions be-
come constraints on the variables. There are eight different letters, and therefore
eight variables.

The second step is to define a one-argument procedure that implements this
model. Figure 12.1 shows one way to define the procedure. The numbered state-
ments have the following effects:

1. The solution Sol is a record with one field for every different letter.

2. The fields of Sol are integers in the domain {0, ..., 9}.

3. The fields of Sol are pairwise distinct, i.e., no two have the same value.

4. Since they are leading digits, the values of S and Mare not zero.

5. All the digits satisfy the equation SEND + MORE = MONEY .

6. The distribution strategy tries the letters according to a first-fail strategy
(ff). This means that the strategy tries first the letter with the least
number of possibilities, and with this letter it tries the least value first.

The third step is to solve the problem:

{Browse {SolveAll SendMoreMoney}}

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.2 Programming techniques 763

This computes and displays a list of all solutions. Note that this is done in the
same way as search in relational programming (see Chapter 9). This displays:

[sol(d:7 e:5 m:1 n:6 o:0 r:8 s:9 y:2)]

In other words, there is just one solution, which is:

9 5 6 7
+ 1 0 8 5
1 0 6 5 2

That is all there is to it! In practice, things are a bit more complicated:

• Modeling the problem. Modeling the problem is not always easy. Often
there are many possible ways to represent the problem in terms of con-
straints. It is not always obvious which one is best!

• Constraints and distribution strategies. There are many constraints
and distribution strategies to choose from. Which ones are best depends
strongly on the problem.

• Understanding the problem. The first solution to a realistic problem
is usually too inefficient. There are many techniques to improve it. Some
possibilities are to take advantage of problem structure, to use redundant
constraints, to use different distribution strategies, and to use the Explorer
(an interactive graphical search tree exploration tool, see [171]).

12.2.2 Palindrome products revisited

In Section 9.2.1, we saw how to find palindrome products with relational pro-
gramming. The technique used there takes 45 seconds to find all solutions for 6
digit palindromes. Here is a smarter solution that takes advantage of constraints
and the propagate-and-search approach:

proc {Palindrome ?Sol}
sol(A)=Sol
B C X Y Z

in
A::0#999999 B::0#999 C::0#999
A=:B*C
X::0#9 Y::0#9 Z::0#9
A=:X*100000+Y*10000+Z*1000+Z*100+Y*10+X
{FD.distribute ff [X Y Z]}

end

This takes slightly less than two seconds. We can do even better by realizing
that a palindrome XY ZZY X is always a multiple of 11. That is, XY ZZY X =
X · 100001 + Y · 10010 + Z · 1100, which means XY ZZY X/11 = X · 9091 + Y ·
910 + Z · 100. Taking advantage of this, we can specify the problem as follows:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

764 Constraint Programming

proc {Palindrome ?Sol}
sol(A)=Sol
B C X Y Z

in
A::0#90909 B::0#90 C::0#999
A=:B*C
X::0#9 Y::0#9 Z::0#9
A=:X*9091+Y*910+Z*100
{FD.distribute ff [X Y Z]}

end

This takes slightly less than 0.4 seconds to solve the same problem. What can
we conclude from this simple example? Many things:

• A constraint-based formulation of a combinatoric problem can be much
faster than a generate-and-test formulation. For palindrome product, the
constraint solution is more than 100 times faster than the naive solution.

• To make it fast, you also have to take advantage of the problem structure.
A little bit of smarts goes a long way. For palindrome product, taking
advantage of the solution being a multiple of 11 makes the program 5 times
faster.

• A fast solution is not necessarily more complicated than a slow solution.
Compare the slow and fast solutions to palindrome product: they are about
equal in length and ease of understanding.

• Performance can depend strongly on the exact problem formulation. Chang-
ing it a little bit can make it much faster or (usually) much slower.

• To write a good specification, you have to understand the operational mean-
ing of the constraints as well as the logical meaning. The latter is enough
for showing correctness, but the former is essential to get good performance.

12.3 The constraint-based computation model

The propagate-and-search approach is supported by adding two concepts to the
stateful concurrent model: basic constraints and computation spaces. Basic
constraints are a simple generalization of declarative variables in the single-
assignment store. Computation spaces extend the model as shown in Figure 12.2.

A computation space collects together basic constraints and propagators, as
we saw in the example of Section 12.1.3. The basic constraints are a constraint
store. The propagators are threads. A computation space is always created inside
a parent space; it can see the constraints of its parent. In the figure, X is bound
to a computation space that is created inside the top-level space.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.3 The constraint-based computation model 765

...S1 S2 Sn

Mutable store

Threads

Constraint store

...

Mutable store

Threads

X=

Constraint store

ST1 ST2 STn

...S1 S2 Sn

Mutable store

Threads

Constraint store

...

Mutable store

Threads

X=

Constraint store

ST1 ST2 STn

...S1 S2 Sn

Mutable store

Threads

Constraint store

...

Mutable store

Threads

X=

Constraint store

ST1 ST2 STn

Top-level
computation space

Child space

Child space

W=atom

c1:WY=c1

W=atom

c1:W
Y=c1

W=atom
c1:WY=c1

W=atom

c1:W
Y=c1

W=atom
c1:WY=c1

W=atom

c1:W
Y=c1

Figure 12.2: Constraint-based computation model

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

766 Constraint Programming

A computation space is also an ADT that implements a number of operations.
With these operations, we can implement the propagate-and-search technique of
Section 12.1. The operations are explained in Section 12.4.

12.3.1 Basic constraints and propagators

We introduce basic constraints for finite domains as equations of the form x ∈ D,
where D is a finite integer set. This partial information is told to the store by
the statement x:: D. The domain D is specified with a compact notation (see
the examples in the previous sections). Successive tells x:: D1, x:: D2, . . .x:: Dn

restricts the domain of x to D1∩D2∩· · ·∩Dn, provided that the latter is nonempty.
Telling the empty domain for a variable would result in an inconsistent store (do
you see why?), so such a tell must fail. The basic constraint x ∈ {n} is simplified
to the equivalent relation x=n.

The usual variable declaration does not tell explicitly the domain of a fresh
variable. Its domain is implicit: it is the domain of rational trees. A ra-
tional tree is a non-partial value build with records and other basic values.
Equality with partial values acts as a domain restriction. For instance, telling
x=person(name: y age: z) restricts the domain of x to the rational trees that
match the partial value person(name: y age: z) .

A propagator is simply a thread that tells domain constraints to the store ac-
cording to their semantics. Each time a variable’s domain is changed in the store,
the propagators that use that variable must be given a chance to execute, so they
can propagate new partial information to variables. Waiting for a domain change
is a fine-grained variant of waiting for determinacy. A multiset of propagators
must behave in a concurrent declarative fashion, because that makes controlled
search effective.

12.4 Computation spaces

In the previous sections we have seen how to use constraints with built-in distri-
bution strategies. In this section we explain how computation spaces work, and
how to program search engines and distribution strategies with them.

Computation spaces are an abstraction that permits the high-level program-
ming of search abstractions and deep guard combinators. With computation
spaces, the computation model looks something like Figure 12.2. All the search
abstractions of Chapters 9 and 12 are programmed using spaces. Spaces have the
flexibility needed for real-world constraint problems and they can be implemented
efficiently: on real-world problems the Mozart implementation using copying and
recomputation is competitive in time and memory use with traditional systems
using trailing-based backtracking [168].

This section defines computation spaces, the operations that can be performed
on them (see Table 12.1), and gives an example of how to use them to program

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 767

search. Actually we use the example as a roadmap throughout the definitions of
concepts and operations. The discussion in this section follows the model in [172,
169]. This model is implemented in the Mozart system [129] and refines the one
presented in the articles [167, 170]. The space abstraction can be made language-
independent; [78] describes a C++ implementation of a similar abstraction that
provides both trailing and copying.

12.4.1 Programming search with computation spaces

A search strategy defines how the search tree is explored, e.g., depth-first search
or breadth-first search. A distribution strategy defines the shape and content of
the search tree, i.e., how many alternatives exist at a node and what constraint is
added for each alternative. Computation spaces can be used to program search
strategies and distribution strategies independent of each other. That is, any
search strategy can be used together with any distribution strategy. Here is how
it is done:

• Create the space with the correct program inside. This program defines all
the variables and constraints in the space.

• Let the program run inside the space. Variables and propagators are creat-
ed. All propagators execute until no more information can be added to the
store in this manner. The space eventually reaches stability.

• During the space’s execution, the computation inside the space can decide
to create a choice point. The decision which constraint to add for each
alternative defines the distribution strategy. One of the space’s threads will
suspend when the choice point is created.

• When the space has become stable, execution continues outside the space,
to decide what to do next. There are different possibilities depending on
whether or not a choice point has been created in the space. If there is
none, then execution can stop and return with a solution. If there is one,
then the search strategy decides which alternative to choose and commits
to that alternative.

The next section explains the operations we need for this approach, together with
a concrete example of a search engine. Section 12.5 gives another example of how
to program search with spaces. Many other strategies can be programmed than
are shown here; for more information see [172, 169].

12.4.2 Definition

Our goal is to present computation spaces as a mean for implementing search
strategies and distribution strategies. We will explain in detail the execution of
a concrete example of a search engine on a small problem. The definitions of
concepts and operations will be given as they come in the execution.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

768 Constraint Programming

fun {DFE S}
case {Ask S}
of failed then nil
[] succeeded then [S]
[] alternatives(2) then C={Clone S} in

{Commit S 1}
case {DFE S} of nil then {Commit C 2} {DFE C}
[] [T] then [T]
end

end
end

% Given {Script Sol}, returns solution [Sol] or nil:
fun {DFS Script}

case {DFE {NewSpace Script}} of nil then nil
[] [S] then [{Merge S}]
end

end

Figure 12.3: Depth-first single solution search

〈statement〉 ::= {NewSpace 〈x〉 〈y〉 }

| {Choose 〈x〉 〈y〉 }

| {Ask 〈x〉 〈y〉 }

| {Commit 〈x〉 〈y〉 }

| {Clone 〈x〉 〈y〉 }

| {Inject 〈x〉 〈y〉 }

| {Merge 〈x〉 〈y〉 }

Table 12.1: Primitive operations for computation spaces

A depth-first search engine

Figure 12.3 shows how to program depth-first single solution search, in the case
of binary choice points. This explores the search tree in depth-first manner and
returns the first solution it finds. The problem is defined as a unary procedure
{Script Sol} that gives a reference to the solution Sol , just like the examples
of Section 12.2. The solution is returned in a one-element list as [Sol] . If there
is no solution, then nil is returned. In Script , choice points are defined with
the primitive space operation Choose .

The search function uses the primitive operations on spaces NewSpace, Ask ,
Commit , Clone , and Merge . We will explain each operation in detail as it comes
in the execution. Table 12.1 lists the complete set of primitive operations.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 769

A script example

Let us run the search engine on the example given in Section 12.1.3. The problem
was specified by the procedure Rectangle .

proc {Rectangle ?Sol}
sol(X Y)=Sol

in
X::1#9 Y::1#9
X*Y=:24 X+Y=:10 X=<:Y
{FD.distribute naive Sol}

end

We start the execution with the statement Sol={DFS Rectangle} , where DFS

and Rectangle are defined as above, and Sol is a fresh variable. If we expand
the body of the function, it should create two variables, say S and L, leading to
a configuration like the following. The box represents the thread that executes
the statements, and below it is a representation of the store.

S={NewSpace Rectangle}

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L S

Space creation

The first primitive space operation we use is NewSpace. In our example, it
creates a new computation space S, with a root variable Root , and one thread
that executes {Rectangle Root} . Both the new thread and the new store are
shown inside a box, which delimits the “boundaries” of the space.

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L S=
{Rectangle Root}

Root

A precise definition of NewSpace is

• S={NewSpace P} , when given a unary procedure P, creates a new compu-
tation space and returns a reference to it. In this space, a fresh variable R,
called the root variable, is created and a new thread, and {P R} is invoked
in the thread.

Recall that a computation space encapsulates a computation. It is thus an in-
stance of the stateful concurrent model, with its three parts: thread store, con-
straint store, and mutable store. As it can itself nest a computation space, the
spaces naturally form a tree structure:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

770 Constraint Programming

Space A

Space B

Top Level Space

A
nc

es
to

rs
X

Ta

Tb
X=Term

Threads Ta, Tb, and Tc all see●

variable X.

If Tb binds X then Tb & Tc will
see the binding. Ta won’t unless
Space B is merged into Space A.

●

● This is because child spaces are

become part of their parent store.
speculative: they may or may not

Because Space C is speculative,●

only Tc sees Y (Ta and Tb don’t).

Space C

Tc

Y

D
es

ce
nd

an
ts parent

parent

binding

sees

sees

Current space

sees

parent

Figure 12.4: Visibility of variables and bindings in nested spaces

• Tree structure. There is always a top level computation space where threads
may interact with the external world. A thread may create a new compu-
tation space. The new space is called a child space. The current space is
the child’s parent space. At any time, there is a tree of computation spaces
in which the top level space is the root. With respect to a given space, a
higher one in the tree (closer to the root) is called an ancestor and a lower
one is called a descendant.

• Threads and variables belong to spaces. A thread always belongs to exactly
one computation space. A variable always belongs to exactly one compu-
tation space.

Space execution

Now let us focus on the space S. The thread inside is runnable, so we will run it.
The reduction of the procedure call {Rectangle Root} gives

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 771

S=

local sol(X Y)=Root in

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Root}

end

Root

You might have noticed that the variable Rectangle is bound outside the space,
which did not prevent the inner thread to read its value and use it. Computation
spaces do respect precise visibility rules. Those rules provide a certain degree of
isolation from the “external” computation.

• Variable visibility. A thread sees and may access variables belonging to its
space as well as to all ancestor spaces. The thread cannot see the variables
of descendant spaces. Figure 12.4 gives an example with bindings.

• Basic constraint visibility. A thread may add basic constraints to variables
visible to it. This means that it may constrain variables belonging to its
space or to its ancestor spaces. The basic constraint will only be visible in
the current space and its descendants. That is, the parent space does not
see the binding unless the current space is merged with it (see later).

Posting constraints

The thread inside the space continues its execution. It creates two new variables
X and Y inside the space, and binds Root to sol(X Y) . This gives

S=

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Root}

Root=sol(X Y) X Y

It then tells the basic constraints X::1#9 and Y::1#9 to the constraint store of
the space, and creates new propagators, each one in its own thread. We have

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute naive Root}

Root=sol(X Y) X::1#9 Y::1#9

Concurrent propagation

Now propagators enter the scene. As we have seen in Section 12.1.3, they prop-
agate concurrently, reducing the domains to 4#6 . The space becomes

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute naive Root}

Root=sol(X Y) X::4#6 Y::4#6

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

772 Constraint Programming

Execution in a computation space does a variant of the maximally concurrent
model. It avoids the difficulties usually associated with this model. Let us see
why this is possible. Each constraint is implemented as a thread (called “propa-
gator”) that executes concurrently with the other propagators. Each propagator
adds information to the store until no more information can be added. Con-
straint programming avoids the difficulties of the maximally concurrent model
because propagator execution is monotonic: they only add information, they
never change or remove information. (This is essentially the same reason why
concurrent declarative programming is simpler than concurrent stateful program-
ming.) Furthermore, propagators have a logical semantics. All the information
they add is consistent with this semantics. If they are written correctly, then the
exact order in which they execute does not matter. When they reach a fixpoint
(space stability), i.e., when no propagator can add any more information, the
result is always the same.

Distribution

The propagators in the space are no longer runnable. At this point, FD.distribute

becomes runnable. This procedure implements the distribution strategy. It picks
a variable and a value following a heuristic, in this case X and 4, and proposes a
“guess”. For this it executes the statement {Choose 2} , which creates a choice
point with two alternatives, and blocks until a call to Commit unblocks it. The
interaction between Choose and Commit is explained in detail later. The whole
computation (including the parent space) now looks like

L={DFE S}

Sol= case L of ... end

Rectangle=< proc > Sol L

S=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The definition of Choose is

• Y={Choose N} is the only operation that is called from inside the space,
while the other operations are called from outside the space. It creates a
choice point with N alternatives. Then it blocks, waiting for an alternative
to be chosen by a Commit operation on the space. The Choose call defines
only the number of alternatives; it does not specify what to do for any given
alternative. Choose returns with Y=I when alternative 1≤I ≤N is chosen.
A maximum of one choice point may exist in a space at any time.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 773

State of a space

The space was running concurrently with its parent space. The thread of the
search engine now executes the statement L={DFE S} , which evaluates {Ask S} .
This operation asks the space for its status. In this case, it returns alternatives(2) ,
meaning that a choice point with two alternatives has been created inside the
space. After reduction of the case statement, the whole computation becomes

local C={Clone S} in

{Commit S 1}

L=case {DFE S} of ... end

end

Sol= case L of ... end

Rectangle=< proc > Sol L S=<space>

Here we give a precise definition of the various states of a space. A space is
runnable if it or a descendant contains a runnable thread, and blocked otherwise.
Let us run all threads in the space and its descendants, until the space is blocked.
Then the space can be in one of the following further states:

• The space is stable. This means that no additional basic constraints done
in an ancestor can make the space runnable. A stable space can be in four
further states:

– The space is succeeded. This means that it contains no choice points.
A succeeded space contains a solution to the logic program.

– The space is distributable. This means that the space has one thread
that is suspended on a choice point with two or more alternatives. A
space can have at most one choice point; attempting to create another
gives an error.

– The space is failed. This means that the space attempted to tell in-
consistent basic constraints, for instance binding the same variable to
two different values. No further execution happens in the space.

– The space is merged. This means that the space has been discarded and
its constraint store has been added to a parent. Any further operation
on the space is an error. This state is the end of a space’s lifetime.

• The space is suspended. This means that additional basic constraints done
in an ancestor can make the space runnable. Being suspended is usually
a temporary condition due to concurrency. It means that some ancestor
space has not yet transferred all required information to the space. A space
that stays not stable indefinitely usually indicates a programmer error.

The operation Ask is then defined as

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

774 Constraint Programming

• A={Ask S} asks the space S for its status. As soon as the space becomes
stable, A is bound. If S is failed, merged, or succeeded, then Ask returns
failed , merged , or succeeded . If S is distributable, then it returns
alternatives(N) , where N is the number of alternatives.

Cloning a space

The next statement of the search engine thread declares a variable C, and creates
a copy of the space S. Note that variables and threads belonging to S are copied
too, so that both spaces are independent of each other. For the sake of simplicity,
we have kept the same identifiers for S and C in the picture below. But they
actually denote different variables in the stores.

{Commit S 1}

L=case {DFE S} of ... end

Sol= case L of ... end

Rectangle=< proc > Sol L

S=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The definition of Clone is

• C={Clone S} , if S is a stable space, creates an identical copy (a clone) of S

and returns a reference to it. This allows both alternatives of a distributable
space to be explored.

Committing to an alternative

The search engine then executes {Commit S 1} . This indicates to the space S

to enter the first alternative. So the call to Choose inside the space unblocks and
returns 1. The distributor thread then binds X to 4, which leads to the space

S=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute [Y]}

Root=sol(X Y) X=4 Y::4#6

We define Commit as

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.4 Computation spaces 775

A={Ask X}
case A of
alternatives(N) then

{Commit X I}
end

...

I={Choose N}
case I of

1. Block

5. Synch on alternative
(pass I)

of 1 then ...

end
...

6. Run alternative
[] 2 then ...

...
...

(pass N)
3. Synch on stability

(in parent space)
Search strategy

Computation space X

...

4. Calculate alternative

2. Block

...

Figure 12.5: Communication between a space and its distribution strategy

• {Commit S I} , if S is a distributable space, causes the Choose call in the
space to complete and return I as its result. This may cause the space to
resume execution. The integer I must satisfy 1≤I ≤N, where N is the first
argument of the Choose call.

Now we see precisely how to make the search strategy interact with the distri-
bution strategy. The basic technique is to use Choose , Ask , and Commit to
communicate between the inside of a space and the search strategy, which is pro-
grammed in the parent space. Figure 12.5 shows how the communication works.
Within the space, calling I={Choose N} first informs the search strategy of the
total number of alternatives (N). Then the search strategy picks one (I) and in-
forms the space. The synchronization condition between the inside of the space
and the search strategy is stability, i.e., that there are no more local deductions
possible inside the space.

Merging a space

The propagators inside S now run until both variables become determined. All
the propagators are entailed by the store, they simply disappear from S:

S=
{FD.distribute [Y]}

Root=sol(X Y) X=4 Y=6

The distributor thread terminates too, because Y is determined, so the whole
computation becomes

L=case {DFE S} of ... end

Sol= case L of ... end

Rectangle=< proc > Sol L S= Root=sol(X Y) X=4 Y=6

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

776 Constraint Programming

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

The search engine calls again {DFE S} , which performs {Ask S} . The returned
value is now succeeded , which means that the computation inside S has termi-
nated with a consistent store. The search engine continues its execution. The
call to {DFE S} then returns [S] . The latter matches the second clause in DFS,
and the search ends with the statement Sol=[{Merge S}] . The call {Merge

S} merges S with the current space, and returns the root variable of S. The
computation becomes

Rectangle=< proc > Sol=Root L=[S] S=<merged>

Root=sol(X Y) X=4 Y=6

C=

X*Y=:24

X+Y=:10

X=<:Y

case {Choose 2}

of 1 then X=4 {FD.distribute [Y]}

[] 2 then X\=:4 {FD.distribute Root}

end

Root=sol(X Y) X::4#6 Y::4#6

Merging a space is necessary to access the solution:

• Access by merging. A thread cannot see the variables of a child space,
unless the child space is merged with its parent. Space merging is an explicit
program operation. It causes the child space to disappear and all the child’s
content to be added to the parent space.

And Merge is defined by

• {Merge S Y} binds Y to the root variable of space S and discards the space.

Space failure

Suppose now that the search would continue. This would be the case if the first
alternative had no solution. The search engine would then execute {Commit C

2} L={DFE C} . The statement {Commit C 2} causes {Choose 2} to return 2,
which makes the space C evolve to

C=
X*Y=:24 X+Y=:10 X=<:Y {FD.distribute Root}

Root=sol(X Y) X::5#6 Y::4#6

As we have seen, the action of the propagators lead to inconsistencies. For in-
stance, X*Y=:24 propagates the constraints X=6 and Y=4. The propagator X=<:Y

cannot be satisfied with those values, which makes the space C fail:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.5 Implementing the relational computation model 777

C=<failed>

In the search engine, the call to {Ask C} would return failed . This means that
C contains no solution. The search would then return nil in that case.

Failures, stateful operations, and interaction with the external world are en-
capsulated in computation spaces in the following way.

• Exceptions and failures. A thread that tries to add an inconsistent ba-
sic constraint to its constraint store will raise a failure exception. What
happens then in the top level space is implementation-dependent. If the
exception occurs in a child space and is not caught, then the space fails. A
failure happening in a propagator immediately results in its space’s failure,
because propagators are threads by themselves.

• Stateful operations. Operations on stateful entities across spaces are forbid-
den. For instance, a thread cannot read or change the value of a cell that
belongs to its space’s parent. A consequence is that only the top level space
can interact with the external world.

Injecting a computation into a space

There is one primitive operation that we have not used, namely Inject . This
operation is however useful, because it permits to add constraints to an existing
space. For instance, you can constrain the solution of a space to be “better” than
an already known solution. The definition of “better” is problem-dependent, of
course. Here is the definition of Inject :

• {Inject S P} is similar to space creation except that it uses an existing
space S. It creates a new thread in the space and invokes {P R} in the
thread, where R is the space’s root variable. This makes a stable space not
stable again. Adding constraints to an existing space is necessary for some
distribution strategies such as branch-and-bound and saturation [172, 169].

12.5 Implementing the relational computation

model

We end this brief introduction to constraint programming by connecting with
the relational computation model of Chapter 9. The relational model extends the
declarative model with choice and fail statements and with a Solve operation
to do encapsulated search. We can now show how to program these operations
with computation spaces. We have already showed how to do fail ; it remains
to implement choice and Solve . Their implementation is independent of the
constraint domain. It will work for finite domain constraints. It will also work
for the single-assignment store used in the rest of the book, since it is also a
constraint system.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

778 Constraint Programming

12.5.1 The choice statement

We can define the choice statement in terms of the Choose operation. The
following statement:

choice 〈s〉1 [] 〈s〉2 [] ... [] 〈s〉n end

is a linguistic abstraction that is defined as follows:

case {Choose N}
of 1 then 〈s〉1
[] 2 then 〈s〉2
...
[] N then 〈s〉n
end

This creates a choice point and then executes the statement corresponding to the
choice made by the search engine.

12.5.2 Implementing the Solve function

Figure 12.6 shows the implementation of the Solve function. It is an all-solution
search engine that uses both computation spaces and laziness. The reader should
pay attention to where laziness occurs. It is important because of the stateful
nature of spaces. For instance, in the else clause of SolveLoop , a clone of S

must be created before any attempt to Commit on S. Because of the lazy nature
of SolveLoop , we could actually have declared C and NewTail in reverse order:

...
NewTail={SolveLoop S I+1 N SolTail}
C={Space.clone S}

...

This works because the value of NewTail is not needed before C is committed.

12.6 Exercises

1. Cryptarithmetic. Write a program to solve all puzzles of the form “Word1
plus Word2 equals Word3”. The words should be input interactively. Use
the solution to the Send+More=Money problem given in Section 12.2.1 as
a guide. The user should be able to stop the search process if it is taking
too long. Use the Solve function to enumerate the solutions.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

12.6 Exercises 779

% Returns the list of solutions of Script given by a lazy
% depth-first exploration
fun {Solve Script}

{SolveStep {Space.new Script} nil}
end

% Returns the list of solutions of S appended with SolTail
fun {SolveStep S SolTail}

case {Space.ask S}
of failed then SolTail
[] succeeded then {Space.merge S}|SolTail
[] alternatives(N) then {SolveLoop S 1 N SolTail}
end

end

% Lazily explores the alternatives I through N of space S,
% and returns the list of solutions found, appended with
% SolTail
fun lazy {SolveLoop S I N SolTail}

if I>N then
SolTail

elseif I==N then
{Space.commit S I}
{SolveStep S SolTail}

else
C={Space.clone S}
NewTail={SolveLoop S I+1 N SolTail}

in
{Space.commit C I}
{SolveStep C NewTail}

end
end

Figure 12.6: Lazy all-solution search engine Solve

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

780 Constraint Programming

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part IV

Semantics

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Chapter 13

Language Semantics

“This is the secret meaning of the runes; I hid here magic-runes,
undisturbed by evil witchcraft. In misery shall he die by means of
magic art who destroys this monument.”
– Runic inscription, Björketorp Stone

For all the computation models of the previous chapters, we gave a formal se-
mantics in terms of a simple abstract machine. For the declarative model, this
abstract machine contains two main parts: a single-assignment store and a seman-
tic stack. For concurrency, we extended the machine to have multiple semantic
stacks. For lazy execution we added a trigger store. For explicit state we added
a mutable store. For read-only views we added a read-only store.

This chapter brings all these pieces together. It defines an operational seman-
tics for all the computation models of the previous chapters.1 We use a different
formalism than the abstract machine of the previous chapters. The formalism of
this chapter is more compact and easier to reason with than the abstract machine
definitions. It has three principal changes with respect to the abstract machine
of Chapter 2:

• It uses a concise notation based on reduction rules. The reduction rules
follow the abstract syntax, i.e., there are one or more rules for each syntactic
construct. This approach is called Structural Operational Semantics, or
SOS for short. It was pioneered by Gordon Plotkin [208].

• It uses substitutions instead of environments. We saw that statements, in
order to be reducible, must define bindings for their free identifiers. In
the abstract machine, these bindings are given by the environment in the
semantic statement. In this chapter, the free identifiers are directly substi-
tuted by references into the store. We have the invariant that in a reducible
statement, all free identifiers have been replaced by store references.

1This chapter was co-authored with Raphaël Collet.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

784 Language Semantics

• It represents the single-assignment store as a logical formula. This formula is
a conjunction of basic constraints, each of which represents a single variable
binding. Activation conditions are replaced by logical conditions such as
entailment and disentailment.

The chapter is structured as follows:

• Section 13.1 is the main part. It gives the semantics of the shared-state
concurrent model.

• Section 13.2 gives a formal definition of declarative concurrency, which is an
important property of some subsets of the shared-state concurrent model.

• Section 13.3 explains how subsets of this semantics cover the different com-
putation models of the previous chapters.

• Section 13.4 explains how the semantics covers the different programming
abstractions and concepts seen in previous chapters.

• Section 13.5 briefly summarizes the historical development of the shared-
state concurrent model and its relative, the message-passing concurrent
model.

This chapter is intended to be self-contained. It can be understood independently
of the previous chapters. However, its mathematical content is much higher than
the previous chapters. To aid understanding, we therefore recommend that you
connect it with the abstract machine that was defined before.

13.1 The shared-state concurrent model

This section gives a structural operational semantics for the shared-state concur-
rent model. We also call this the general computation model, since it is the most
general model of the book. It covers all the computation models of the book ex-
cept for the relational and constraint-based models. The semantics of each earlier
model, e.g., the declarative, declarative concurrent, and stateful models, can be
obtained by taking just the rules for the language constructs that exist in those
models. A configuration in the shared-state concurrent model consists of several
tasks connected to a shared store:

task · · · task
↘ ↙
store

A task, also called thread, is the basic unit of sequential calculation. A compu-
tation consists of a sequence of computation steps, each of which transforms a
configuration into another configuration. At each step, a task is chosen among all
reducible tasks. The task then does a single reduction step. The execution of the
different tasks is therefore interleaved. We say that the model has an interleaving
semantics. Concurrency is modeled by reasoning about all possible interleavings.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 785

13.1.1 The store

The store consists of two parts: a single-assignment store and a predicate store:

• The single-assignment store (also called constraint store) contains variables
and their bindings. The constraint store is monotonic: variables and bind-
ings can be added, but never changed or removed.

• The predicate store contains the additional information that is needed for
the execution of certain statements. The predicate store consists of the
procedure store (containing procedure values), the mutable store (contain-
ing cells), the trigger store (containing by-need triggers), and the read-only
store (containing read-only views). Some of these stores are nonmonoton-
ic. These stores are introduced in step-by-step fashion as we define the
reduction rules that need them.

All reduction rules are carefully designed so that task reduction is monotonic:
once a task is reducible, then it stays reducible even if information is added to
the constraint store or the predicate store is changed.

13.1.2 The single-assignment (constraint) store

The constraint store is a repository of information about the program variables.
For instance, the store can contain the information “x is bound to 3 and x is equal
to y”, which is written x=3 ∧ x=y. Such a set of bindings is called a constraint.
It has a logical semantics, which is explained in Chapter 9. This is why we also
call this store the constraint store. For this chapter we use just a small part of
the logical semantics, namely logical conjunction (adding new information to the
store, i.e., doing a binding) and entailment (checking whether some information
is in the store).

The constraint store entails information. For example, the store x=3 ∧ x=y
entails y=3, even though that information is not directly present as a binding.
We denote the store by σ and we write this as σ |= y=3. We also use another
relation called disentailment. If β is a constraint, then we say that σ disentails β
if σ entails the negation of β, i.e., σ |= ¬β. For example, if σ contains x=3 then
it disentails x=4.

Entailment and disentailment are the general relations we use to query the
store. They are both forms of logical implication. We assume that the implemen-
tation uses an efficient algorithm for checking them. Such an algorithm is given
in Section 2.7.2.

The constraint store is monotonic, i.e., information can be added but not
changed or removed. Consequently, both entailment and disentailment are mono-
tonic too: when the store entails some information or its negation, this stays true
forever.2 The constraint store provides two primitive operations to the program-

2Note that “σ disentails β” is not the same as “it is not true that σ entails β”. The former
is monotonic while the latter is not.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

786 Language Semantics

mer, called tell and ask :

• Tell. The tell operation is a mechanism to add information to the store. A
task telling the information β to store σ updates the store to σ∧β, provided
that the new store is consistent. For instance, a task may not tell y=7 to
the store x=3∧x=y. It may however tell y=3, which is consistent with the
store. An inconsistent tell leaves the store unchanged. It is signaled with
some mechanism, typically by raising an exception.

• Ask. The ask operation is a mechanism to query the store for the presence
of some information. A task asking store σ for information β becomes
reducible when σ entails either β or its negation ¬β. For instance, with
the store x=3 ∧ x=y, asking for y=3 will give an affirmative answer (the
information is present). Asking for y=4 will give a negative answer (the
information will never be present). An affirmative answer corresponds to
an entailment and a negative answer corresponeds to a disentailment. The
task will not reduce until either an affirmative or negative answer is possible.
Therefore the ask operation is a synchronization mechanism. The task
doing the ask is said to synchronize on β, which is called its guard.

Monotonicity of the store implies a strong property: task reduction is monotonic.
Assume that a task waits for the store to contain some information, i.e., the task
becomes reducible when the store entails some information. Then, once the task
is reducible, it stays reducible even if other tasks are reduced before it. This
is an excellent basis for dataflow concurrency, where tasks synchronize on the
availability of data.

13.1.3 Abstract syntax

Figure 13.1 defines the abstract syntax for the kernel language of the shared-
state concurrent model. Here S denotes a statement, C, P , X, Y denote variable
identifiers, k denotes an integer constant, and n is an integer such that n ≥ 0.
In the record f(l1:X1 · · · ln:Xn), the label f denotes an atom, and each one of the
features li denotes an atom or integer constant. We use ≡ to denote equality
between semantic objects, in order to avoid confusion with = in the equality
statement.

We assume that in any statement defining a lexical scope for a list of variable
identifiers, the identifiers in the list are pairwise distinct. To be precise, in the
three statements

local X1 · · ·Xn in S end

case X of f(l1:X1 · · · ln:Xn) then S1 else S2 end

proc { P X1 · · ·Xn} S end

we must have Xi 6≡ Xj for i 6= j. We further assume that all identifiers (including
X) are distinct in the record tell X=f(l1:X1 · · · ln:Xn). These conditions on

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 787

S ::= skip empty statement
| S1 S2 sequential composition
| thread S end thread introduction

| local X1 · · ·Xn in S end variable introduction (n ≥ 1)

| X=Y imposing equality (tell)
| X=k
| X=f(l1:X1 · · · ln:Xn)

| if X then S1 else S2 end conditional statements (ask)
| case X of f(l1:X1 · · · ln:Xn)

then S1 else S2 end

| {NewNameX} name introduction

| proc { P X1 · · ·Xn} S end procedural abstraction
| { P X1 · · ·Xn}

| {IsDet X Y } explicit state
| {NewCell X C}

| {Exchange C X Y }

| {ByNeed P X} by-need trigger

| Y =!! X read-only variable

| try S1 catch X then S2 end exception handling
| raise X end

| {FailedValue X Y }

Figure 13.1: The kernel language with shared-state concurrency

pairwise distinctness are important to ensure that statements are truly primitive,
i.e., that there are no hidden tells of the form X = Y .

13.1.4 Structural rules

The system advances by successive reduction steps. A possible reduction step is
defined by a reduction rule of the form

T T ′

σ σ′ if C

stating that the computation makes a transition from a multiset of tasks T con-
nected to a store σ, to a multiset of tasks T ′ connected to a store σ′. We call
the pair T /σ a configuration. The rule can have an optional boolean condition
C, which has to be true for the rule to reduce. In this notation, we assume that
the left-hand side of a rule (the initial configuration T /σ) may have patterns and

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

788 Language Semantics

that an empty pattern matches anything. For the rule to reduce, the pattern
must be matched in the obvious way.

We use a very light notation for multisets of tasks: the multiset is named
by a letter in calligraphic style, disjoint union is denoted by a white space, and
singletons are written without curly braces. This allows to write “T1 T T2” for
{T1}]T]{T2}. Any confusion with a sequence of statements is avoided because
of the thread syntax (see later). We generally write “σ” to denote a store, leaving
implicit the set of its variables, say V. If need be, we can make the set explicit
by writing the store with V as a subscript: σV .

We use two equivalent notations to express that a rule has the entailment
condition σ |= β. The condition can be written as a pattern on the left-hand side
or as an explicit condition:

T T ′

σ ∧ β σ ∧ β
or

T T ′

σ σ
if σ |= β

In the definitions that follow, we use whichever notation is the most convenient.
We assume the semantics has the following two rules, which express model

properties that are independent of the kernel language.

T U T ′ U
σ σ′ if

T T ′

σ σ′
T T
σ σ′ if σ and σ′ are equivalent

The first rule expresses concurrency: a subset of the threads can reduce without
directly affecting or depending on the others. The second rule states that the
store can be replaced by an equivalent one. The second rule can also be written
as

σ σ′ if σ and σ′ are equivalent

(using an empty pattern instead of T).

Equivalent stores

A store σ consists of a constraint store σc and a predicate store σp. We denote
this as σ = σc ∧ σp. We say that two stores σ and σ′ are equivalent if (1) their
constraint stores entail one another, that is, σc |= σ′

c and σ′
c |= σc, and (2) their

stores entail the other’s predicate store, that is, σ |= σ′
p and σ′ |= σp.

We define entailment for the predicate store σp as follows. We consider σp as
a multiset of items called predicates. A predicate can be considered as a tuple of
variables, e.g., trig(x, y) is a predicate. We say that σ |= p′1 ∧ · · · ∧ p′n if there
exists a subset {p1, . . . , pn} of σp such that for all i, pi and p′i have the same
labels and number of arguments, and the corresponding arguments of pi and p′i
are equal in σc. For example, if σ ≡ x=x′ ∧ trig(x, y) then σ |= trig(x′, y).

This definition of equivalence is a form of logical equivalence. It is possible
because entailment makes the store independent of its representation: if σ and
σ′ are equivalent, then σ |= γ if and only if σ′ |= γ.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 789

13.1.5 Sequential and concurrent execution

A thread is a sequence of statements S1 S2 · · ·Sn that we write in a head-tail
fashion with angle brackets, i.e., 〈S1 〈S2 〈· · · 〈Sn 〈〉〉 · · · 〉〉〉. The abstract syntax
of threads is

T ::= 〈〉 | 〈S T 〉.
A terminated thread has the form 〈〉. Its reduction simply leads to an empty set
of threads. A non-terminated thread has the form 〈S T 〉. Its reduction replaces
its topmost statement S by its reduction S ′:

〈〉
σ σ

〈S T 〉 〈S ′ T 〉
σ σ′ if

S S ′

σ σ′

(We extend the reduction rule notation to allow statements in addition to mul-
tisets of tasks.) The empty statement, sequential composition, and thread intro-
duction are intimately tied to the notion of thread. Their reduction needs a more
specific definition than the one given above for S:

〈skip T 〉 T
σ σ

〈(S1 S2) T 〉 〈S1 〈S2 T 〉〉
σ σ

〈thread S end T 〉 〈T 〉 〈S 〈〉〉
σ σ

The empty statement skip is removed from the thread’s statement sequence. A
sequence S1 S2 makes S1 the thread’s first statement, while thread S end creates
a new thread with statement S, that is, 〈S 〈〉〉.

13.1.6 Comparison with the abstract machine semantics

Now that we have introduced some reduction rules, let us briefly compare them
with the abstract machine. For example, let us consider the semantics of sequen-
tial composition. The abstract machine semantics defines sequential composition
as follows (taken from Section 2.4):

The semantic statement is

(〈s〉1 〈s〉2, E)

Execution consists of the following actions:

• Push (〈s〉2, E) on the stack.

• Push (〈s〉1, E) on the stack.

The reduction rule semantics of this chapter defines sequential composition as
follows (taken from the previous section):

〈(S1 S2) T 〉 〈S1 〈S2 T 〉〉
σ σ

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

790 Language Semantics

It pays dividends to compare carefully these two definitions. They say exactly
the same thing. Do you see why this is? Let us go over it systematically. In
the reduction rule semantics, a thread is given as a sequence of statements. This
sequence corresponds exactly to the semantic stack of the abstract machine. The
rule for sequential composition transforms the list from 〈(S1 S2) T 〉 to 〈S1 〈S2 T 〉〉.
This transformation can be read operationally: first pop (S1 S2) from the list,
then push S2, and finally push S1.

The reduction rule semantics is nothing other than a precise and compact
notation for the English-language definition of the abstract machine with substi-
tutions.

13.1.7 Variable introduction

The local statement does variable introduction: it creates new variables in the
store and replaces the free identifiers by these variables. We give an example to
understand how the local statement executes. In the following statement, the
identifier Foo in S2 refers to a different variable from the one referred to by Foo

in S1 and S3:
local Foo Bar in

S1

local Foo in S2 end

S3


 ≡ S4

end

The outermost local replaces the occurrences of Foo in S1 and S3 but not those
in S2. This gives the following reduction rule:

local X1 · · ·Xn in S end S{X1→x1, . . . , Xn→xn}
σV σV∪{x1,...,xn}

if x1, . . . , xn fresh variables

In this rule, as in subsequent rules, we use “x” to denote a variable and “X” to
denote an identifier. A variable is fresh if it is different from all existing variables
in the store. So the condition of the rule states that all the variables xi are
distinct and not in V.

The notation S{X1→x1, . . . , Xn→xn} stands for the simultaneous substitu-
tion of the free occurrences of X1 by x1, X2 by x2, . . . , Xn by xn. For instance,
the substitution of Foo by x and Bar by y in the statement S4 defined above
gives

S4{Foo→x, Bar→y} ≡ S1{Foo→x, Bar→y}
local Foo in S2{Bar→y} end

S3{Foo→x, Bar→y}
A substitution is actually an environment that is used as a function. Since vari-
ables and identifiers are in disjoint sets, the substitution S{X1→x1, . . . , Xn→xn}
is equivalent to the composition of single substitutions S{X1→x1} · · · {Xn→xn}.
The substitution operation S{X→x} is defined formally in Section 13.1.17.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 791

13.1.8 Imposing equality (tell)

According to Section 13.1.7, a variable introduced by local has no initial value.
The variable exists but the store simply has no information about it. Adding
information about the variable is done by the tell operation. Let β denote a
statement imposing equality. This statement has three possible forms:

β ::= x=y | x=z | x=f(l1:x1 · · · ln:xn).

This states that x is equal to either another variable y, an integer or name z, or
a record with label f , features (i.e., field names) li, and fields xi. Doing a tell
operation adds the information in β to the store, provided that it does not lead
to an inconsistent store. This is also called binding the variable x.

It is possible that the new information in β conflicts with what the store
already knows about x. We say that β is inconsistent with σ. This happens
whenever β ∧ σ ↔ false . For example, take β ≡ x=10 and σ ≡ x=20. Instead
of adding β to the store, we signal this as an error, e.g., by raising an exception.
Therefore the store is always consistent.

In practice, most tell operations are very simple: telling β just binds one
variable, x, without binding any others. For example, telling x=23 where σ has
no binding for x. But the tell operation is actually much more general. It can
cause many bindings to be done. For example, take σ ≡ x=f(x1 x2)∧y=f(y1 y2).
Then telling x = y does three bindings: x=y, x1=y1, and x2=y2.

Naive semantics of tell

The following two rules decide whether to add β to the store.

β skip

σ σ ∧ β
if σ ∧ β is consistent

β fail

σ σ
if σ ∧ β is inconsistent

(Note that β is used to denote both a statement and a constraint.) We could
implement tell to follow these rules. However, such an implementation would
be complicated and hard to make efficient. The Mozart system uses a slightly
more elaborate semantics that can be implemented efficiently. The tell opera-
tion is a good example of the trade-off between simple semantics and efficient
implementation.

Realistic semantics of tell

We have seen that one tell operation can potentially add many bindings to the
store. This generality has an important consequence for inconsistent tells. For
example, take β ≡ x=y and σ ≡ x=f(x1 x2)∧y=f(y1 y2)∧x2=a∧y2=b. The tell

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

792 Language Semantics

is inconsistent. Does the tell add x1=y1 to the store? It would be nice if the tell
did nothing at all, i.e., σ is unchanged afterwards. This is the naive semantics.
But this is very expensive to implement: it means the tell operation would be a
transaction, which is rolled back if an inconsistency is detected. The system would
have to do a transaction for each variable binding. It turns out that implementing
tell as a transaction is not necessary. If β ∧σ is inconsistent, practical experience
shows that it is perfectly reasonable that some bindings remain in place after the
inconsistency is detected.

For the semantics of a tell operation we therefore need to distinguish a binding
that implies no other bindings (which we call a basic binding) and a binding that
implies other bindings (which we call a nonbasic binding). In the above example,
x=y is nonbasic and x1=y1 is basic.

Bindings implied by β

To see whether β is a basic binding, we need to determine the extra bindings that
happen as part of a tell operation, i.e., the bindings of other variables than x. For
a store σ, we write β

σ→ γ to say that the binding β involves the extra binding
γ. The relation

σ→ is defined as the least reflexive transitive relation satisfying

x=f(l1:y1 · · · ln:yn)
σ→ xi=yi if σ |= x=f(l1:x1 · · · ln:xn)

x=y
σ→ xi=yi if σ |= x=f(l1:x1 · · · ln:xn) ∧ y=f(l1:y1 · · · ln:yn)

We can now define subbindingsσ(β), the set of bindings strictly involved by β and
not yet entailed by σ, as

subbindingsσ(β) =
{

γ
∣∣∣ β

σ→ γ and γ 6 σ→ β and σ 6|= γ
}

.

Rules for basic bindings

We refine the naive semantics to allow some nonbasic bindings to remain when
the tell is inconsistent. We first give the rules for the basic bindings. They decide
whether to add β to the store, in the simple case where β just binds one variable.

β skip

σ σ ∧ β
if subbindingsσ(β) = ∅ and σ ∧ β is consistent

β fail

σ σ
if subbindingsσ(β) = ∅ and σ ∧ β is inconsistent

If only basic bindings are done, then these rules are sufficient. In that case, the
naive semantics and the realistic semantics coincide. On the other hand, if there
are nonbasic bindings, we need one more rule, which is explained next.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 793

Rule for nonbasic bindings

The following rule applies when β involves other bindings. It allows β to be
decomposed into basic bindings, which can be told first.

β γ β
σ σ

if γ ∈ subbindingsσ(β)

With the three binding rules, we can now completely explain how a realistic tell
operation works. Telling β consists of two parts. If β is basic, then the two basic
binding rules explain everything. If β is nonbasic, then the nonbasic binding rule
is used to “peel off” basic bindings, until the tell is reduced to basic bindings only.
The rule allows basic bindings to be peeled off in any order, so the implementation
is free to choose an order that it can handle efficiently.

This rule handles the fact that some bindings may be done even if β is incon-
sistent with the store. The inconsistency will eventually be noticed by a basic
binding, but some previously peeled-off basic bindings may have already been
done by then.

13.1.9 Conditional statements (ask)

There is a single conditional statement that does an ask operation, namely the if

statement. The reduction of an if statement depends on its condition variable:

if x then S1 else S2 end S1

σ ∧ x=true σ ∧ x=true

if x then S1 else S2 end S2

σ ∧ x=false σ ∧ x=false

This statement synchronizes on the value of the variable x. The first rule applies
when the store entails x=true and the second rule applies when the store entails
x=false . The value of x can be determined by a boolean function, as in x=(y<z)
(Section 13.1.11). What happens if x is different from the atoms true and false

is explained later.
The if statement only becomes reducible when the store entails sufficient

information to decide whether x is true or false . If there is not enough infor-
mation in the store, then neither rule can reduce. The if statement is said to
do dataflow synchronization. Because store variables are the basis for dataflow
execution, they are called dataflow variables.

The case statement

The case statement is a linguistic abstraction for pattern matching that is built
on top of if . Its semantics can be derived from the semantics of if , local , and
the record operations Arity and Label . Because pattern matching is such an

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

794 Language Semantics

interesting concept, though, we prefer to give the semantics of case directly as
reduction rules:

case x of f(l1:X1 · · · ln:Xn)
then S1 else S2 end

S1{X1→x1, . . . , Xn→xn}

σ ∧ x=f(l1:x1 · · · ln:xn) σ ∧ x=f(l1:x1 · · · ln:xn)

case x of f(l1:X1 · · · ln:Xn)
then S1 else S2 end

S2

σ σ

if σ |= x6=f(l1:x1 · · · ln:xn)
for any variables x1, . . . , xn

The semantics of pattern matching uses entailment. We say that x matches the
pattern f(l1:X1 · · · ln:Xn) if there exist x1, . . . , xn such that the store entails
x=f(l1:x1 · · · ln:xn). If the match is successful, then the case statement reduces
to S1 where the identifiers Xi are replaced by the corresponding xi. This implies
that the lexical scope of the Xi covers the whole statement S1. Otherwise, if we
can deduce that the match will never succeed, the case reduces to S2. If there
is not enough information to decide one way or another, then neither rule can
reduce. This is the dataflow behavior of case .

Determined variables and the Wait statement

We say that a variable is determined if it is bound to an integer, a name, or
a record. We say an equality determines a variable if it results in the variable
becoming determined. We define the predicate det(x) which is entailed by the
store when the given variable x is determined.

σ |= det(x) iff σ |= x=z for some integer or name z
or σ |= x=f(l1:x1 . . . ln:xn) for some f, li, xi with n ≥ 0

It is useful to introduce a statement that blocks until a variable is determined.
We call this the Wait statement. Its semantics is extremely simple: it reduces to
skip when its argument is determined.

{Wait x} skip

σ σ
if σ |= det(x)

Wait is a form of ask; like the case statement it can be defined in terms of if :

proc {Wait X}
if X==unit then skip else skip end

end

That is, {Wait X} waits until it can be decided whether X is the same as or
different from unit . This reduces when anything definite, no matter what, is
known about X.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 795

13.1.10 Names

Names are unforgeable constants, similar to atoms but without a print represen-
tation. They are used in the semantics to give a unique identity to procedures
and cells (see Sections 13.1.11 and 13.1.12). But their usefulness goes much be-
yond this semantic role. They behave as first-class rights, because they do not
have a concrete representation and cannot be forged. A thread cannot guess a
name value: a thread can know a name only if it references it via one of its vari-
ables. We therefore provide names to the programmer as well as using them in
the semantics.

There are just two operations on a name: creation and equality test. A name
is equal only to itself. New names can be created at will. We use the metavariable
ξ to denote a name, and we extend the equality statement for names:

β ::= · · · | x=ξ.

This statement cannot be typed directly by the programmer, but only created
indirectly through the NewNameoperation, which creates a new name:

{NewNamex} x=ξ
σ σ

if ξ fresh name

The NewNameoperation is not needed for the semantics of procedures and cells.

13.1.11 Procedural abstraction

A procedure is created by the execution of a proc statement. This puts a proce-
dure value proc {$ X1 · · ·Xn} S end in the procedure store. This value is almost
the same as a λ-expression in the λ-calculus. The difference is a matter of detail:
a true λ expression returns a result when applied, whereas a procedure value binds
its arguments when applied. This means that a procedure value can return any
number of results including none. When the procedure is applied, its procedure
value is pushed on the semantic stack and its argument identifiers Xi reference
its effective arguments. The procedure value must of course contain no free oc-
currence of any identifier. This can be proved as a property of the reduction rule
semantics.

We associate a procedure to a variable by giving the procedure a name. Names
are globally unique constants; they were introduced in the previous section. We
pair the name ξ with the procedure value, giving ξ:proc {$ X1 · · ·Xn} S end ,
which is put in the procedure store. The procedure store consists of pairs name:value
which define a mapping from names to procedure values. A variable that refers
to the procedure is bound to ξ in the constraint store.

proc { xp X1 · · ·Xn} S end xp=ξ
σ σ ∧ ξ:proc {$ X1 · · ·Xn} S end

if ξ fresh name

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

796 Language Semantics

{ xp x1 · · ·xn} S{X1→x1, . . . , Xn→xn}
σ ∧ xp=ξ ∧ ξ:proc {$ X1 · · ·Xn} S end σ ∧ xp=ξ ∧ ξ:proc {$ X1 · · ·Xn} S end

It is interesting to see the dataflow behavior of the procedure call. The invocation
statement { xp x1 · · ·xn} synchronizes on the value of xp. So the procedure can
be created in a concurrent thread, provided that no other thread binds xp to a
value.

Where is the contextual environment?

In the abstract machine, a procedure value consists of two parts: the proce-
dure’s source definition and a contextual environment that gives its external ref-
erences. Where does the contextual environment appear in the procedure value
ξ:proc {$ X1 · · ·Xn} S end? It is very simple: the contextual environment ap-
pears in the procedure body S. When a local statement (or another statement
that creates variables) executes, it substitutes identifiers by variables in all the
statements that it encompasses, including procedure bodies. Take for example:

local Add N in
N=3
proc {Add A B} B=A+N end

end

When the procedure is defined, it creates the value ξ:proc {$ A B} B=A+ n end ,
where n is the variable that was substituted for N. The contextual environment
is {n}.

Built-in procedures

A practical implementation of the shared-state concurrent model has to define
built-in procedures, such as arithmetic operators, comparisons, etc. For instance,
the sum operation can be written as x=x1 +x2, which is actually a shorthand for
the procedure call {Add x1 x2 x} that is defined by

{Add x1 x2 x} x=k
σ ∧ x1=k1 ∧ x2=k2 σ ∧ x1=k1 ∧ x2=k2

if k = k1 + k2

Another built-in procedure is the equality test, which is often used in conjunction
with an if statement. Equality test is the general form of the ask operation
defined in Section 13.1.2. It is usually written as a boolean function in infix
notation, as in x=(x1==x2) which is shorthand for {Equal x1 x2 x} .

{Equal x1 x2 x} x=true

σ σ
if σ |= x1=x2

{Equal x1 x2 x} x=false

σ σ
if σ |= x1 6=x2

An algorithm to implement the Equal operation is given in Section 2.7.2. Notice
that both Add and Equal have dataflow behavior.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 797

13.1.12 Explicit state

There are two forms of explicit state in the model. First, there is the boundness
check of dataflow variables, which is a weak form of state. Then there are cells,
which is a true explicit state. We explain them in turn. The relationship between
the two is explored in an exercise.

Boundness check

The boundness check IsDet lets us examine whether variables are determined or
not, without waiting. This lets us examine the instantaneous status of a dataflow
variable. It can be defined with the following rules:

{IsDet x y} y=true

σ σ
if σ |= det(x)

{IsDet x y} y=false

σ σ
if σ |= ¬det(x)

The first rule, checking whether x is determined, is similar to the rule for Wait .
It is the second rule that introduces something new: it allows to give a definite
result, y = false , for a negative test. This was not possible up to now. This
is the first rule in our semantics that has a nonmonotonic condition, i.e., if the
rule is reducible then adding more information to the store can make the rule no
longer reducible.

Cells

All the statements introduced up to now define a language that calculates with the
constraint store and procedure store, both of which are monotonic. We have now
arrived at a point where we need a nonmonotonic store, which we call the mutable
store. The mutable store contains entities called cells, which implement explicit
state. This is important for reasons of modularity (see Section 4.7). It greatly
increases the model’s expressive power, allowing object-oriented programming,
for instance. The reverse side of the coin is that reasoning about programs and
testing them become harder.

A cell is named in the same way as a procedure: when the cell is created, a
fresh name ξ is associated with it. A pair ξ:x is put in the mutable store, where
the variable x defines the current value of the cell. One changes a cell’s value to
y by replacing the pair ξ:y in the mutable store by ξ:y. Cells need two primitive
operations only, namely cell creation and exchange:

{NewCell x xc} xc=ξ
σ σ ∧ ξ:x

if ξ fresh name

{Exchange xc xold xnew} xold=x
σ ∧ xc=ξ ∧ ξ:x σ ∧ xc=ξ ∧ ξ:xnew

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

798 Language Semantics

Having just one operation to use cells, Exchange , is rather minimal. It is often
convenient to assume that two other operations exist, namely xc:= x (assignment)
and x=@xc (access). Since we can define them in terms of Exchange , no additional
rules are needed for them.

It is interesting to see the dataflow behavior of Exchange . It blocks until its
first argument references a cell. It never blocks on the second or third arguments.
This allows it to manipulate the cell’s contents even before they are determined.

Example of a stream

Using cells and dataflow variables together permits some remarkable program-
ming techniques. We give a small example that uses a stream. Assume that the
cell C contains the tail of a stream. Then the following statement adds the atom
one to the stream:

local X Old New in
{Exchange C Old New}
X=one
Old=X|New

end

The three instructions inside this local statement can be executed in any order
and the final result is exactly the same. What’s more, several threads can inde-
pendently add elements to the stream by each executing this local statement.
The order of the elements on the stream is determined by the order in which the
Exchange statements are executed.

13.1.13 By-need triggers

The by-need trigger is the basic concept used to define demand-driven execution.
Its semantics is carefully designed so that the demand-driven concurrent model
is still declarative. We define the semantics in two steps. We first define the
needσ(S, x) relation that says when statement S “needs” variable x. We then
define the semantics of the ByNeed operation. For this, we add two predicates to
the store, namely need(x) and trig(p, x). We can view these as sitting in a new
store called the trigger store.

The semantics of Section 4.5.1 is correct according to this section, but the
semantics of this section is more general (it allows more executions). Section 4.5.1
is more restricted to make it easier to implement.

The by-need semantics of this section is designed so that the demand-driven
concurrent model of Chapter 4 is declarative. In particular, the semantics is
designed so that the need(x) predicate is monotonic, reduction rules for by-need
triggers introduce no nondeterminism, and unification never blocks because of
by-need execution.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 799

The needσ(S, x) relation

The relation needσ(S, x) holds between a statement S, a store σ, and a variable
x if and only if three conditions hold:

• No reduction is possible for S with store σ.

• There exists a constraint c (a set of variable bindings) such that σ ∧ c is
consistent and a reduction is possible for S with store σ ∧ c.

• It is true that σ |= ¬det(x) and for all constraints c that satisfy the previous
condition, we have σ ∧ c |= det(x).

The first condition says that S is suspended. The second condition says that S
can be made reducible by adding bindings to the store. The third condition says
that these added bindings also make x determined, i.e., making x determined is
a necessary condition on the added bindings.

Rules for need(x)

We use the needσ(S, x) relation to decide when to add the need(x) predicate to
the trigger store. The first rule implements this idea:

S S
σ σ ∧ need(x)

if needσ(S, x) and σ 6|= need(x)

We need a second rule:

σ σ ∧ need(x)
if σ |= det(x) and σ 6|= need(x)

This rules says that even if no statement needs x, the mere fact of x being
determined is enough to make it needed. This ensures that the need(x) predicate
is monotonic. We can use this fact to show that the demand-driven model is
declarative.

Rules for by-need trigger

The following rule defines the creation of a by-need trigger:

{ByNeed xp x} skip

σ σ ∧ trig(xp, x)

The following rule defines the activation of a by-need trigger:

〈{ xp x} 〈〉〉
σ ∧ trig(xp, x) σ

if σ |= need(x)

These two rules can be seen as a variation of the semantics of thread { xp x} end ,
where the existence of need(x) is used to decide whether or not to execute { xp x} .
The predicate trig(xp, x) can be seen as a kind of suspended thread.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

800 Language Semantics

Lazy functions

A lazy function is implemented by attaching a by-need trigger to the variable that
will contain the function result. The “lazy ” annotation is a syntactic short-cut
for this technique. Any lazy function, e.g.,

fun lazy {F X1 ... Xn} 〈expr〉 end

behaves as if it were defined by:

fun {F X1 ... Xn}

{ByNeed fun {$} 〈expr〉 end }

end

When written in full, this becomes:

proc {F X1 ... Xn X}

local P in

proc {P X} X= 〈expr〉 end

{ByNeed P X}

end

end

The WaitQuiet statement

It is possible to define a variation of Wait , called WaitQuiet , that has a different
behavior with by-need execution:

{WaitQuiet x} skip

σ σ
if σ |= det(x)

This rule is identical with the rule for Wait . The difference between the two
appears when the variable’s value is computed by need. By definition, we stipulate
that arguments of WaitQuiet are not recognized by the needσ(S, x) relation. This
means that Wait requests the computation of the value, while WaitQuiet does
not. WaitQuiet is used in the Mozart system to implement the Browser.

13.1.14 Read-only variables

A read-only variable is a restricted version of a dataflow variable that cannot
be made determined by binding it. Any such attempt will block. A read-only
variable y is always linked to another variable x that does not have this restriction.
When x becomes determined then y is bound to the same partial value. Any
blocked bindings of y can then continue.

To define the semantics of read-only variables, we first add the predicate
future(x, y) to the store. This states that y is a read-only view of x. We can view
these predicates as sitting in a new store called the read-only store. Once x is

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 801

determined, the predicate is removed from the store and replaced by the binding
x=y.

Four rules are needed: one each for the creation and removal of the read-
only view, one to block any attempted bindings, and one to handle by-need
synchronization. A read-only view is created by the procedure {ReadOnly x xr} ,
which binds xr to a read-only view of x. To be compatible with Mozart syntax,
which uses the prefix operator “!! ”, we will always write this procedure as a
function call xr=!! x,

xr=!! x xr=y
σ σ ∧ future(x, y)

if x fresh variable

This creates y, a read-only variable for x, and a future predicate that associates
them. The second rule removes the future predicate when x is determined.

σ ∧ future(x, y) σ ∧ x=y
if σ |= det(x)

A third rule is needed to block any attempt to make y determined by binding it.
This rule replaces the first basic binding rule given in Section 13.1.8. It adds one
new condition to the basic binding rule.

β skip

σ σ ∧ β
if subbindingsσ(β) = ∅ and σ ∧ β is consistent and ¬preventσ(β)

Here preventσ(β) prevents a binding in two cases: (1) the variable to be bound is
read-only and would be made determined, and (2) two read-only variables would
be bound together. We define it as follows:

preventσ(β) ≡ pre1 σ(β) ∨ pre2 σ(β)
pre1 σ(β) ≡ ∃y. σ |= future(, y) and σ ∧ β |= det(y)
pre2 σ(β) ≡ ∃y, y′. σ |= future(, y) ∧ future(, y′) and β ≡ y=y′

A final rule is needed for by-need synchronization. Read-only views are used to
protect dataflow variables used in abstractions, but the dataflow variables should
still be effective in lazy calculations. This implies that if y is needed, the need
should be propagated to x.

σ σ ∧ need(x)
if σ |= need(y) ∧ future(x, y) and σ 6|= need(x)

It is possible to add a “quiet” version of the !! operation which is opaque to the
need condition. The quiet version would not need this final rule.

13.1.15 Exception handling

The exception mechanism is closely bound to sequential composition. Indeed,
raising an exception modifies the sequence of statements in the thread where it

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

802 Language Semantics

has been thrown. It skips every statement inside the scope defined by the most
enclosing try /catch block.

The following rule for the try /catch statement is a first attempt towards its
semantics:

try S1 catch X then S2 end try S ′
1 catch X then S2 end

σ σ′ if
S S ′

σ σ′

It defines the reduction of the nested statement. We then just need to add two
rules for the cases where S1 is skip and raise x end . But this definition is not
complete: it does not handle thread creation inside the try /catch block.

So let us try another approach. We “unfold” the try /catch statement, in
order to match the reduction of the nested statement with the usual rules for
sequence and thread creation. We say that the statement

try S1 catch X then S2 end

unfolds to a sequence of two statements, the first one being S1, and the second
one a “catch ” statement:

S1 (catch X then S2 end)

The new catch statement is for semantic use only: it is a marker that stops a
raise statement exactly at the place it must. The unfolding technique works
even when try /catch blocks are nested. For instance, the statement:

try

try S1

catch X then S2 end

S3


 ≡ scope of outer

try /catch

catch Y then S4 end

S5

when put in a thread unfolds to:

〈

scope of outer
try /catch︷ ︸︸ ︷

S1︸︷︷︸
scope of nested

try /catch

〈catch X then S2 end 〈S3 〈catch Y then S4 end 〈S5 〈〉〉〉〉〉〉

The following two rules define the unfolding of a try /catch statement and the
simplification of a catch statement when no exception is raised:

try S1 catch X then S2 end S1 (catch X then S2 end)
σ σ

catch X then S2 end skip

σ σ

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 803

We now define the behavior of a raise statement. As we said earlier, it should
skip every statement following it, except a catch statement. As the following
statements reside in the current thread’s tail, we must use a “thread-level” re-
duction:

〈raise x end 〈S T 〉〉 〈raise x end T 〉
σ σ

if S 6≡ catch . . . end

〈raise x end 〈S T 〉〉 〈S2{X→x} T 〉
σ σ

if S ≡ catch X then S2 end

What happens if the thread’s statement sequence is done (i.e., there is only the
termination symbol)? The behavior in this case is implementation dependent.
The implementation should have a rule like this one:

〈raise x end 〈〉〉 . . .
σ . . .

The Mozart system has a rule that halts the process with an error message
(“Uncaught exception”).

Sources of exceptions

Exceptions can have three origins: explicitly by executing a raise , implicitly
through a language operation that is impossible, and implicitly through an event
external to the system. This section defines the implicit exceptions that come
from language operations. Several statements can raise an exception when their
reduction will never be possible. The first case is imposing an equality that would
lead to an inconsistent store. This means that fail is replaced by raise in the
second basic binding rule:

β raise failure(...) end

σ σ
if subbindingsσ(β) = ∅ and σ∧β is inconsistent

where the ... stands for some debugging information that is not specified here.3

The second case is a type inconsistency. This is defined with the following
rules. An exception is raised when the condition variable of an if statement is
not a boolean:

if x then S1 else S2 end raise error(...) end

σ σ
if σ |= det(x) ∧ x /∈ {true , false }

3The raise statement in this rule is shorthand for local X in X=failure(...)
raise X end end .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

804 Language Semantics

An exception is raised if a procedure application is invoked on something that is
not a procedure or is a procedure with a wrong number of arguments:

{ xp x1 · · ·xn} raise error(...) end

σ σ
if σ |= det(xp) ∧ (xp is not a procedure)

{ xp x1 · · ·xn} raise error(...) end

σ σ
if σ |= xp=ξ ∧ ξ:λX1 · · ·Xm.S and m 6= n

An exception is raised if Exchange is executed on something that is not a cell:

{Exchange xc xold xnew} raise error(...) end

σ σ
if σ |= det(xc) ∧ (xc is not a cell)

We can add analogous rules for the built-in procedures.

13.1.16 Failed values

The semantics of failed values is defined by four rules. The first rule creates a
failed value:

{FailedValue x xf } xf=y
σ σ ∧ y=failed(x)

if y fresh variable

The entity failed(x) represents a failed value that encapsulates the variable x. A
failed value is not a value, i.e., it is not a member of the set of possible values.
It follows that a rule that needs a value to reduce will not reduce with a failed
value. However, we allow a failed value to be bound to an unbound variable.
This means it can be passed to and from a procedure and it can be embedded in
a data structure. The second rule ensures that needing a failed value raises an
exception:

S raise x end

σ σ
if needσy(S, y) and σ |= y=failed(x)

Here σy = σ \ {y=failed(x)}, i.e., y is unbound in σy. This allows correct calcu-
lation of the needσ relation. The third rule handles the case of IsDet . This case
is not handled correctly by the second rule because it does a test on a variable
being not determined. We therefore have to handle it separately:

{IsDet xf y} raise x end

σ σ
if σ |= xf=failed(x)

This assumes that neither of the rules of Section 13.1.12 will reduce for a failed
value. The fourth rule ensures that attempting to bind a failed value to a nonva-
riable raises an exception:

β raise x end

σ σ
if subbindingsσ(β) = ∅ and failconflictσ(β, x)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.1 The shared-state concurrent model 805

This rule is added to the two basic binding rules. We define the condition
failconflictσ(β, x) to be true in two cases. First, if β |= det(y) and σ |= y=failed(x).
Second, if β ≡ y=y′ and at least one of y or y′ is bound to a failed value of the
form failed(x) and the other is a failed value or determined.

13.1.17 Variable substitution

This section defines the substitution of identifiers by variables in a statement.
The notation Sθ, where θ = {X1→x1, . . . , Xn→xn}, stands for the substitution
of X1 by x1, . . . , Xn by xn in the statement S. For convenience, we first define
substitutions for variables and identifiers. Let χ denote an identifier or a variable,
i.e., χ ::= X | x.

χθ =

{
θ(χ) if χ ∈ dom(θ)
χ otherwise

The following substitutions do not involve lexical scoping, so their definition is
easy.

(skip)θ ≡ skip

(S1 S2)θ ≡ S1θ S2θ

(thread S end)θ ≡ thread Sθ end

(χ1=χ2)θ ≡ χ1θ = χ2θ

(χ=z)θ ≡ χθ = z

(χ=f(l1:χ1 · · · ln:χn))θ ≡ χθ = f(l1:χ1θ · · · ln:χnθ)

(if χ then S1 else S2 end)θ ≡ if χθ then S1θ else S2θ end

({ χ χ1 · · ·χn})θ ≡ { χθ χ1θ · · ·χnθ}

(raise χ end)θ ≡ raise χθ end

We assume that NewName, IsDet , NewCell , Exchange , ByNeed, ReadOnly , and
FailedValue are handled by the procedure application case. The remaining
substitutions deal with lexical scoping. The notation θ{X1,...,Xn} stands for the
removal of the mappings of X1, . . . , Xn from θ, i.e.,

θ{X1,...,Xn} =
{
X→x ∈ θ

∣∣∣ X /∈ {X1, . . . , Xn}
}

.

(local X1 · · ·Xn in S end)θ ≡ local X1 · · ·Xn in Sθ{X1,...,Xn} end(
case χ of f(l1:X1 . . . ln:Xn)

then S1 else S2 end

)
θ ≡ case χθ of f(l1:X1 . . . ln:Xn)

then S1θ{X1,...,Xn} else S2θ end

(proc { χ X1 · · ·Xn} S end)θ ≡ proc { χθ X1 · · ·Xn} Sθ{X1,...,Xn} end

(try S1 catch X then S2 end)θ ≡ try S1θ catch X then S2θ{X} end

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

806 Language Semantics

13.2 Declarative concurrency

In Section 4.1.4 we gave an informal definition of the concept of declarative con-
currency. Let us now make this definition formal. Recall how we define a reduc-
tion step:

T T ′

σ σ′

Here T is a multiset of threads in execution (i.e., statement sequences) and σ is
a set of bindings (a store). Let us assume for this section that σ has no cells.
We call T a program in execution, or program, for short, if there is no risk of
confusion with the meaning of program as a source text.

Partial and total termination

We say that the configuration T /σ is partially terminated if it cannot be further
reduced (no reduction rule applies). The termination is partial since adding bind-
ings to σ might allow some rules to apply and execution to continue. Although
it is not needed for defining declarative concurrency, we can also define total ter-
mination: no matter what bindings are added to σ, the configuration cannot be
reduced further.

We can also consider failed computations as partially terminated if we intro-
duce the following two reduction rules.

〈raise x end 〈〉〉
σ false

T
false false

With those rules, any uncaught exception eventually lead to the failure configu-
ration ∅/false .

Logical equivalence

We define logical equivalence between stores as we did in the beginning of the
chapter. We extend this to logical equivalence between configurations. Let V be
a set of variables. Two configurations T /σ and T ′/σ′ are logically equivalent with
respect to V if there exists a bijection r on variables and names such that

• for all x in V, r(x) = x,

• r(σ) ≡ σ′ and σ ≡ r−1(σ′),

• r(T) = T ′ and T = r−1(T ′), where r and r−1 are used as substitutions.

The mapping r makes the correspondence between variables and names that are
not in a common set V.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.2 Declarative concurrency 807

Declarative concurrency

We say that a program T is declarative concurrent if for all σV ,

• T /σ always reduces after a finite number of reduction steps to a partially
terminated configuration and all these configurations are logically equiva-
lent with respect to V ;

• for every partial termination T ′/σ′ of T /σ, σ′ entails σ (monotonicity).

Those two statements also hold for failure configurations. The failed store false

entails all the other stores.
In general, we say that a computation model is declarative concurrent if all its

programs are declarative concurrent. Intuitively, we can consider a declarative
concurrent program as calculating a partial function b = fT (a), where a = σ and
b = σ′. The function is determined by the program T .

The execution of a declarative concurrent program can always be separated
into a sequence of alternating input and output “phases”: adding a set of bindings
(input phase) and executing until partial termination (output phase).

We can prove that all the declarative concurrent models of Chapter 4 are
declarative concurrent according to the above definition. In particular, the most
general model (which contains both threads and by-need triggers) is declarative
concurrent.

From the viewpoint of foundational calculi, this result means that the declar-
ative concurrent model can be seen as an interesting intermediate step between
functional calculi such as the λ calculus and process calculi such as the π calculus.
The λ calculus is a model of functional programming. This has nice properties
such as confluence (see Section 4.9.2). The π calculus is a model of concurrent
programming: it is not functional but it is able to express many concurrent com-
putations. The declarative concurrent model is both functional and concurrent.
It restricts the expressiveness of concurrency compared to the π calculus in such
a way that computations become functional again like in the λ calculus.

Confluence property

The above definition of declarative concurrency only considers partial termina-
tions. Nothing is said about infinite executions. Here we propose another way
to express declarative concurrency which takes all kinds of computations into
account. We use the notation T /σ −→ T ′/σ′ to say that there exists a finite
execution that begins with configuration T /σ and ends with configuration T ′/σ′.
Partial termination is not required for T ′/σ′.

A program T is declarative concurrent if for all σV , and for all executions
T /σ −→ T1/σ1 and T /σ −→ T2/σ2, there exist two further executions T1/σ1 −→
T ′

1/σ′
1 and T2/σ2 −→ T ′

2/σ′
2 such that the configurations T ′

1/σ′
1 and T ′

2/σ′
2 are

equivalent with respect to V.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

808 Language Semantics

The property can be depicted by the following diagram, where the configura-
tion T ′/σ′ is given “up to equivalence with respect to V.”

T /σ
↙ ↘

T1/σ1 T2/σ2

↘ ↙
T ′/σ′

This property is useful for infinite executions. It states that all finite executions
of a neverending declarative program must be consistent with each other. For
instance, consider a program T that binds x to an infinite list. If x is bound to
1|2|3|... during one execution, and to 2|4|6|... during another execution,
then the program is not declarative.

13.3 Eight computation models

The previous section gives the semantics of the shared-state concurrent model,
which is the most expressive general-purpose model of the book. This semantics
is factorized so that the semantics of most of the earlier models are subsets of
it. To make these subsets easy to understand, we distinguish three properties:
concurrency, state, and laziness. Each of these properties is defined by a part of
the semantics:

• Concurrency is introduced by the thread statement. Having concurrency
implies that there is a multiset of tasks.

• State is introduced by the NewCell operation and handled by the Exchange

operation. Having state implies that there is a mutable store. We assume
that having ports is equivalent to having state.

• Laziness is introduced by the ByNeed operation. Having laziness implies
that there is a trigger store.

Each of the three properties can be left out of the model by removing its state-
ments. This gives eight useful models of varying degrees of expressiveness (!).
Table 13.1 lists these eight models. All of these models are practical and most
have been used in real programming languages. Table 13.1 also situates a num-
ber of real languages with respect to the model that in our opinion best fits the
intended use of each language. In this table, C means concurrency, L means
laziness, and S means state. An × means the property is in the model, a blank
means it is not.

In the shared-state concurrent model, the three properties are all explicit.
That is, the programmer controls whether or not they are used by means of
explicit commands. This is not true of all the languages mentioned. For example,

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.4 Semantics of common abstractions 809

C L S Description

Declarative model (Chapters 2 &3, Mercury, Prolog).
× Stateful model (Chapters 6 & 7, Scheme, Standard ML, Pascal).

× Lazy declarative model (Haskell).
× × Lazy stateful model.

× Eager concurrent model (Chapter 4, dataflow).
× × Stateful concurrent model (Chapters 5 & 8, Erlang, Java, FCP).
× × Lazy concurrent model (Chapter 4, demand-driven dataflow).
× × × Stateful concurrent model with laziness (Oz).

Table 13.1: Eight computation models

laziness is implicit in Haskell and concurrency is implicit in FCP (Flat Concurrent
Prolog).

Languages can be based on the same computation model and yet “feel” very
differently to the programmer:

• Scheme, Standard ML, and Pascal are all based on the stateful model.
Pascal is a simple imperative language. Scheme and Standard ML are
“mostly-functional” languages. By “mostly” we mean that state is intended
to be used in a limited way.

• Erlang, Java, and FCP are all based on the stateful concurrent model, ei-
ther of the shared-state variety or of the message-passing variety. Erlang
is based on port objects that are programmed in a functional model and
communicate with asynchronous message passing. Java is based on pas-
sive objects referenced by threads and that communicate through shared
monitors. FCP is based on the process model of logic programming, with
predicates in Horn clause syntax that communicate through shared streams.

Whether a language is dynamically or statically typed is independent of its place
in the table. Scheme, Prolog, Erlang, FCP, and Oz are dynamically typed.
Haskell, Standard ML, Mercury, Java, and Pascal are statically typed.

The table does not give the semantics of the relational computation model
of Chapter 9 (the declarative model with search). We delay this until we give
the semantics of constraint programming in Chapter 12. The logical semantics
of Prolog and Mercury are closely related to the relational computation model.

13.4 Semantics of common abstractions

We have seen many programming abstractions throughout this book. For exam-
ple, some of the more general ones are:

• Loop abstractions such as the for loop.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

810 Language Semantics

• Software components (functors) and their instances (modules).

• Stream objects and declarative concurrency.

• Coroutines (non-preemptive threads).

• Lazy functions and list comprehensions.

• Secure abstract data types, wrappers, and revocable capabilities.

• Incremental definition of abstract data types (classes) and their instances
(objects).

• Ports (communication channels) and port objects.

• Concurrent components (port objects and their compositions).

• Active objects, both asynchronous and synchronous.

• Active objects with mailboxes (as used in Erlang).

• Locks, reentrant locks, monitors, and transactions.

• Tuple spaces (similar to the Linda concept).

We showed how to implement these abstractions using the shared-state concurrent
model or a subset of this model. When taken together with this chapter, these
implementations can be seen as formal semantic definitions of the abstractions.
The choice of which concepts are primitive and which are derived is often a matter
of judgement. For example, Chapter 5 defines a port as a primitive concept and
gives its semantics directly.

For some of the abstractions, we have defined new syntax, thus making them
into linguistic abstractions. For the semantics, it is almost irrelevant whether or
not an abstraction has syntactic support. We say “almost” because the syntax
can guarantee that the abstraction is not used in an incorrect way, which is
important when reasoning about programs.

13.5 Historical notes

The computation model of this chapter was developed over many years. We
briefly summarize its history. In the late 1980’s, a new model of computation
known as the concurrent constraint model was developed by Michael Maher and
Vijay Saraswat out of concurrent logic programming and constraint logic pro-
gramming [163, 117, 90]. All computation models of the book are ultimately
based on this model.

The concurrent constraint model led to the AKL language [93, 92] and sub-
sequently to Oz 1 [179, 180], a precursor of the language used in this book. AKL

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.6 Exercises 811

adds stateful data (in the form of ports) and encapsulated search to the ba-
sic concurrent constraint model. Oz 1 further adds higher-order procedures, a
compositional syntax (instead of the Horn clause syntax of AKL), stateful ab-
stractions including an object system, and computation spaces for encapsulated
search. Like AKL, Oz 1 has implicit concurrency: when a statement blocks it is
put into its own thread that contains only that statement. The direct successor of
Oz 1, called Oz 2, replaces implicit concurrency by explicit thread creation, which
allows an improved object system and makes it easier to reason about programs.

The kernel languages used in this book are subsets of Oz 3, which this book
calls simply Oz. Oz 3 extends and simplifies Oz 2 in many ways. It adds by-
need execution (an early version is given in [121]), first-class software components
called functors [50], and a distributed computation model [72]. It has a simple
formal semantics that can be implemented efficiently. The formal semantics of
this chapter completes and corrects the semantics given in earlier publications,
notably regarding by-need execution and read-only variables.

13.6 Exercises

1. The case statement. Let us investigate the case statement, whose se-
mantics is defined in Section 13.1.9.

(a) Show how the semantic rules of case can be derived from the rules
for local and if .

(b) In the first rule for the case , we could have explicitly introduced
variables for the Xi by:

case x of f(l1:X1 . . . ln:Xn)
then S1 else S2 end

local X1 · · ·Xn in

X1=x1 · · · Xn=xn S1 end

σ ∧ x=f(l1:x1 . . . ln:xn) σ ∧ x=f(l1:x1 . . . ln:xn)

Do the rules lead to the same possible executions? What are the
differences (if any)?

(c) It is possible to write an if statement in terms of a case statement.
How? This implies that case could have been put in the kernel lan-
guage instead of if , and if could have been defined as a linguistic
abstraction.

2. Lexically-scoped closures. The rules for procedural abstraction in Sec-
tion 13.1.11 are designed to follow lexical scoping, i.e., procedure introduc-
tion creates a lexically-scoped closure. Let us look more closely to see how
this works:

• Write the consecutive computation steps (rule reductions) for the ex-
ecution of the ForAll and MakeAdder definitions in Section 13.1.11.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

812 Language Semantics

• Procedure introduction creates the λ expression ξ:λX1 · · ·Xn.S in the
store. Explain how the contextual environment is stored in this λ
expression.

3. Implementing cells with IsDet . Section 13.1.12 explains the IsDet

operation, which can be used to check the status of a dataflow variable. For
this exercise, let us examine the expressive power of IsDet .

• Define the operations NewCell and Exchange in the declarative model
extended with IsDet . The semantics of these operations should be
identical to their semantics with cells, as given in this chapter. It
is straightforward to define a solution, albeit an inefficient one, that
works in a sequential model. Hint: use the function LastCons , defined
as:

fun {LastCons Xs}
case Xs of X|Xr then

if {IsDet Xr} then {LastCons Xr} else Xs end
[] nil then nil end

end

Using LastCons let us gets around the monotonicity of the store. The
idea is to build incrementally a list with unbound tail and use IsDet

to get its latest known element.

• Does the above solution work in a concurrent model, i.e., when ex-
changes on the same cell are done concurrently? Is such a solution
possible? In the light of this result, comment on the relationship be-
tween IsDet and explicit state.

4. Reading and writing a cell. Section 13.1.12 mentions that two more cell
operations can be added for programming convenience, namely xold=@xc to
read the content and xc:= xnew to update the content. Define the semantics
of these two operations.

5. Dataflow streams. Section 13.1.12 gives an example of a local state-
ment that adds an element to a stream. Prove that executing two of these
statements in different threads always gives exactly the same final result
as if they were executed sequentially in the same thread in one order or
another.

6. Stateful streams. Define a stream datatype that does not use dataflow
variables. That is, it is a list in which each tail is a cell whose content points
to the rest of the list. The last cell contains a marker saying that the stream
is not yet complete, e.g., the atom incomplete . (This is not the same as the
atom nil which means that the stream is complete.) There is a global cell
C whose contents is always the last cell in the stream. Write an operation
that adds an element to the stream and that works in a concurrent setting.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

13.6 Exercises 813

Hint: assume that there exists a statement lock S end such that only one
thread at a time can be executing S; all others suspend if needed to make
this true. Can you do it without using a lock statement? Compare your
solution to that of the previous exercise. Which is simpler?

7. Needing a variable. Section 13.1.13 gives a definition of what it means
to need a variable. Because this need relation is monotonic, we can show
that the demand-driven concurrent model is declarative. However, there
are other ways to define the need relation that also result in declarative
models. For this exercise, try to find at least one such definition.

8. Exceptions with a finally clause. Section 13.1.15 defines the try /catch

statement:

try S1 catch X then S2 end

which executes S2 if an exception is raised in S1. Another, very useful
statement relating to exceptions is the try /finally statement:

try S1 finally S2 end

which always executes S2, whether or not S1 raises an exception. If S1 raises
an exception, then this exception is raised again after executing S2. Define
the try /finally statement in terms of the try /catch statement.

9. (advanced exercise) Lambda calculus. The book claims that the declar-
ative model and the declarative concurrent model both do functional pro-
gramming. For this exercise, prove this claim formally. First show that any
execution in the declarative model corresponds to an execution in a version
of the λ calculus. How do dataflow variables show up? Then show that
adding concurrency and laziness do not change this result.

10. (research project) Trade-offs in language design. When designing a lan-
guage, there are often trade-offs between the programmer’s mental model,
the language semantics, and the implementation. One would like all three
to be simple, but that is often impossible. One of the delicate matters is
to find the right balance. To make this concrete, let us see how to provide
the concept of binding in a dataflow language. Section 13.1.8 defines two
semantics for binding, which it calls the naive semantics and the realistic
semantics. There is also a third possibility. Let us summarize all three:

• The naive semantics does binding atomically, as a transaction. If
adding β would be inconsistent, then the store is unchanged. This
gives a simple mental model and a simple semantics, but the imple-
mentation is complex. This semantics was much discussed in the con-
text of concurrent logic programming, but was dropped because of
problems implementing it efficiently [177, 190].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

814 Language Semantics

• The realistic semantics does binding as an incremental tell. That is, if
β is inconsistent, then the store might still be changed. This makes the
implementation simple, but the semantics somewhat more complex.
Experience shows that the mental model is acceptable. This semantics
is chosen for the computation models of this book.

• The third semantics is more in line with mainstream programming
languages. It jettisons unification in favor of simple bindings only. It
allows binding only unbound variables with terms. Variable-variable
bindings block and term-term bindings raise an exception. This makes
both the implementation and the semantics simple. However, it is less
expressive for the programmer. This approach was pioneered, e.g., in
dataflow languages with I-structures such as Id and pH [131, 132, 133]
and in Multilisp [68] (see Section 4.9.4).

For this exercise, reexamine the trade-offs between these three approaches.
Which would you recommend?

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Part V

Appendices

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix A

Mozart System Development
Environment

“Beware the ides of March.”
– Soothsayer to Julius Caesar, William Shakespeare (1564–1616)

The Mozart system used in this book has a complete IDE (Interactive De-
velopment Environment). To get you started, we give a brief overview of this
environment here. We refer you to the system documentation for additional in-
formation.

A.1 Interactive interface

The Mozart system has an interactive interface that is based on the Emacs text
editor. The interfactive interface is sometimes called the OPI, which stands for
Oz Programming Interface. The OPI is split into several buffers: scratch pad,
Oz emulator, Oz compiler, and one buffer for each open file. This interface gives
access to several tools: incremental compiler (which can compile any legal pro-
gram fragment), Browser (visualize the single-assignment store), Panel (resource
usage), Compiler Panel (compiler settings and environment), Distribution Panel
(distribution subsystem including message traffic), and the Explorer (interactive
graphical resolution of constraint problems). These tools can also be manipulated
from within programs, e.g., the Compiler module allows to compile strings from
within programs.

A.1.1 Interface commands

You can access all the important OPI commands through the menus at the top
of the window. Most of these commands have keyboard equivalents. We give the
most important ones:

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

818 Mozart System Development Environment

Command Effect
CTRL-x CTRL-f Read a file into a new editor buffer
CTRL-x CTRL-s Save current buffer into its file
CTRL-x i Insert file into the current buffer
CTRL-. CTRL-l Feed current line into Mozart
CTRL-. CTRL-r Feed current selected region into Mozart
CTRL-. CTRL-p Feed current paragraph into Mozart
CTRL-. CTRL-b Feed current buffer into Mozart
CTRL-. h Halt the run-time system (but keep the editor)
CTRL-x CTRL-c Halt the complete system
CTRL-. e Toggle the emulator window
CTRL-. c Toggle the compiler window
CTRL-x 1 Make current buffer fill the whole window
CTRL-g Cancel current command

The notation “CTRL-x” means to hold down the Control key and then press the
key x once. The CTRL-g command is especially useful if you get lost. To feed a
text means to compile and execute it. A region is a contiguous part of the buffer.
It can be selected by dragging over it while holding the first mouse button down.
A paragraph is a set of non-empty text lines delimited by empty lines or by the
beginning or end of the buffer.

The emulator window gives messages from the emulator. It gives the output
of Show and run-time error messages, e.g., uncaught exceptions. The compiler
window gives messages from the compiler. It says whether fed source code is
accepted by the system and gives compile-time error messages otherwise.

A.1.2 Using functors interactively

Functors are software component specifications that aid in building well-structured
programs. A functor can be instantiated, which creates a module. A module is
a run-time entity that groups together any other run-time entities. Modules
can contain records, procedures, objects, classes, running threads, and any other
entity that exists at run-time.

Functors are compilation units, i.e., their source code can be put in a file and
compiled as one unit. Functors can also be used in the interactive interface. This
follows the Mozart principle that everything can be done interactively.

• A compiled functor can be loaded interactively. For example, assume that
the Set module, which can be found on the book’s Web site, is compiled in
file Set.ozf. It will be loaded interactively with the following code:

declare
[Set]={Module.link ["Set.ozf"]}

This creates the module Set . Other functor manipulations are possible by
using the module Module .

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

A.2 Batch interface 819

• A functor is simply a value, like a class. It can be defined interactively with
a syntax similar to classes:

F=functor $ define skip end

This defines a functor and binds F to it.

A.2 Batch interface

The Mozart system can be used from a command line. Oz source files can be
compiled and linked. Source files to compile should contain functors, i.e., start
with the keyword functor . For example, assume that we have the source file
Set.oz, which is available on the book’s Web site. We create the compiled functor
Set.ozf by typing the following command from a command line interface:

ozc -c Set.oz

We can create a standalone executable Set by typing the following:

ozc -x Set.oz

(In the case of Set.oz, the standalone executable does very little: it just defines
the set operations.) The Mozart default is to use dynamic linking, i.e., needed
modules are loaded and linked at the moment they are needed in an application.
This keeps compiled files small. But it is possible to link all imported modules
during compilation (static linking) so that no dynamic linking is needed.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

820 Mozart System Development Environment

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix B

Basic Data Types

“Wie het kleine niet eert is het grote niet weert.”
“He who does not honor small things is not worthy of great things.”
– Traditional Dutch proverb.

This appendix explains the most common basic data types in Oz together with
some common operations. The types explained are numbers (including integers
and floating point numbers), characters (which are represented as small integers),
literals (constants of two types, either atoms or names), records, tuples, chunks
(records with a limited set of operations), lists, strings (which are represented as
lists of characters), and virtual strings (strings represented as tuples).

For each data type discussed in this appendix, there is a corresponding Base
module in the Mozart system that defines all operations on the data type. This
appendix gives some but not all of these operations. See the Mozart system
documentation for complete information [49].

B.1 Numbers (integers, floats, and characters)

The following code fragment introduces four variables I , H, F and C. It binds I

to an integer, H to an integer in hexadecimal notation, F to a float, and C to the
character t in this order. It then displays I , H, F, and C:

declare I H F C in
I = ˜5
H = 0xDadBeddedABadBadBabe
F = 5.5
C = &t
{Browse I} {Browse H} {Browse F} {Browse C}

Note that ˜ (tilde) is the unary minus symbol. This displays the following:

˜5
1033532870595452951444158
5.5

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

822 Basic Data Types

〈character〉 ::= (any integer in the range 0 ... 255)
| ´ &´ 〈charChar〉
| ´ &´ 〈pseudoChar〉

〈charChar〉 ::= (any inline character except \ and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.1: Character lexical syntax

116

Oz supports binary, octal, decimal, and hexadecimal notation for integers, which
can have any number of digits. An octal integer starts with a leading 0 (zero),
followed by any number of digits from 0 to 7. A binary integer starts with a
leading 0b or 0B (zero followed by the letter b or B) followed by any number of
binary digits, i.e., 0 or 1. A hexadecimal integer starts with a leading 0x or 0X

(zero followed by the letter x or X). The hexadecimal digits from 10 to 15 are
denoted by the letters a through f and A through F.

Floats are different from integers in that they approximate real numbers. Here
are some examples of floats:

˜3.14159265359 3.5E3 ˜12.0e˜2 163.

Note that Mozart uses ˜ (tilde) as the unary minus symbol for floats as well as
integers. Floats are internally represented in double precision (64 bits) using the
IEEE floating point standard. A float must be written with a decimal point and
at least one digit before the decimal point. There may be zero or more digits
after the decimal point. Floats can be scaled by powers of ten by appending the
letter e or E followed by a decimal integer (which can be negative with a ´ ˜ ´).

Characters are a subtype of integers that range from 0 to 255 . The standard
ISO 8859-1 coding is used. This code extends the ASCII code to include the letters
and accented letters of most languages whose alphabets are based on the Roman
alphabet. Unicode is a 16-bit code that extends the ASCII code to include the
characters and writing specifics (like writing direction) of most of the alphabets
used in the world. It is not currently used, but may be in the future. There are
five ways to write characters:

• A character can be written as an integer in the range 0, 1, ..., 255 , in accord
with the integer syntax given before.

• A character can be written as an ampersand & followed by a specific char-
acter representation. There are four such representations:

– Any inline character except for \ (backslash) and the NUL character.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.1 Numbers (integers, floats, and characters) 823

〈expression〉 ::= 〈expression〉 〈binaryOp〉 〈expression〉
| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| ...
〈binaryOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod | ...

Table B.2: Some number operations

Some examples are &t , & (note the space), and &+. Inline control
characters are acceptable.

– A backslash \ followed by three octal digits, e.g., &\215 is a character.
The first digit should not be greater than 3.

– A backslash \ followed by the letter x or X, followed by two hexadecimal
digits, e.g., &\x3f is a character.

– A backslash \ followed by one of the following characters: a (= \007 ,
bell), b (= \010 , backspace), f (= \014 , formfeed), n (= \012 , new-
line), r (= \015 , carriage return), t (= \011 , horizontal tab), v (=
\013 , vertical tab), \ (= \134 , backslash), ’ (= \047 , single quote),
" (= \042 , double quote), ‘ (= \140 , backquote), and & (= \046 ,
ampersand). For example, &\\ is the backslash character, i.e., the
integer 92 (the ASCII code for \) .

Table B.1 summarizes these possibilities.
There is no automatic type conversion in Oz, so 5.0 = 5 will raise an excep-

tion. The next section explains the basic operations on numbers, including the
primitive procedures for explicit type conversion. The complete set of operations
for characters, integers, and floats are given in the Base modules Char , Float ,
and Int . Additional generic operations on all numbers are given in the Base
module Number. See the documentation for more information.

B.1.1 Operations on numbers

To express a calculation with numbers, we use two kinds of operations: binary
operations, such as addition and subtraction, and function applications, such as
type conversions. Table B.2 gives the syntax of these expressions. All numbers,
i.e., both integers and floats, support addition, subtraction, and multiplication:

declare I Pi Radius Circumference in
I = 7 * 11 * 13 + 27 * 37
Pi = 3.1415926536
Radius = 10.
Circumference = 2.0 * Pi * Radius

Integer arithmetic is to arbitrary precision. Float arithmetic has a fixed precision.
Integers support integer division (div symbol) and modulo (mod symbol). Floats

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

824 Basic Data Types

Operation Description
{IsChar C} Return boolean saying whether C is a character
{Char.toAtom C} Return atom corresponding to C

{Char.toLower C} Return lowercase letter corresponding to C

{Char.toUpper C} Return uppercase letter corresponding to C

Table B.3: Some character operations

support floating division (/ symbol). Integer division truncates the fractional
part. Integer division and modulo satisfy the following identity:

A = B * (A div B) + (A mod B)

There are several operations to convert between floats and integers.

• There is one operation to convert from an integer to a float, namely IntToFloat .
This operation finds the best float approximation to a given integer. Be-
cause integers are calculated with arbitrary precision, it is possible for an
integer to be larger than a representable float. In that case, the float inf

(infinity) is returned.

• There is one operation to convert from a float to an integer, namely FloatToInt .
This operation follows the default rounding mode of the IEEE floating point
standard, i.e., if there are two possibilities, then it picks the even integer.
For example, {FloatToInt 2.5} and {FloatToInt 1.5} both give the
integer 2. This eliminates the bias that would result by always rounding
half integers upwards.

• There are three operations to convert a float into a float that has zero
fractional part: Floor , Ceil (ceiling), and Round.

– Floor rounds towards negative infinity, e.g., {Floor ˜3.5} gives
˜4.0 and {Floor 4.6} gives 4.0 .

– Ceil rounds towards positive infinity, e.g., {Ceil ˜3.5} gives ˜3.0

and {Ceil 4.6} gives 5.0 .

– Round rounds towards the nearest even, e.g., {Round 4.5}=4 and
{Round 5.5}=6 . Round is identical to FloatToInt except that it re-
turns a float, i.e., {Round X} = {IntToFloat {FloatToInt X}} .

B.1.2 Operations on characters

All integer operations also work for characters. There are a few additional op-
erations that work only on characters. Table B.3 lists some of them. The Base
module Char gives them all.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.2 Literals (atoms and names) 825

〈expression〉 ::= unit | true | false | 〈atom〉 | ...

Table B.4: Literal syntax (in part)

〈atom〉 ::= (lowercase char) { (alphanumeric char) } (except no keyword)
| ’’’ { 〈atomChar〉 | 〈pseudoChar〉 } ’’’

〈atomChar〉 ::= (any inline character except ’ , \ , and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.5: Atom lexical syntax

B.2 Literals (atoms and names)

Atomic types are types whose members have no internal structure.1 The previous
section has given one kind of atomic type, namely numbers. In addition to
numbers, literals are a second kind of atomic type (see Table B.4 and Table B.5).
Literals can be either atoms or names. An atom is a value whose identity is
determined by a sequence of printable characters. An atom can be written in two
ways. First, as a sequence of alphanumeric characters starting with a lowercase
letter. This sequence may not be a keyword of the language. Second, by arbitrary
printable characters enclosed in single quotes. Here are some valid atoms:

a foo ´ =´ ´ := ´ ´ Oz 3.0 ´ ´ Hello World ´ ´ if ´ ´ \n,\n ´ a_person

There is no confusion between the keyword if and the atom ´ if ´ because of the
quotes. The atom ´ \n,\n ´ consists of four characters. Atoms are ordered lexi-
cographically, based on the underlying ISO 8859-1 encoding for single characters.

Names are a second kind of literal. A name is a unique atomic value that
cannot be forged or printed. Unlike numbers or atoms, names are truly atomic,
in the original sense of the word: they cannot be decomposed at all. Names have
just two operations defined on them: creation and equality comparison. The only
way to create a name is by calling the function {NewName}, which returns a new
name that is guaranteed to be unique. Note that Table B.4 has no representation
for names. The only way to reference a name is through a variable that is bound
to the name. As Chapter 3 explains, names play an important role for secure
encapsulation in ADTs.

1But like physical atoms, atomic values can sometimes be decomposed if the right tools are
used, e.g., numbers have a binary representation as a sequence of zeroes and ones and atoms
have a print representation as a sequence of characters.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

826 Basic Data Types

Operation Description
{IsAtom A} Return boolean saying whether A is an atom
{AtomToString A} Return string corresponding to atom A

{StringToAtom S} Return atom corresponding to string S

Table B.6: Some atom operations

〈expression〉 ::= 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈expression〉 } ´) ´ | ...
〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉
〈feature〉 ::= unit | true | false | 〈variable〉 | 〈atom〉 | 〈int〉
〈binaryOp〉 ::= ´ . ´ | 〈consBinOp〉 | ...
〈consBinOp〉 ::= ´ #´ | ...

Table B.7: Record and tuple syntax (in part)

There are three special names that have keywords reserved to them. The
keywords are unit , true , and false . The names true and false are used
to denote boolean true and false values. The name unit is often used as a
synchronization token in concurrent programs. Here are some examples:

local X Y B in
X = foo
{NewName Y}
B = true
{Browse [X Y B]}

end

B.2.1 Operations on atoms

Table B.6 gives the operations in the Base module Atom and some of the opera-
tions relating to atoms in the Base module String .

B.3 Records and tuples

Records are data structures that allow to group together language references.
Here is a record that groups four variables:

tree(key:I value:Y left:LT right:RT)

It has four components and the label tree . To avoid ambiguity, there should be
no space between the label and the left parenthesis. Each component consists
of an identifier, called feature, and a reference into the store. A feature can be
either a literal or an integer. Table B.7 gives the syntax of records and tuples.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.3 Records and tuples 827

The above record has four features, key , value , left , and right , that identify
four language references, I , Y, LT, and RT.

It is allowed to omit features in the record syntax. In that case, the feature
will be an integer starting from 1 for the first such component and incrementing
by 1 for each successive component that does not have a feature. For example,
the record tree(key:I value:Y LT RT) is identical to tree(key:I value:Y

1:LT 2:RT) .

The order of labeled components does not matter; it can be changed without
changing the record. We say that these components are unordered. The order of
unlabeled components does matter; it determines how the features are numbered.
It is as if there were two “worlds”: the ordered world and the unordered world.
They have no effect on each other and can be interleaved in any way. All the
following notations denote the same record:

tree(key:I value:Y LT RT) tree(value:Y key:I LT RT)
tree(key:I LT value:Y RT) tree(value:Y LT key:I RT)
tree(key:I LT RT value:Y) tree(value:Y LT RT key:I)
tree(LT key:I value:Y RT) tree(LT value:Y key:I RT)
tree(LT key:I RT value:Y) tree(LT value:Y RT key:I)
tree(LT RT key:I value:Y) tree(LT RT value:Y key:I)

Two records are the same if the same set of components is present and the ordered
components are in the same order.

It is an error if a feature occurs more than once. For example, the notations
tree(key:I key:J) and tree(1:I value:Y LT RT) are both in error. The
error is discovered when the record is constructed. This can be either at compile
time or at run time. However, both tree(3:I value:Y LT RT) and tree(4:I

value:Y LT RT) are correct since no feature occurs more than once. Integer
features do not have to be consecutive.

B.3.1 Tuples

If the record has only consecutive integer features starting from 1, then we call
it a tuple. All these features can be omitted. Consider this tuple:

tree(I Y LT RT)

It is exactly the same as the following tuple:

tree(1:I 2:Y 3:LT 4:RT)

Tuples whose label is ´ #´ have another notation using the # symbol as an “mixfix”
operator (see Appendix C.4). This means that a#b#c is a tuple with three argu-
ments, namely ´ #´ (a b c) . Be careful not to confuse it with the pair a#(b#c) ,
whose second argument is itself the pair b#c . The mixfix notation can only be
used for tuples with at least two arguments. It is used for virtual strings (see
Section B.7).

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

828 Basic Data Types

Operation Description
R.F Return field F from R

{HasFeature R F} Return boolean saying whether feature F is in R

{IsRecord R} Return boolean saying whether R is of record type
{MakeRecord L Fs} Return record with label L and features Fs

{Label R} Return the label of R

{Arity R} Return the list of features (arity) of R

{Record.toList R} Return the list of fields of R, in Arity order
{Width R} Return the number of features (width) of R

{AdjoinAt R F X} Return R augmented with feature F and value X

{Adjoin R1 R2} Return R1 augmented with all fields of R2

Table B.8: Some record operations

B.3.2 Operations on records

Table B.8 gives a few basic record operations. Many more operations exist in the
Base module Record . This appendix shows only a few, namely those concerning
extracting information from records and building new records. To select a field of
a record component, we use the infix dot operator, e.g., tree(key:I value:Y

LT RT).value returns Y. To compare two records, we use the equality test op-
eration. Two records are the same if they have the same set of features and the
language references for each feature are the same.

The arity of a record is a list of the features of the record sorted lexicographi-
cally. To display the arity of a record we use the function Arity . Calling {Arity

R} will execute as soon as R is bound to a record, and will return the arity of the
record. Feeding the statement:

declare T W L R in
T=tree(key:a left:L right:R value:1)
W=tree(a L R 1)
{Browse {Arity T}}
{Browse {Arity W}}

will display:

[key left right value]
[1 2 3 4]

The function {AdjoinAt R1 F X} returns the record resulting from adjoining
(i.e., adding) the field X to R1 at feature F. The record R1 is unchanged. If
R1 already has the feature F, then the result is identical to R1 except for the
field R1.F , whose value becomes X. Otherwise the feature F is added to R1. For
example:

declare T W L R in
T=tree(key:a left:L right:R value:1)
W=tree(a L R 1)

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.4 Chunks (limited records) 829

Operation Description
{MakeTuple L N} Return tuple with label L and features 1, ..., N

{IsTuple T} Return boolean saying whether T is of tuple type

Table B.9: Some tuple operations

〈expression〉 ::= ´ [´ { 〈expression〉 }+ ´] ´ | ...
〈consBinOp〉 ::= ´ | ´ | ...

Table B.10: List syntax (in part)

{Browse {AdjoinAt T 1 b}}
{Browse {AdjoinAt W key b}}

will display:

tree(b key:a left:L right:R value:1)
tree(a L R 1 key:b)

The {Adjoin R1 R2} operation gives the same result as if AdjoinAt were called
successively, starting with R1 and iterating through all features of R2.

B.3.3 Operations on tuples

All record operations also work for tuples. There are a few additional operations
that work only on tuples. Table B.9 lists some of them. The Base module Tuple

gives them all.

B.4 Chunks (limited records)

A chunk is Mozart terminology for a record type with a limited set of operations.
Chunks are not a fundamental concept; they can be implemented with procedure
values and names, as explained in Section 3.7.5. For improved efficiency, Mozart
provides chunks directly as a data type. We describe them here because some
library modules use them (in particular, the module ObjectSupport). There are
only two basic operations: create a chunk from any record and extract information
with the field selection operator “. ”:

declare
C={Chunk.new anyrecord(a b c)} % Chunk creation
F=C.2 % Chunk field selection

The Label and Arity operations are not defined and unification is not possible.
Chunks give a way of “wrapping” information so that access to the information
is restricted, i.e., not all computations can access the information. This makes
chunks useful for defining secure abstract data types.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

830 Basic Data Types

B.5 Lists

A list is either the atom nil representing the empty list or a tuple with infix
operator | and two arguments which are respectively the head and the tail of
the list. The two arguments have field numbered 1 and 2. The head can be any
data type and the tail is a list. We call the tuple a list pair. Often it is called a
cons cell because creating one in Lisp is done with an operation called cons. Lisp
is the oldest list-processing language and pioneered many list concepts and their
terminology. When the second argument is not necessarily a list, then it is often
called a dotted pair, because Lisp writes it in infix with a dot operator. In our
notation, a list of the letters a, b, and c is written as:

a|b|c|nil

We provide a more concise syntax for lists (i.e., when the rightmost argument is
nil):

[a b c]

Table B.10 shows the syntax of these two ways of writing a list. The partial list
containing elements a and b and whose tail is the variable X looks like:

a|b|X

One can also use the standard record notation for lists:

´ | ´ (a ´ | ´ (b X))

or even (making the field names explicit):

´ | ´ (1:a 2: ´ | ´ (1:b 2:X))

Circular lists are allowed. For example, the following is legal:

declare X in
X=a|b|X
{Browse X}

By default, the browser displays the list without taking sharing into account, i.e.,
without taking into account multiple references to the same part of the list. In
the list X, after the first two elements a and b, we find X again. By default, the
browser ignores all sharing. It displays X as:

a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|
a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|a|b|,,,

To avoid infinite loops, the browser has an adjustable depth limit. The three
commas ,,, represent the part of the list that is not displayed. Select Graph in
the Representation entry of the browser’s Options menu and feed the fragment
again. This will display the list as a graph (see Figure B.1):

C1=a|b|C1

The browser introduces the new variable C1 to refer to another part of the list.
See the browser manual for more information on what the browser can display.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.5 Lists 831

Operation Description
{Append L1 L2} Return the concatenation of L1 and L2

{Member X L} Return boolean saying whether X is in L

{Length L} Return the length of L

{List.drop L N} Return L minus the first Nelements, or nil

if it is shorter
{List.last L} Return the last element of non-empty list

L

{Sort L F} Return L sorted according to boolean com-
parison function F

{Map L F} Return the list obtained by applying F to
each element of L

{ForAll L P} Apply the unary procedure P to each ele-
ment of L

{Filter L F} Return the list of elements of L for which
F gives true

{FoldL L F N} Return the value obtained by inserting F

between all elements of L

{Flatten L} Return the list of all non-list elements of
L, at any nesting depth

{List.toTuple A L} Return tuple with label A and ordered
fields from L

{List.toRecord A L} Return record with label A and fea-
tures/fields F#X in L

Table B.11: Some list operations

B.5.1 Operations on lists

Table B.11 gives a few basic list operations. Many more operations exist in the
Base module List . Here is a simple symbolic calculation with lists:

declare A B in
A=[a b c]
B=[1 2 3 4]
{Browse {Append A B}}

This displays the list [a b c 1 2 3 4] . Like all operations, these all have cor-
rect dataflow behavior. For example, {Length a|b|X} blocks until X is bound.
The operations Sort , Map, ForAll , Filter , and FoldL are examples of higher-
order operations, i.e., operations that take functions or procedures as arguments.
We will talk about higher-order execution in Chapter 3. For now, here’s an
example to give a flavor of what is possible:

declare L in
L=[john paul george ringo]

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

832 Basic Data Types

|

|

a

b

C1:

Figure B.1: Graph representation of the infinite list C1=a|b|C1

〈expression〉 ::= 〈string〉 | ...
〈string〉 ::= ´ " ´ { 〈stringChar〉 | 〈pseudoChar〉 } ´ " ´

〈stringChar〉 ::= (any inline character except " , \ , and NUL)
〈pseudoChar〉 ::= (’\’ followed by three octal digits)

| (´ \x ´ or ´ \X ´ followed by two hexadecimal digits)
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table B.12: String lexical syntax

{Browse {Sort L Value. ´ <´ }}

sorts L according to the comparison function ´ <´ and displays the result:

[george john paul ringo]

As an infix operator, comparison is written as X<Y, but the comparison operation
itself is in the Base module Value . Its full name is Value. ´ <´ . Modules are
explained in Section 3.9.

B.6 Strings

Lists whose elements are character codes are called strings. For example:

"Mozart 1.2.3"

is the list:

[77 111 122 97 114 116 32 49 46 50 46 51]

or equivalently:

[&M &o &z &a &r &t & &1 &. &2 &. &3]

Using lists to represent strings is convenient because all list operations are avail-
able for doing symbolic calculations with strings. Character operations can be
used together with list operations to calculate on the internals of strings. String

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

B.7 Virtual strings 833

Operation Description
{VirtualString.toString VS} Return a string with the same characters

as VS

{VirtualString.toAtom VS} Return an atom with the same characters
as VS

{VirtualString.length VS} Return the number of characters in VS

{Value.toVirtualString X D W} Return a string representing the partial
value X, where records are limited in depth
to D and in width to W

Table B.13: Some virtual string operations

syntax is shown in Table B.12. The NUL character mentioned in the table has
character code 0 (zero). See Section B.1 for an explanation of the meaning of
´ \a ´ , ´ \b ´ , etc.

There exists another, more memory-efficient representation for character se-
quences called bytestring. This representation should only be used if memory
limitations make it necessary.

B.7 Virtual strings

A virtual string is a tuple with label ´ #´ that represents a string. The virtual
string brings together different substrings that are concatenated with virtual con-
catenation. That is, the concatenation is never actually performed, which saves
time and memory. For example, the virtual string:

123#"-"#23#" is "#(123-23)

represents the string:

"123-23 is 100"

Except in special cases, a library operation that expects a string can always be
given a virtual string instead. For example, virtual strings can be used for all
I/O operations. The components of a virtual string can be numbers, strings,
virtual strings (i.e., ´ #´ -labeled tuples), and all atoms except for nil and ´ #´ .
Table B.13 gives a few virtual string operations.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

834 Basic Data Types

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix C

Language Syntax

“The devil is in the details.”
– Traditional proverb.

“God is in the details.”
– Traditional proverb.

“I don’t know what is in those details,
but it must be something important!”
– Irreverent proverb.

This appendix defines the syntax of the complete language used in this book,
including all syntactic conveniences. The language is a subset of the Oz language
as implemented by the Mozart system. The appendix is divided into six sections:

• Section C.1 defines the syntax of interactive statements, i.e., statements
that can be fed into the interactive interface.

• Section C.2 defines the syntax of statements and expressions.

• Section C.3 defines the syntax of the nonterminals needed to define state-
ments and expressions.

• Section C.4 lists the operators of the language with their precedence and
associativity.

• Section C.5 lists the keywords of the language.

• Section C.6 defines the lexical syntax of the language, i.e., how a character
sequence is transformed into a sequence of tokens.

To be precise, this appendix defines a context-free syntax for a superset of the
language. This keeps the syntax simple and easy to read. The disadvantage of
a context-free syntax is that it does not capture all syntactic conditions for legal
programs. For example, take the statement local X in 〈statement〉 end . The

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

836 Language Syntax

〈interStatement〉 ::= 〈statement〉
| declare { 〈declarationPart〉 }+ [〈interStatement〉]
| declare { 〈declarationPart〉 }+ in 〈interStatement〉

Table C.1: Interactive statements

〈statement〉 ::= 〈nestCon(statement)〉 | 〈nestDec(〈variable〉)〉
| skip | 〈statement〉 〈statement〉

〈expression〉 ::= 〈nestCon(expression)〉 | 〈nestDec(´ $´)〉
| 〈expression〉 〈evalBinOp〉 〈expression〉
| ´ $´ | 〈term〉 | ´ @́ 〈expression〉 | self

〈inStatement〉 ::= [{ 〈declarationPart〉 }+ in] 〈statement〉
〈inExpression〉 ::= [{ 〈declarationPart〉 }+ in] [〈statement〉] 〈expression〉
〈in(statement)〉 ::= 〈inStatement〉
〈in(expression)〉 ::= 〈inExpression〉

Table C.2: Statements and expressions

statement that contains this one must declare all the free variable identifiers of
〈statement〉, possibly minus X. This is not a context-free condition.

This appendix defines the syntax of a subset of the full Oz language, as de-
fined in [77, 47]. This appendix differs from [77] in several ways: it introduces
nestable constructs, nestable declarations, and terms to factor the common parts
of statement and expression syntax, it defines interactive statements and for

loops, it leaves out the translation to the kernel language (which is given for each
linguistic abstraction in the main text of the book), and it makes other small
simplifications for clarity (but without sacrificing precision).

C.1 Interactive statements

Table C.1 gives the syntax of interactive statements. An interactive statement
is a superset of a statement; in addition to all regular statements, it can contain
a declare statement. The interactive interface must always be fed interactive
statements. All free variable identifiers in the interactive statement must exist in
the global environment, otherwise the system gives a “variable not introduced”
error.

C.2 Statements and expressions

Table C.2 gives the syntax of statements and expressions. Many language con-
structs be used in either a statement position or an expression position. We

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

C.2 Statements and expressions 837

〈nestCon(α)〉 ::= 〈expression〉 (´ =´ | ´ := ´ | ´ , ´) 〈expression〉
| ´ { ´ 〈expression〉 { 〈expression〉 } ´ } ´

| local { 〈declarationPart〉 }+ in [〈statement〉] 〈α〉 end

| ´ (´ 〈in(α)〉 ´) ´

| if 〈expression〉 then 〈in(α)〉
{ elseif 〈expression〉 then 〈in(α)〉 }
[else 〈in(α)〉] end

| case 〈expression〉 of 〈pattern〉 [andthen 〈expression〉] then 〈in(α)〉
{ ´ [] ´ 〈pattern〉 [andthen 〈expression〉] then 〈in(α)〉 }
[else 〈in(α)〉] end

| for { 〈loopDec〉 }+ do 〈in(α)〉 end

| try 〈in(α)〉
[catch 〈pattern〉 then 〈in(α)〉
{ ´ [] ´ 〈pattern〉 then 〈in(α)〉 }]

[finally 〈in(α)〉] end

| raise 〈inExpression〉 end

| thread 〈in(α)〉 end

| lock [〈expression〉 then] 〈in(α)〉 end

Table C.3: Nestable constructs (no declarations)

〈nestDec(α)〉 ::= proc ´ { ´ α { 〈pattern〉 } ´ } ´ 〈inStatement〉 end

| fun [lazy] ´ { ´ α { 〈pattern〉 } ´ } ´ 〈inExpression〉 end

| functor α
[import { 〈variable〉 [at 〈atom〉]

| 〈variable〉 ´ (´

{ (〈atom〉 | 〈int〉) [´ : ´ 〈variable〉] }+ ´) ´

}+]
[export { [(〈atom〉 | 〈int〉) ´ : ´] 〈variable〉 }+]
define { 〈declarationPart〉 }+ [in 〈statement〉] end

| class α { 〈classDescriptor〉 }
{ meth 〈methHead〉 [´ =´ 〈variable〉]

(〈inExpression〉 | 〈inStatement〉) end }
end

Table C.4: Nestable declarations

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

838 Language Syntax

〈term〉 ::= [´ ! ´] 〈variable〉 | 〈int〉 | 〈float〉 | 〈character〉
| 〈atom〉 | 〈string〉 | unit | true | false

| 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈expression〉 } ´) ´

| 〈expression〉 〈consBinOp〉 〈expression〉
| ´ [´ { 〈expression〉 }+ ´] ´

〈pattern〉 ::= [´ ! ´] 〈variable〉 | 〈int〉 | 〈float〉 | 〈character〉
| 〈atom〉 | 〈string〉 | unit | true | false

| 〈label〉 ´ (´ { [〈feature〉 ´ : ´] 〈pattern〉 } [´ ... ´] ´) ´

| 〈pattern〉 〈consBinOp〉 〈pattern〉
| ´ [´ { 〈pattern〉 }+ ´] ´

Table C.5: Terms and patterns

call such constructs nestable. We write the grammar rules to give their syn-
tax just once, in a way that works for both statement and expression positions.
Table C.3 gives the syntax for nestable constructs, not including declarations. Ta-
ble C.4 gives the syntax for nestable declarations. The grammar rules for nestable
constructs and declarations are templates with one argument. The template is
instantiated each time it is used. For example, 〈nestCon(α)〉 defines the tem-
plate for nestable constructs without declarations. This template is used twice,
as 〈nestCon(statement)〉 and 〈nestCon(expression)〉, and each corresponds to one
grammar rule.

C.3 Nonterminals for statements and expressions

Tables C.5 and C.6 defines the nonterminal symbols needed for the statement and
expression syntax of the preceding section. Table C.5 defines the syntax of terms
and patterns. Note the close relationship between terms and patterns. Both are
used to define partial values. There are just two differences: (1) patterns can
contain only variable identifiers whereas terms can contain expressions, and (2)
patterns can be partial (using ´ ... ´) whereas terms cannot.

Table C.6 defines nonterminals for the declaration parts of statements and
loops, for binary operators (“constructing” operators 〈consBinOp〉 and “evalu-
ating” operators 〈evalBinOp〉), for records (labels and features), and for classes
(descriptors, attributes, methods, etc.).

C.4 Operators

Table C.7 gives the precedence and associativity of all the operators used in the
book. All the operators are binary infix operators, except for three cases. The
minus sign ´ ˜ ´ is a unary prefix operator. The hash symbol ´ #´ is an n-ary
mixfix operator. The “. := ” is a ternary infix operator that is explained in the

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

C.4 Operators 839

〈declarationPart〉 ::= 〈variable〉 | 〈pattern〉 ´ =´ 〈expression〉 | 〈statement〉
〈loopDec〉 ::= 〈variable〉 in 〈expression〉 [´ .. ´ 〈expression〉] [´ ; ´ 〈expression〉]

| 〈variable〉 in 〈expression〉 ´ ; ´ 〈expression〉 ´ ; ´ 〈expression〉
| break ´ : ´ 〈variable〉 | continue ´ : ´ 〈variable〉
| return ´ : ´ 〈variable〉 | default ´ : ´ 〈expression〉
| collect ´ : ´ 〈variable〉

〈binaryOp〉 ::= 〈evalBinOp〉 | 〈consBinOp〉
〈consBinOp〉 ::= ´ #´ | ´ | ´

〈evalBinOp〉 ::= ´ +´ | ´ - ´ | ´ * ´ | ´ / ´ | div | mod | ´ . ´ | andthen | orelse

| ´ := ´ | ´ , ´ | ´ =´ | ´ ==´ | ´ \= ´ | ´ <´ | ´ =<´ | ´ >´ | ´ >=´

〈label〉 ::= unit | true | false | 〈variable〉 | 〈atom〉
〈feature〉 ::= unit | true | false | 〈variable〉 | 〈atom〉 | 〈int〉
〈classDescriptor〉 ::= from { 〈expression〉 }+ | prop { 〈expression〉 }+

| attr { 〈attrInit〉 }+
〈attrInit〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ : ´ 〈expression〉]
〈methHead〉 ::= ([´ ! ´] 〈variable〉 | 〈atom〉 | unit | true | false)

[´ (´ { 〈methArg〉 } [´ ... ´] ´) ´]
[´ =´ 〈variable〉]

〈methArg〉 ::= [〈feature〉 ´ : ´] (〈variable〉 | ´ _´ | ´ $´) [´ <=´ 〈expression〉]

Table C.6: Other nonterminals needed for statements and expressions

next section. There are no postfix operators. The operators are listed in order of
increasing precedence, i.e., tightness of binding. The operators lower in the table
bind tighter. We define the associativities as follows:

• Left. For binary operators, this means that repeated operators group to
the left. For example, 1+2+3 means the same as ((1+2)+3) .

• Right. For binary operators, this means that repeated operators group to
the right. For example, a|b|X means the same as (a|(b|X)) .

• Mixfix. Repeated operators are actually just one operator, with all expres-
sions being arguments of the operator. For example, a#b#c means the same
as ´ #´ (a b c) .

• None. For binary operators, this means that the operator cannot be repeat-
ed. For example, 1<2<3 is an error.

Parentheses can be used to override the default precedence.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

840 Language Syntax

Operator Associativity
= right
:= “. := ” right
orelse right
andthen right
== \= < =< > >= none
| right
mixfix
+ - left
* / div mod left
, right
˜ left
. left
@ !! left

Table C.7: Operators with their precedence and associativity

.

S I X

(any ref)
(index)

(dictionary)

S . I := X

X

(any ref)

(S . I) := X

(cell)

. := :=

S I

(index)or record)
(dictionary

Figure C.1: The ternary operator “. := ”

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

C.5 Keywords 841

andthen default false lock return

at define feat (*) meth self

attr dis (*) finally mod skip

break div for not (*) then

case do from of thread

catch else fun or (*) true

choice elsecase (*) functor orelse try

class elseif if prepare (*) unit

collect elseof (*) import proc

cond (*) end in prop

continue export lazy raise

declare fail local require (*)

Table C.8: Keywords

C.4.1 Ternary operator

There is one ternary (three-argument) operator, “. := ”, which is designed for
dictionary and array updates. It has the same precedence and associativity as
:= . It can be used in an expression position like := , where it has the effect of an
exchange. The statement S.I:=X consists of a ternary operator with arguments
S, I , and X. This statement is used for updating dictionaries and arrays. This
should not be confused with (S.I):=X , which consists of the two nested binary
operators . and := . The latter statement is used for updating a cell that is
inside a dictionary. The parentheses are highly significant! Figure C.1 shows
the difference in abstract syntax between S.I:=X and (S.I):=X . In the figure,
(cell) means any cell or object attribute, and (dictionary) means any dictionary
or array.

The distinction is important because dictionaries can contain cells. To update
a dictionary D, we write D.I:=X . To update a cell in a dictionary containing cells,
we write (D.I):=X . This has the same effect as local C=D.I in C:=X end but
is more concise. The first argument of the binary operator := must be a cell or
object attribute.

C.5 Keywords

Table C.8 lists the keywords of the language in alphabetic order. Keywords
marked with (*) exist in Oz but are not used in this book. Keywords in boldface
can be used as atoms by enclosing them in quotes. For example, ´ then ´ is an
atom whereas then is a keyword. Keywords not in boldface can be used as atoms
directly, without quotes.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

842 Language Syntax

〈variable〉 ::= (uppercase char) { (alphanumeric char) }
| ’‘’ { 〈variableChar〉 | 〈pseudoChar〉 } ’‘’

〈atom〉 ::= (lowercase char) { (alphanumeric char) } (except no keyword)
| ’’’ { 〈atomChar〉 | 〈pseudoChar〉 } ’’’

〈string〉 ::= ´ " ´ { 〈stringChar〉 | 〈pseudoChar〉 } ´ " ´

〈character〉 ::= (any integer in the range 0 ... 255)
| ´ &´ 〈charChar〉 | ´ &´ 〈pseudoChar〉

Table C.9: Lexical syntax of variables, atoms, strings, and characters

〈variableChar〉 ::= (any inline character except ‘ , \ , and NUL)
〈atomChar〉 ::= (any inline character except ’ , \ , and NUL)
〈stringChar〉 ::= (any inline character except " , \ , and NUL)
〈charChar〉 ::= (any inline character except \ and NUL)
〈pseudoChar〉 ::= ’\’ 〈octdigit〉 〈octdigit〉 〈octdigit〉

| (´ \x ´ | ´ \X ´) 〈hexdigit〉 〈hexdigit〉
| ´ \a ´ | ´ \b ´ | ´ \f ´ | ´ \n ´ | ´ \r ´ | ´ \t ´

| ´ \v ´ | ´ \\ ´ | ´ \ ´´ | ´ \" ´ | ´ \ `´ | ´ \& ´

Table C.10: Nonterminals needed for lexical syntax

〈int〉 ::= [´ ˜ ´] 〈nzdigit〉 { 〈digit〉 }
| [´ ˜ ´] 0 { 〈octdigit〉 }+
| [´ ˜ ´] (´ 0x ´ | ´ 0X´) { 〈hexdigit〉 }+
| [´ ˜ ´] (´ 0b´ | ´ 0B´) { 〈bindigit〉 }+

〈float〉 ::= [´ ˜ ´] { 〈digit〉 }+ ´ . ´ { 〈digit〉 } [(´ e´ | ´ E´) [´ ˜ ´] { 〈digit〉 }+]
〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈nzdigit〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
〈octdigit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
〈hexdigit〉 ::= 〈digit〉 | ´ a´ | ´ b´ | ´ c ´ | ´ d´ | ´ e´ | ´ f ´

| ´ A´ | ´ B´ | ´ Ć | ´ D́ | ´ E´ | ´ F´

〈bindigit〉 ::= 0 | 1

Table C.11: Lexical syntax of integers and floating point numbers

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

C.6 Lexical syntax 843

C.6 Lexical syntax

This section defines the lexical syntax of Oz, i.e., how a character sequence is
transformed into a sequence of tokens.

C.6.1 Tokens

Variables, atoms, strings, and characters

Table C.9 defines the lexical syntax for variable identifiers, atoms, strings, and
characters in strings. An alphanumeric character is a letter (uppercase or low-
ercase), a digit, or an underscore character. Unlike the previous sections which
define token sequences, this section defines character sequences. It follows from
this syntax that an atom cannot have the same character sequence as a key-
word unless the atom is quoted. Table C.10 defines the nonterminals needed
for Table C.9. “Any inline character” includes control characters and accented
characters. The NUL character has character code 0 (zero).

Integers and floating point numbers

Table C.11 defines the lexical syntax of integers and floating point numbers. Note
the use of the ´ ˜ ´ (tilde) for the unary minus symbol.

C.6.2 Blank space and comments

Tokens may be separated by any amount of blank space and comments. Blank
space is one of the characters tab (character code 9), newline (code 10), vertical
tab (code 11), form feed (code 12), carriage return (code 13), and space (code
32). A comment is one of three possibilities:

• A sequence of characters starting from the character % (percent) until the
end of the line or the end of the file (whichever comes first).

• A sequence of characters starting from /* and ending with */, inclusive.
This kind of comment may be nested.

• The single character ? (question mark). This is intended to mark the
output arguments of procedures, as in:

proc {Max A B ?C} ... end

where C is an output. An output argument is an argument that gets bound
inside the procedure.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

844 Language Syntax

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Appendix D

General Computation Model

“The removal of much of the accidental complexity of programming
means that the intrinsic complexity of the application is what’s left.”
– Security Engineering, Ross J. Anderson (2001)

“If you want people to do something the right way, you must make
the right way the easy way.”
– Traditional saying.

This appendix brings together all the general concepts introduced in the book.1

The resulting computation model is the shared-state concurrent model of Chap-
ter 8. For convenience we call it the general computation model. While this model
is quite general, it is certainly not the final word in computation models. It is
just a snapshot that captures our current understanding of programming. Future
research will certainly change or extend it. The book mentions dynamic scoping
and transaction support as two areas which require more support from the model.

The general computation model was designed in a layered fashion, by starting
from a simple base model and successively adding new concepts. Each time we
noted a limitation in the expressiveness of a computation model, we had the
opportunity to add a new concept. There was always a choice: either to keep
the model as is and make programs more complicated, or to add a concept and
keep programs simple. The decision to add the concept or not was based on
our judgement of how complicated the model and its programs would be, when
considered together. “Complexity” in this sense covers both the expressiveness
and ease of reasoning of the combination.

There is a strong element of creativity in this approach. Each concept brings
something novel that was not there before. We therefore call it the creative
extension principle. Not all useful concepts end up in the general model. Some
concepts were added only to be superseded by later concepts. For example,
this is the case for nondeterministic choice (Section 5.7.1), which is superseded

1Except for computation spaces, which underlie the relational computation model and the
constraint-based computation model.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

846 General Computation Model

by explicit state. The general model is just one among many possible models of
similar expressiveness. Your judgement in this process may be different from ours.
We would be interested to hear from any reader who has reached significantly
different conclusions.

Because earlier computation models are subsets of later ones, the later ones
can be considered as frameworks inside of which many computation models can
coexist. In this sense, the general computation model is the most complete frame-
work of the book.

D.1 Creative extension principle

We give an example to explain and motivate the creative extension principle.
Let us start with the simple declarative language of Chapter 2. In that chapter,
we added two concepts to the declarative language: functions and exceptions.
But there was something fundamentally different in how we added each concept.
Functions were added as a linguistic abstraction by defining a new syntax and
showing how to translate it into the kernel language (see Section 2.5.2). Excep-
tions were added to the kernel language itself by adding new primitive operations
and defining their semantics (see Section 2.6). Why did we choose to do it this
way? We could have added functions to the kernel language and defined excep-
tions by translation, but we did not. There is a simple but profound reason for
this: functions can be defined by a local translation but exceptions cannot. A
translation of a concept is local if it requires changes only to the parts of the
program that use the concept.

Starting with the declarative kernel language of Chapter 2, this book added
concepts one by one. For each concept we had to decide whether to add it as a
linguistic abstraction (without changing the kernel language) or to add it to the
kernel language. A linguistic abstraction is a good idea if the translation is local.
Extending the kernel language is a good idea if there is no local translation.

This choice is always a trade-off. One criterium is that the overall scheme,
including both the kernel language and the translation scheme into the kernel
language, should be as simple as possible. This is what we call the creative
extension principle. To some degree, simplicity is a subjective judgement. This
book makes one particular choice of what should be in the kernel languages and
what should be outside. Other reasonable choices are certainly possible.

An additional constraint on the kernel languages of this book is that they
are all carefully chosen to be subsets of the full Oz language. This means that
they are all implemented by the Mozart system. Users can verify that the kernel
language translation of a program behaves in exactly the same way as the pro-
gram. The only difference between the two is efficiency. This is useful both for
learning the kernel languages and for debugging programs. The Mozart system
implements certain constructs more efficiently than their representation in the
kernel language. For example, classes and objects in Oz are implemented more

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

D.2 Kernel language 847

〈s〉 ::=
skip Empty statement
| 〈s〉1 〈s〉2 Statement sequence
| local 〈x〉 in 〈s〉 end Variable creation
| 〈x〉1=〈x〉2 Variable-variable binding
| 〈x〉=〈v〉 Value creation
| { 〈x〉 〈y〉1 ... 〈y〉n} Procedure application
| if 〈x〉 then 〈s〉1 else 〈s〉2 end Conditional
| case 〈x〉 of 〈pattern〉 then 〈s〉1 else 〈s〉2 end Pattern matching
| thread 〈s〉 end Thread creation
| {ByNeed 〈x〉 〈y〉} Trigger creation
| {NewName〈x〉} Name creation
| 〈y〉=!! 〈x〉 Read-only view
| try 〈s〉1 catch 〈x〉 then 〈s〉2 end Exception context
| raise 〈x〉 end Raise exception
| {FailedValue 〈x〉 〈y〉} Failed value
| {NewCell 〈x〉 〈y〉} Cell creation
| {Exchange 〈x〉 〈y〉 〈z〉} Cell exchange
| {IsDet 〈x〉 〈y〉} Boundness test

Table D.1: The general kernel language

efficiently than their kernel definitions.

D.2 Kernel language

Table D.1 gives the kernel language of the general computation model. For clarity,
we divide the table into five parts:

• The first part is the descriptive declarative model. This model allows to
build complex data structures (rooted graphs whose nodes are records and
procedure values) but does not allow to calculate with them.

• The first and second parts taken together form the declarative concurrent
model. This is the most general purely declarative model of the book. All
programs written in this model are declarative.

• The third part adds security: the ability to build secure ADTs and program
with capabilities.

• The fourth part adds exceptions: the ability to handle exceptional situations
by doing non-local exits.

• The fifth part adds explicit state, which is important for building modular
programs and programs that can change over time.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

848 General Computation Model

Taking all parts gives the shared-state concurrent model. This is the most general
model of the book. Chapter 13 gives the semantics of this model and all its
subsets.

D.3 Concepts

Let us now recapitulate the design methodology of the general model by starting
with a simple base model and briefly explaining what new expressiveness each
concept brings. All models are Turing complete, that is, they are equivalent in
computing power to a Turing machine. However, Turing completeness is only a
small part of the story. The ease in which programs can be written or reasoned
about differs greatly in these models. Increased expressiveness typically goes
hand in hand with increased difficulty to reason about programs.

D.3.1 Declarative models

Strict functional model The simplest practical model is strict functional pro-
gramming with values. This model is defined in Section 2.7.1. In this model there
are no unbound variables; each new variable is immediately bound to a value.
This model is close to the λ calculus, which contains just procedure definition
and application and leaves out the conditional and pattern matching. The λ cal-
culus is Turing complete but is much too cumbersome for practical programming.

Sequential declarative model The sequential declarative model is defined in
Chapter 2. It contains all concepts in Table D.1 up to and including procedure
application, conditionals, and pattern matching. It extends the strict functional
model by introducing dataflow variables. Doing this is a critical step because
it prepares the way for declarative concurrency. For binding dataflow variables,
we use a general operation called unification. This means that the sequential
declarative model does both deterministic logic programming and functional pro-
gramming.

Threads The thread concept is defined in Section 4.1. Adding threads allows
the model to express activities that execute independently. This model is still
declarative: adding threads leaves the result of a calculation unchanged. Only the
order in which the calculations are done is more flexible. Programs become more
incremental: incrementally building an input results in an incrementally-built
output. This is one form of declarative concurrency.

Triggers The trigger concept is defined in Section 4.5.1. Adding triggers allows
the model to express demand-driven computations (laziness). This model is still
declarative since the result of a calculation is unchanged. Only the amount of
calculation done to achieve the result changes (it can become smaller). Sometimes

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

D.3 Concepts 849

the demand-driven model can give results in cases where the data-driven model
would go into an infinite loop. This is a second form of declarative concurrency.

D.3.2 Security

Names The name concept is defined in Section 3.7.5. A name is an unforgeable
constant that does not exist outside of a program. A name has no data or
operations attached to it; it is a first-class “key” or “right”. Names are the basis
of programming techniques such as unbundled secure ADTs (see Section 6.4) and
encapsulation control (see Section 7.3.3).

In the declarative model, secure ADTs can be built without names by using
procedure values to hide values. The hidden value is an external reference of
the procedure. But names add a crucial additional expressiveness. They make it
possible to program with rights. For example, separating data from operations
in a secure ADT or passing keys to programs to enable secure operations.

Strictly speaking, names are not declarative since successive calls to NewName

give different results. That is, the same program can return two different results
if names are used to identify the result uniquely. But if names are used only to
enforce security properties, then the model is still declarative.

Read-only views The read-only view concept is defined in Section 3.7.5. A
read-only view is a dataflow variable that can be read but not bound. It is
always paired with another dataflow variable that is equal to it but that can
be bound. Read-only views are needed to construct secure ADTs that export
unbound variables. The ADT exports the read-only view. Since it cannot be
bound outside the ADT, this allows the ADT to maintain its invariant property.

D.3.3 Exceptions

Exception handling The exception concept is defined in Section 2.6.2. Adding
exceptions allows to exit in one step from an arbitrarily large number of nested
procedure calls. This allows to write programs that treat rare cases correctly,
without complicating the program in the common case.

Failed values The failed value concept is defined in Section 4.9.1. A failed
value is a special kind of value that encapsulates an exception. Any attempt to
use the value or to bind it to a determined value will raise the exception. While
exception handling happens within a single thread, failed values allow to pass
exceptions from the thread that detected the problem to other threads.

Failed values are useful in models that have both exceptions and triggers.
Assume that a program calculates a value by a demand-driven computation, but
the computation raises an exception instead. What should the value be? It can
be a failed value. This will cause any thread that needs the value to raise an
exception.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

850 General Computation Model

D.3.4 Explicit state

Cells (explicit state) Explicit state is defined in Section 6.3. Adding state
gives a program a memory: a procedure can change its behavior over successive
calls. In the declarative model this is not possible since all knowledge is in the
procedure’s arguments.

The stateful model greatly improves program modularity when compared to
models without state. It increases the possibilities for changing a module’s im-
plementation without changing its interface (see Section 4.7).

Ports (explicit state) Another way to add explicit state is by means of ports,
which are a kind of asynchronous communication channel. As explained in Sec-
tion 7.8, ports and cells are equivalent: each can implement the other in a simple
way. Ports are useful for programming message passing with active objects. Cells
are useful for programming atomic actions with shared state.

Boundness test (weak state) The boundness test IsDet lets us use dataflow
variables as a weak form of explicit state. The test checks whether a variable is
bound or still unbound, without waiting when the variable is unbound. For many
programming techniques, knowing the binding status of a dataflow variable is
unimportant. However, it can be important when programming a time-dependent
execution, i.e., to know what the instantaneous state is of an execution (see
Section 4.7.3).

Object-oriented programming Object-oriented programming is introduced
in Chapter 7. It has the same kernel language as the stateful models. It is a rich
set of programming techniques that uses ideas from knowledge representation to
improve program structure. The two main ideas are to consider programs as
collections of interacting ADTs (which can be grouped together in associations)
and to allow building ADTs incrementally (using inheritance, delegation, and
forwarding).

D.4 Different forms of state

Adding explicit state is such a strong change to the model that it is important to
have weaker forms of state. In the above models we have introduced four forms
of state. Let us summarize these forms in terms of how many times we can assign
a variable, i.e., change its state. In order of increasing strength, they are:

• No assignment, i.e., programming with values only (monotonic execution).
This is functional programming as it is usually understood. Programs are
completely deterministic, i.e., the same program always gives the same re-
sult.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

D.5 Other concepts 851

• Single assignment, i.e., programming with dataflow variables (monotonic
execution). This is also functional programming, but more flexible since it
allows declarative concurrency (with both lazy and eager execution). Pro-
grams are completely deterministic, but the result can be given incremen-
tally.

• Single assignment with boundness test, i.e., programming with dataflow
variables and IsDet (nonmonotonic execution). Programs are no longer
deterministic.

• Multiple assignment, i.e., programming with cells or ports (nonmonotonic
execution). Programs are no longer deterministic. This is the most expres-
sive model.

We can understand these different forms of state in terms of an important prop-
erty called monotonicity. At any time, a variable can be assigned to an element of
some set S of values. Assignment is monotonic if as execution progresses, values
can be removed from S but not added. For example, binding a dataflow variable
X to a value reduces S from all possible values to just one value. A function f
is monotonic if S1 ⊂ S2 =⇒ f(S1) ⊂ f(S2). For example, IsDet is nonmono-
tonic since {IsDet X} returns false when X is unbound and true when X is
bound, and {true } is not a subset of {false }. A program’s execution is mono-
tonic if all its operations are monotonic. Monotonicity is what makes declarative
concurrency possible.

D.5 Other concepts

D.5.1 What’s next?

The general computation model of this book is just a snapshot of an ongoing
process. New concepts will continue to be discovered in the future using the
creative extension principle. What will these new concepts be? We cannot tell
for sure, since anticipating a discovery is the same as making that discovery! But
there are hints about a few of the concepts. Two concepts that we are fairly sure
about, even though we do not know their final form, are dynamic scoping and
transaction support. With dynamic scoping the behavior of a component depends
on its context. With transaction support the execution of a component can be
canceled if it cannot complete successfully. According to the creative extension
principle, both of these concepts should be added to the computation model.

D.5.2 Domain-specific concepts

This book gives many general concepts that are useful for all kinds of programs.
In addition to this, each application domain has its own set of concepts that
are useful only in that domain. These extra concepts complement the general

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

852 General Computation Model

concepts. For example, we can cite artificial intelligence [160, 136], algorithm
design [41], object-oriented design patterns [58], multi-agent programming [205],
databases [42], and numerical analysis [153].

D.6 Layered language design

The general computation model has a layered design. Each layer offers its own
special trade-off of expressiveness and ease of reasoning. The programmer can
choose the layer that is best-adapted to each part of the program. From the evi-
dence presented in the book, it is clear that this layered structure is beneficial for
a general-purpose programming language. It makes it easier for the programmer
to say directly what he or she wants to say, without cumbersome encodings.

The layered design of the general computation model can be found to some
degree in many languages. Object-oriented languages such as Smalltalk, Eiffel,
and Java have two layers: an object-oriented core and a second layer providing
shared-state concurrency [60, 122, 10]. The functional language Erlang has two
layers: an eager functional core and a second layer providing message-passing
concurrency between active objects [9] (see also Section 5.6). Active objects are
defined within the functional core. The logic language Prolog has three layers:
a logical core that is a simple theorem prover, a second layer modifying the
theorem prover’s operation, and a third layer providing explicit state [182] (see
also Section 9.7). The functional language Concurrent ML has three layers: an
eager functional core, a second layer providing explicit state, and a third layer
providing concurrency [158]. The multiparadigm language Oz has many layers,
which is why it was used as the basis for this book [180].

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Bibliography

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs. The MIT Press, Cambridge, Mass,
1985.

[2] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
Interpretation of Computer Programs, Second Edition. The MIT Press,
Cambridge, Mass, 1996.

[3] Iliès Alouini and Peter Van Roy. Le protocole réparti du langage Distributed
Oz (The distributed protocol of the Distributed Oz language). In Colloque
Francophone d’Ingénierie de Protocoles (CFIP 99), pages 283–298, April
1999.

[4] Edward G. Amoroso. Fundamentals of Computer Security Technology.
Prentice Hall, 1994.

[5] Ross J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. John Wiley & Sons, 2001.

[6] Gregory R. Andrews. Concurrent Programming: Principles and Practice.
Addison-Wesley, 1991.

[7] Joe Armstrong. Higher-order processes in Erlang, January 1997. Unpub-
lished talk.

[8] Joe Armstrong. Concurrency oriented programming in Erlang, November
2002. Invited talk, Lightweight Languages Workshop 2002.

[9] Joe Armstrong, Mike Williams, Claes Wikström, and Robert Virding. Con-
current Programming in Erlang. Prentice-Hall, Englewood Cliffs, N.J.,
1996.

[10] Ken Arnold and James Gosling. The Java Programming Language, Second
Edition. Addison-Wesley, 1998.

[11] Arvind and R. E. Thomas. I-Structures: An efficient data type for func-
tional languages. Technical Report 210, MIT, Laboratory for Computer
Science, 1980.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

854 BIBLIOGRAPHY

[12] John Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Communications of the
ACM, 21(8):613–641, August 1978.

[13] John Backus. The history of FORTRAN I, II and III. ACM SIGPLAN
Notices, 13(8), August 1978.

[14] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. Programming
languages for distributed computing systems. ACM Computing Surveys,
21(3):261–322, September 1989.

[15] Holger Bär, Markus Bauer, Oliver Ciupke, Serge Demeyer, Stéphane
Ducasse, Michele Lanza, Radu Marinescu, Robb Nebbe, Oscar Nierstrasz,
Michael Przybilski, Tamar Richner, Matthias Rieger, Claudio Riva, Anne-
Marie Sassen, Benedikt Schulz, Patrick Steyaert, Sander Tichelaar, and
Joachim Weisbrod. The FAMOOS Object-Oriented Reengineering Hand-
book. October 1999. Result of ESPRIT project FAMOOS.

[16] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurren-
cy Control and Recovery In Database Systems. Addison-Wesley, 1987.

[17] Richard Bird. Introduction to Functional Programming using Haskell, Sec-
ond Edition. Prentice Hall, 1998.

[18] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Transactions on Computer Systems, 2(1):39–59, February 1984.

[19] Darius Blasband. Language engineering: from a hobby, to a research activ-
ity, to a trade, March 2002. Unpublished talk.

[20] Per Brand, Peter Van Roy, Raphaël Collet, and Erik Klintskog. Path
redundancy in a mobile-state protocol as a primitive for language-based
fault tolerance. Technical Report RR2000-01, Département d’Ingénierie
Informatique, Université catholique de Louvain, 2000. Available at
http://www.info.ucl.ac.be.

[21] Ivan Bratko. PROLOG Programming for Articial Intelligence, Third Edi-
tion. Addison-Wesley, 2000.

[22] Per Brinch Hansen. Structured multiprogramming. Communications of the
ACM, 15(7):574–578, July 1972.

[23] Per Brinch Hansen. Operating System Principles. Prentice Hall, 1973.

[24] Per Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices,
34(4):38–45, April 1999.

[25] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, 1975.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 855

[26] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison-Wesley, 1995.

[27] Timothy A. Budd. Multiparadigm Programming in Leda. Addison-Wesley,
1995.

[28] Luca Cardelli. A language with distributed scope. In Principles of Pro-
gramming Languages (POPL), pages 286–297, 1995.

[29] Mats Carlsson et al. SICStus Prolog 3.8.1, December 1999. Available at
http://www.sics.se.

[30] Nicholas Carriero and David Gelernter. Linda in context. Communications
of the ACM, 32(4):444–458, 1989.

[31] Nicholas Carriero and David Gelernter. Coordination languages and their
significance. Communications of the ACM, 35(2):96–107, February 1992.

[32] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano. Développement
d’applications avec Objective Caml. O’Reilly, Paris, France, 2000.

[33] Randy Chow and Theodore Johnson. Distributed Operating Systems and
Algorithms. Addison-Wesley, San Francisco, Calif., 1997.

[34] Keith L. Clark. PARLOG: the language and its applications. In A. J. Nij-
man J. W. de Bakker and P. C. Treleaven, editors, Proceedings of the Con-
ference on Parallel Architectures and Languages Europe (PARLE). Volume
II: Parallel Languages, volume 259 of Lecture Notes in Computer Science,
pages 30–53, Eindhoven, The Netherlands, June 1987. Springer.

[35] Keith L. Clark and Frank McCabe. The control facilities of IC-Prolog.
In D. Michie, editor, Expert Systems in the Micro-Electronic Age, pages
122–149. Edinburgh University Press, Edinburgh, Scotland, 1979.

[36] Keith L. Clark, Frank G. McCabe, and Steve Gregory. IC-PROLOG —
language features. In Keith L. Clark and Sten-Åke Tärnlund, editors, Logic
Programming, pages 253–266. Academic Press, London, 1982.

[37] Arthur C. Clarke. Profiles of the Future. Pan Books, 1973. Revised edition.

[38] William Clinger and Jonathan Rees. The revised4 report on the algorithmic
language Scheme. LISP Pointers, IV(3):1–55, July-September 1991.

[39] Helder Coelho and José C. Cotta. Prolog by Example: How to Learn, Teach,
and Use It. Springer-Verlag, 1988.

[40] Alain Colmerauer. The birth of Prolog. In The Second ACM-SIGPLAN
History of Programming Languages Conference, pages 37–52, March 1993.
ACM SIGPLAN Notices.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

856 BIBLIOGRAPHY

[41] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduc-
tion to Algorithms. The MIT Press, McGraw-Hill, 1990.

[42] C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1994.

[43] Harvey M. Deitel. An Introduction to Operating Systems. Addison-Wesley,
1984.

[44] Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz, and Ralph E. Johnson.
Object Oriented Reengineering Patterns. Morgan Kaufmann, 2002.

[45] Edsger W. Dijkstra. A Primer of Algol 60 Programming. Academic Press,
1962.

[46] Edsger W. Dijkstra. Go To statement considered harmful. Communications
of the ACM, 11(3):147–148, March 1968.

[47] Denys Duchier. Loop support. Technical report, DFKI and Saarland Uni-
versity, December 2001. Available at http://www.mozart-oz.org/.

[48] Denys Duchier, Claire Gardent, and Joachim Niehren. Concurrent con-
straint programming in Oz for natural language processing. Technical
report, Saarland University, Saarbrücken, Germany, 1999. Available at
http://www.ps.uni-sb.de/Papers/abstracts/oznlp.html.

[49] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz base envi-
ronment. Technical report, Mozart Consortium, December 2001. Available
at http://www.mozart-oz.org/.

[50] Denys Duchier, Leif Kornstaedt, Christian Schulte, and Gert Smol-
ka. A Higher-order Module Discipline with Separate Compilation, Dy-
namic Linking, and Pickling. Technical report, Programming Sys-
tems Lab, DFKI and Saarland University, 1998. DRAFT. Available at
http://www.mozart-oz.org/papers/.

[51] R. Kent Dybvig, Carl Bruggeman, and David Eby. Guardians in a
generation-based garbage collector, June 1993.

[52] E. W. Elcock. Absys: The first logic programming language–a retrospective
and a commentary. Journal of Logic Programming, 9(1):1–17, 1990.

[53] Robert W. Floyd. Nondeterministic algorithms. Journal of the ACM,
14(4):636–644, October 1967.

[54] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. Addison-Wesley Longman, Inc., 2000.

[55] Michael J. French. Invention and evolution: design in nature and engineer-
ing. Cambridge University Press, 1988.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 857

[56] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages. The MIT Press, 1992.

[57] Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa, and Akihiko
Nakase. KLIC: A portable implementation of KL1. In Fifth Generation
Computing Systems (FGCS ’94), pages 66–79, December 1994.

[58] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[59] David Gelernter. Generative communication in Linda. ACM Transactions
on Programming Languages and Systems, 7(1):80–112, January 1985.

[60] Adele Goldberg and David Robson. Smalltalk-80: The language and its
implementation. Addison-Wesley, 1983.

[61] Danny Goodman. Dynamic HTML: The Definitive Reference, Second Edi-
tion. O’Reilly & Associates, 2002.

[62] James Edward Gordon. The Science of Structures and Materials. Scientific
American Library, 1988.

[63] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison-Wesley, 1996. Available at http://www.javasoft.com.

[64] Jim Gray and Andreas Reuter. Transaction Processing – Concepts and
Techniques. Morgan Kaufmann, 1993.

[65] Donatien Grolaux. QTk module, 2000. Available at
http://www.mozart-oz.org/mozart-stdlib/index.html.

[66] Donatien Grolaux, Peter Van Roy, and Jean Vanderdonckt. QTk – a mixed
declarative/procedural approach for designing executable user interfaces. In
8th IFIP Working Conference on Engineering for Human-Computer Inter-
action (EHCI’01), Lecture Notes in Computer Science, Toronto, Canada,
May 2001. Springer-Verlag. Short paper.

[67] Donatien Grolaux, Peter Van Roy, and Jean Vanderdonckt. QTk – an inte-
grated model-based approach to designing executable user interfaces. In 8th
Workshop on Design, Specification, and Verification of Interactive Systems
(DSVIS 2001), Lecture Notes in Computer Science, Glasgow, Scotland,
June 2001. Springer-Verlag.

[68] Robert H. Halstead, Jr. MultiLisp: A language for concurrent symbolic
computation. ACM Transactions on Programming Languages and Systems,
7(4):501–538, October 1985.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

858 BIBLIOGRAPHY

[69] Richard Hamming. The Art of Doing SCIENCE and Engineering: Learning
to Learn. Gordon and Breach Science Publishers, 1997.

[70] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation
model. In 7th International Conference on Logic Programming, pages 31–
48. The MIT Press, June 1990.

[71] Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer,
and Gert Smolka. Efficient logic variables for distributed computing. ACM
Transactions on Programming Languages and Systems, May 1999.

[72] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Program-
ming languages for distributed applications. New Generation Computing,
16(3):223–261, May 1998.

[73] Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the design of
Distributed Oz. In the 2nd International Symposium on Parallel Symbolic
Computation (PASCO 97). ACM, July 1997.

[74] Martin Henz. Objects for Concurrent Constraint Programming. Interna-
tionale Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers, Boston, MA, USA, 1997.

[75] Martin Henz. Objects for Concurrent Constraint Programming, volume 426
of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston, November 1997.

[76] Martin Henz. Objects in Oz. Doctoral dissertation, Saarland University,
Saarbrücken, Germany, May 1997.

[77] Martin Henz and Leif Kornstaedt. The Oz notation. Technical re-
port, DFKI and Saarland University, December 1999. Available at
http://www.mozart-oz.org/.

[78] Martin Henz, Tobias Müller, and Ka Boon Ng. Figaro: Yet another con-
straint programming library. In Workshop on Parallelism and Implementa-
tion Technology for Constraint Logic Programming, International Confer-
ence on Logic Programming (ICLP 99), 1999.

[79] Martin Henz, Gert Smolka, and Jörg Würtz. Oz – a programming language
for multi-agent systems. In 13th International Joint Conference on Artificial
Intelligence, pages 404–409. Morgan Kaufmann, August 1993.

[80] Martin Henz, Gert Smolka, and Jörg Würtz. Oz—a programming language
for multi-agent systems. In Ruzena Bajcsy, editor, 13th International Joint
Conference on Artificial Intelligence, volume 1, pages 404–409, Chambéry,
France, 30 August–3 September 1993. Morgan Kaufmann Publishers.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 859

[81] Martin Henz, Gert Smolka, and Jörg Würtz. Object-oriented concur-
rent constraint programming in Oz. In Pascal Van Hentenryck and Vi-
jay Saraswat, editors, Principles and Practice of Constraint Programming,
pages 29–48, Cambridge, Mass., 1995. The MIT Press.

[82] Charles Antony Richard Hoare. Monitors: An operating system structuring
concept. Communications of the ACM, 17(10):549–557, October 1974.

[83] Charles Antony Richard Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666–677, August 1978.

[84] Bruce K. Holmer, Barton Sano, Michael Carlton, Peter Van Roy, and
Alvin M. Despain. Design and analysis of hardware for high performance
Prolog. J. Log. Prog., 29:107–139, November 1996.

[85] Paul Hudak. Conception, evolution, and application of functional program-
ming languages. Computing Surveys, 21(3):359–411, September 1989.

[86] Paul Hudak, John Peterson, and Joseph Fasel. A gentle introduction to
Haskell version 98. Available at http://www.haskell.org/tutorial/.

[87] John Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98–107, 1989.

[88] Robert A. Iannucci. Parallel Machines: Parallel Machine Languages. The
Emergence of Hybrid Dataflow Computer Architectures. Kluwer, Dordrecht,
the Netherlands, 1990.

[89] Daniel H. H. Ingalls. Design principles behind Smalltalk. Byte, 6(8):286–
298, 1981.

[90] Joxan Jaffar and Michael Maher. Constraint logic programming: A survey.
J. Log. Prog., 19/20:503–581, May/July 1994.

[91] Raj Jain. The Art of Computer Systems Performance Analysis. Wiley
Professional Computing, 1991.

[92] Sverker Janson. AKL–A Multiparadigm Programming Language. PhD the-
sis, Uppsala University and SICS, 1994.

[93] Sverker Janson and Seif Haridi. Programming paradigms of the Andor-
ra Kernel Language. In International Symposium on Logic Programming,
pages 167–183, October 1991.

[94] K. Jensen and N. Wirth. Pascal: User Manual and Report (Second Edition).
Springer-Verlag, 1978.

[95] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. John Wiley & Sons, 1996.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

860 BIBLIOGRAPHY

[96] Andreas K̊agedal, Peter Van Roy, and Bruno Dumant.
Logical State Threads 0.1, January 1997. Available at
http://www.info.ucl.ac.be/people/PVR/implementation.html.

[97] Gilles Kahn. The semantics of a simple language for parallel programming.
In IFIP Congress, pages 471–475, 1974.

[98] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel
processes. In IFIP Congress, pages 993–998, 1977.

[99] B. W. Kernighan and D. M. Ritchie. The C Programming Language (ANSI
C), Second Edition. Prentice Hall, 1988.

[100] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. The MIT Press, 1991.

[101] Donald E. Knuth. The Art of Computer Programming: Seminumerical
Algorithms, volume 2. Addison-Wesley.

[102] Donald E. Knuth. The Art of Computer Programming: Fundamental Algo-
rithms, volume 1. Addison-Wesley, 1973.

[103] Donald E. Knuth. Structured programming with go to statements. Com-
puting Surveys, 6(4), December 1974.

[104] Leif Kornstaedt. Gump – a front-end generator for Oz. Tech-
nical report, Mozart Consortium, December 2001. Available at
http://www.mozart-oz.org/.

[105] S. Rao Kosaraju. Analysis of structured programs. J. Computer and System
Sciences, 9(3), December 1974.

[106] Robert Kowalski. Logic for Problem Solving. North-Holland, 1979.

[107] James F. Kurose and Keith W. Ross. Computer networking: a top-down
approach featuring the Internet. Addison-Wesley, 2001.

[108] Leslie Lamport. LaTeX: A Document Preparation System, Second Edition.
Addison-Wesley, 1994.

[109] Hugh C. Lauer and Roger M. Needham. On the duality of operating sys-
tem structures. In Second International Symposium on Operating Systems,
IRIA, October 1978. Reprinted in Operating Systems Review, 13(2), April
1979, pp. 3–19.

[110] Doug Lea. Concurrent Programming in Java. Addison-Wesley, 1997.

[111] Doug Lea. Concurrent Programming in Java, Second Edition. Addison-
Wesley, 2000.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 861

[112] Nancy Leveson and Clark S. Turner. An investigation of the Therac-25
accidents. IEEE Computer, 26(7):18–41, July 1993.

[113] Henry Lieberman. Using prototypical objects to implement shared behav-
ior in object-oriented systems. In 1st Conference on Object-Oriented Pro-
gramming Languages, Systems, and Applications (OOPSLA 86), Septem-
ber 1986. Also in Object-Oriented Computing, Gerald Peterson, ed., IEEE
Computer Society Press, 1987.

[114] John Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

[115] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco,
Calif., 1996.

[116] Bruce J. MacLennan. Principles of Programming Languages, Second Edi-
tion. Saunders, Harcourt Brace Jovanovich, 1987.

[117] Michael Maher. Logic semantics for a class of committed-choice programs.
In International Conference on Logic Programming (ICLP 87), pages 858–
876, May 1987.

[118] Zohar Manna. The Mathematical Theory of Computation. McGraw-Hill,
1974.

[119] Sun Microsystems. The Remote Method Invocation Specification, 1997.
Available at http://www.javasoft.com.

[120] John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[121] Michael Mehl, Christian Schulte, and Gert Smolka. Futures
and by-need synchronization for Oz. DRAFT. Available at
http://www.mozart-oz.org/papers/, May 1998.

[122] Bertrand Meyer. Object-Oriented Software Construction, Second Edition.
Prentice Hall, 2000.

[123] Mark Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka-Ping Yee, Chip
Morningstar, Jonathan Shapiro, and Norm Hardy. E: Open source dis-
tributed capabilities, 2001. Available at http://www.erights.org.

[124] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths de-
molished. Draft available at http://zesty.ca/capmyths, 2003.

[125] Mark S. Miller, Chip Morningstar, and Bill Frantz. Capability-based finan-
cial instruments. In Financial Cryptography 2000, Anguilla, British West
Indies, February 2000.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

862 BIBLIOGRAPHY

[126] Robin Milner, Mads Tofte, and Robert Harper. Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1990.

[127] J. Paul Morrison. Flow-Based Programming: A New Approach to Applica-
tion Development. Van Nostrand Reinhold, 1994.

[128] Almetwally Mostafa, Iliès Alouini, and Peter Van Roy.
Fault tolerant global store module, 2001. Available at
http://www.mozart-oz.org/mogul/info/mostafa/globalstore.html.

[129] Mozart Consortium. The Mozart Programming System version 1.2.3, De-
cember 2001. Available at http://www.mozart-oz.org/.

[130] Peter Naur. Revised report on the algorithmic language ALGOL 60. Com-
munications of the ACM, 1963.

[131] Rishiyur S. Nikhil. ID language reference manual version 90.1. Technical
Report Memo 284-2, MIT, Computation Structures Group, July 1994.

[132] Rishiyur S. Nikhil. An overview of the parallel language Id – a foundation
for pH, a parallel dialect of Haskell. Technical report, Digital Equipment
Corporation, Cambridge Research Laboratory, 1994.

[133] Rishiyur S. Nikhil and Arvind. Implicit Parallel Programming in pH. Mor-
gan Kaufmann, 2001.

[134] Donald A. Norman. The Design of Everyday Things. Basic Books, Inc.,
1988.

[135] Theodore Norvell. Monads for the working Haskell programmer – a short
tutorial. Available at http://www.haskell.org/.

[136] Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Stud-
ies in Common Lisp. Morgan Kaufmann, 1992.

[137] K. Nygaard and O. J. Dahl. The Development of the SIMULA Languages,
pages 439–493. Academic Press, 1981.

[138] Chris Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[139] Richard A. O’Keefe. The Craft of Prolog. The MIT Press, 1990.

[140] Andreas Paepcke, editor. Object-Oriented Programming: The CLOS Per-
spective. The MIT Press, 1993.

[141] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas.
The Harvester Press, 1980.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 863

[142] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1053–1058, December
1972.

[143] David Lorge Parnas. Teaching programming as engineering. In 9th In-
ternational Conference of Z Users, volume 967 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1995. Reprinted in Software Fundamentals,
Addison-Wesley, 2001.

[144] David Lorge Parnas. Software Fundamentals. Addison-Wesley, 2001.

[145] F. Paternò. Model-based Design and Evaluation of Interactive Applications.
Springer-Verlag, Berlin, 1999.

[146] David A. Patterson and John L. Hennessy. Computer Architecture: A
Quantitative Approach, Second Edition. Morgan Kaufmann, 1996.

[147] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. In Tony
Hoare, Manfred Broy, and Ralf Steinbruggen, editors, Engineering theories
of software construction, pages 47–96. IOS Press, 2001. Presented at the
2000 Marktoberdorf Summer School.

[148] Simon Peyton Jones, editor. Haskell 98 language and libraries: The revised
report. Cambridge University Press, 2003. Also published as the January
2003 Special Issue of the Journal of Functional Programming.

[149] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Principles of Programming Languages (POPL), 1996.

[150] Shari Lawrence Pfleeger. Software Engineering: The Production of Quality
Software, Second Edition. Macmillan, 1991.

[151] David Plainfossé and Marc Shapiro. A survey of distributed garbage collec-
tion techniques. In the International Workshop on Memory Management,
volume 986 of Lecture Notes in Computer Science, pages 211–249, Berlin,
September 1995. Springer-Verlag.

[152] R. J. Pooley. An Introduction to Programming in SIMULA. Blackwell
Scientific Publishers, 1987.

[153] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, 1986.

[154] Roger S. Pressman. Software Engineering, Sixth Edition. Addison-Wesley,
2000.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

864 BIBLIOGRAPHY

[155] Mahmoud Rafea, Fredrik Holmgren, Konstantin Popov, Seif Haridi, Stelios
Lelis, Petros Kavassalis, and Jakka Sairamesh. Application architecture of
the Internet simulation model: Web Word of Mouth (WoM). In IASTED
International Conference on Modelling and Simulation MS2002, May 2002.

[156] Eric Raymond. The cathedral and the bazaar, May 1997.

[157] Juris Reinfelds. Teaching of programming with a programmer’s theory
of programming. In Informatics Curricula, Teaching Methods, and Best
Practice (ICTEM 2002, IFIP Working Group 3.2 Working Conference).
Kluwer Academic Publishers, 2002.

[158] John H. Reppy. Concurrent Programming in ML. Cambridge University
Press, 1999.

[159] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language reference manual. Addison-Wesley, 1999.

[160] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern ap-
proach. Prentice Hall, 1995.

[161] Oliver Sacks. The Man Who Mistook His Wife for a Hat: And Other
Clinical Tales. Touchstone Books, 1998.

[162] Jakka Sairamesh, Petros Kavassalis, Manolis Marazakis, Christos Nikolaos,
and Seif Haridi. Information cities over the Internet: Taxonomy, principles
and architecture. In Digital Communities 2002, November 2001.

[163] Vijay A. Saraswat. Concurrent Constraint Programming. The MIT Press,
1993.

[164] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic
foundations of concurrent constraint programming. In Principles of Pro-
gramming Languages (POPL), pages 333–352, 1991.

[165] Steve Schneider. Concurrent and Real-time Systems: The CSP Approach.
John Wiley & Sons, 2000.

[166] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[167] Christian Schulte. Programming constraint inference engines. In Gert Smol-
ka, editor, Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming, volume 1330 of Lecture Notes
in Computer Science, pages 519–533, Schloß Hagenberg, Austria, October
1997. Springer-Verlag.

[168] Christian Schulte. Comparing trailing and copying for constraint program-
ming. In International Conference on Logic Programming (ICLP 99), pages
275–289. The MIT Press, November 1999.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 865

[169] Christian Schulte. Programming Constraint Inference Services. PhD thesis,
Saarland University, Fachbereich Informatik, Saarbrücken, Germany, 2000.

[170] Christian Schulte. Programming deep concurrent constraint combinators.
In Enrico Pontelli and V́ıtor Santos Costa, editors, Practical Aspects of
Declarative Languages, Second International Workshop, PADL 2000, vol-
ume 1753 of Lecture Notes in Computer Science, pages 215–229, Boston,
MA, USA, January 2000. Springer-Verlag.

[171] Christian Schulte. Oz Explorer – visual constraint programming sup-
port. Technical report, Mozart Consortium, December 2001. Available
at http://www.mozart-oz.org/.

[172] Christian Schulte. Programming Constraint Services: High-Level Program-
ming of Standard and New Constraint Services, volume 2302 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[173] Christian Schulte and Gert Smolka. Encapsulated search for higher-order
concurrent constraint programming. In 1994 International Symposium on
Logic Programming, pages 505–520. The MIT Press, November 1994.

[174] Christian Schulte and Gert Smolka. Finite domain constraint program-
ming in Oz. A tutorial. Technical report, DFKI and Saarland University,
December 1999. Available at http://www.mozart-oz.org/.

[175] Ehud Shapiro. A subset of Concurrent Prolog and its interpreter. Tech-
nical Report TR-003, Institute for New Generation Computer Technology
(ICOT), Cambridge, Mass., January 1983.

[176] Ehud Shapiro, editor. Concurrent Prolog: Collected Papers, volume 1-2.
The MIT Press, Cambridge, Mass., 1987.

[177] Ehud Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys, 21(3):413–510, September 1989.

[178] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Struc-
tures: Principles and Examples. McGraw-Hill Book Company, 1982.

[179] Gert Smolka. The definition of Kernel Oz. In Andreas Podelski, editor,
Constraints: Basics and Trends, volume 910 of Lecture Notes in Computer
Science, pages 251–292. Springer-Verlag, Berlin, 1995.

[180] Gert Smolka. The Oz programming model. In Computer Science Today, vol-
ume 1000 of Lecture Notes in Computer Science, pages 324–343. Springer-
Verlag, Berlin, 1995.

[181] Guy L. Steele, Jr. Common LISP: The Language. Digital Press, 1984.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

866 BIBLIOGRAPHY

[182] Leon Sterling and Ehud Shapiro. The Art of Prolog–Advanced Programming
Techniques. Series in Logic Programming. The MIT Press, 1986.

[183] Marc Stiegler. The E Language in a Walnut. 2000. Draft, available at
http://www.erights.org.

[184] Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley, 1997.

[185] Giancarlo Succi and Michele Marchesi. Extreme Programming Examined.
Addison-Wesley, 2001.

[186] Sun Microsystems. The Java Series. Sun Microsystems, Mountain View,
Calif., 1996. Available at http://www.javasoft.com.

[187] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley and ACM Press, 1999.

[188] Andrew Taylor. High-Performance Prolog Implementation. PhD thesis,
Basser Department of Computer Science, University of Sydney, June 1991.

[189] Gerard Tel. An Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, Cambridge, United Kingdom, 1994.

[190] Evan Tick. The deevolution of concurrent logic programming. J. Log. Prog.,
23(2):89–123, May 1995.

[191] Kasunori Ueda. Guarded Horn Clauses. In Eiti Wada, editor, Proceedings
of the 4th Conference on Logic Programming, volume 221 of Lecture Notes
in Computer Science, pages 168–179, Tokyo, Japan, July 1985. Springer.

[192] Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, 1998.

[193] Peter Van Roy. VLSI-BAM Diagnostic Generator, 1989. Prolog program
to generate assembly language diagnostics. Aquarius Project, University of
California, Berkeley.

[194] Peter Van Roy. Can Logic Programming Execute as Fast as Imperative
Programming? PhD thesis, Computer Science Division, University of Cal-
ifornia at Berkeley, December 1990. Technical Report UCB/CSD 90/600.

[195] Peter Van Roy. 1983–1993: The wonder years of sequential Prolog imple-
mentation. J. Log. Prog., 19/20:385–441, May/July 1994.

[196] Peter Van Roy, Per Brand, Denys Duchier, Seif Haridi, Martin Henz, and
Christian Schulte. Logic programming in the context of multiparadigm pro-
gramming: the Oz experience. Theory and Practice of Logic Programming,
2003. To appear.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

BIBLIOGRAPHY 867

[197] Peter Van Roy, Per Brand, Seif Haridi, and Raphaël Collet. A
lightweight reliable object migration protocol. In Henri E. Bal, Boumediene
Belkhouche, and Luca Cardelli, editors, Internet Programming Languages,
volume 1686 of Lecture Notes in Computer Science. Springer Verlag, Octo-
ber 1999.

[198] Peter Van Roy and Alvin Despain. High-performance logic programming
with the Aquarius Prolog compiler. IEEE Computer, pages 54–68, January
1992.

[199] Peter Van Roy and Seif Haridi. Teaching programming broadly and deeply:
the kernel language approach. In Informatics Curricula, Teaching Meth-
ods, and Best Practice (ICTEM 2002, IFIP Working Group 3.2 Working
Conference). Kluwer Academic Publishers, 2002.

[200] Peter Van Roy and Seif Haridi. Teaching programming with the kernel
language approach. In Workshop on Functional and Declarative Program-
ming in Education (FDPE02), at Principles, Logics, and Implementations
of High-Level Programming Languages (PLI2002). University of Kiel, Ger-
many, October 2002.

[201] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and
Ralf Scheidhauer. Mobile objects in Distributed Oz. ACM Transactions on
Programming Languages and Systems, 19(5):804–851, September 1997.

[202] Arthur H. Veen. Dataflow machine architecture. ACM Computing Surveys,
18(4):365–396, December 1986.

[203] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order
and Randomness. Princeton University Press, 1999.

[204] Gerhard Weikum and Gottfried Vossen. Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency Control and
Recovery. Morgan Kaufmann, 2002.

[205] Gerhard Weiss, editor. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. The MIT Press, 1999.

[206] Claes Wikström. Distributed programming in Erlang. In the 1st Interna-
tional Symposium on Parallel Symbolic Computation (PASCO 94), pages
412–421, Singapore, September 1994. World Scientific.

[207] Herbert S. Wilf. generatingfunctionology. Academic Press, 1994.

[208] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dations of Computing Series. The MIT Press, Cambridge, Massachusetts,
1993.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

868 BIBLIOGRAPHY

[209] Noel Winstanley. What the hell are Monads?, 1999. Available at
http://www.haskell.org.

[210] David Wood. Use of objects and agents at Symbian, September 2000. Talk
given at the Newcastle Seminar on the Teaching of Computing Science.

[211] Matthias Zenger and Martin Odersky. Implementing extensible compil-
ers. In 1st International Workshop on Multiparadigm Programming with
Object-Oriented Languages, pages 61–80. John von Neumann Institute for
Computing (NIC), June 2001. Workshop held as part of ECOOP 2001.

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

Index

! (escaped variable marker), 506, 515
! (cut) operation (in Prolog), 675, 679,

682
$ (nesting marker), 54, 85, 363, 373
* (multiplication) operation, 56, 823
+ (addition) operation, 56, 823
- (subtraction) operation, 56, 823
. (field selector) operation, 56, 828
. := (dictionary/array assignment) state-

ment, 439, 440, 841
. := (dictionary/array exchange) ex-

pression, 841
/ (floating division) operation, 56, 824
:= (state assignment) statement, 499,

502
:= (state exchange) expression, 502
= (binding) operation, 45, 47, 48, 101
== (equality) comparison, 57
=< (less or equal) comparison, 57
? (output argument), 59, 843
@(state access) operation, 499, 502
(tupling) constructor, 143, 827, 833
& (inline character) operator, 822
< (strictly less) comparison, 57, 832
<= (optional method argument) opera-

tor, 505
> (strictly greater) comparison, 57
>= (greater or equal) comparison, 57
\ (backslash), 823
\= (inequality) comparison, 57
˜ (minus sign), 822
| (list pairing) constructor, 54

Abelson, Harold, xxxiii, 43
absolute error, 122
abstract machine, 43

relation to semantic rules, 789
substitution-based, 128–129

abstract syntax tree, 164, 165

abstraction, xxxii
active object, 563
class, 498
collection, 438
collector, 192, 326, 434, 488
connector, 326
control, 125
database, 667
encapsulated search, 637
hierarchy in object-oriented program-

ming, 552
lifecycle, 42
Linda (tuple space), 594
linguistic, 40–41, 126

case (pattern matching), 793
class , 554
conc (concurrent composition), 283
delegation, 520
for loop, 190, 451
fun (function), 85
functor (software component),

227
gate (logic gate), 276
local vs. global translation, 846
monitor, 601
parameter passing, 438
protected scope (Java), 574
while loop, 451

list comprehension, 307
lock, 590, 606
loop, 184
mailbox, 398
monitor, 600
pipe of stream objects, 567
procedural, 180
protector, 326
queue, 149, 303
replicator, 326
software component, 223

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

870 INDEX

specialization hierarchy, xxxii
termination detection, 390
transaction, 608
tuple space, 594

access (cell operation), 18, 422
ACCLAIM project, xl
accumulator, 142–144

breadth-first traversal, 159
declarative state, 416
depth-first traversal, 158
for loop, 192
limit of declarative model, 315
loop abstraction, 262
loops, 187
parser, 163
Prolog, 143
relation to difference lists, 144
relation to fold operation, 187
tree traversal, 195

ACID properties, 609
action (in GUI), 693
active memory, 75

size, 175, 314
ActiveX, 466
adder

n-bit, 347
full, 273

address
IP, 209
URL, 214

adjacency list, 468
Adjoin operation, 440, 828
AdjoinAt operation, 440, 828
adjunction (environment), 63
ADT (abstract data type), see type
adversary, 211
agent, 357

concurrent component, 370
message-passing approach, 584

Alarm operation, 309, 401
alarm clock, xxix
algebra, xxxvii, 115
algorithm

breadth-first traversal, 159
cached state, 739
compression, 180

copying dual-space garbage collec-
tion, 79

Dekker’s algorithm for mutual ex-
clusion, 578

depth-first traversal, 158
distributed garbage collection, 740
distributed locking, 727
distributed unification, 739
elevator, 384
Flavius Josephus problem, 565
Floyd-Warshall, 473
garbage collection, 77
Hamming problem, 298
linear congruential generator, 478
mergesort, 140, 169

generic version, 184
mobile state, 739
Newton’s method for square roots,

122
nonalgorithmic programming, 634
parallel transitive closure, 473
Pascal’s triangle, 12
quicksort, 235, 531
random number generation, 476
termination detection, 390
thread scheduling, 245
transitive closure, 467
tree, 154
tree drawing, 161, 278
unification, 102
word frequency, 201

aliasing, 426, 452
allocation, 76
always true (in temporal logic), 611
Anderson, Ross J., 750, 845
Andrews, Gregory, 590
andthen operator, 84
Append operation, 831
apple, 493
Apple Corporation, xl
applet, 724
application

FlexClock example, 707
ping-pong example, 310
standalone, 225

Java, 561
video display, 321

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 871

applicative order reduction, 336
Aquarius Prolog, 143
arbitrary precision integer arithmetic, 6,

823
arch, xxxii
arithmetic, 56
Arity operation, 56, 828
arity, 442, 828
Armstrong, Joe, 590
Arnold, Ken, 543
array, 439

extensible, 443
usage trade-offs, 442

ASCII (American Standard Code for In-
formation Interchange), 462, 721

ask operation, 786, 793
assert/1 operation (in Prolog), 669, 675
assertion, 448
assignment

axiomatic semantics, 449
cell operation, 18, 422
in-place, 314
Java, 559
monotonic, 851
multiple, 851
single, 44, 851
to iteration variable, 191

association, 537, 850
association list, 491
asynchronous failure detection, 745
ATM (Asynchronous Transfer Mode), 395
atom, 53, 825

defining scope, 514
predicate calculus, 645
propositional logic, 644

atomic action, 588–625
approaches to concurrency, 581
reasoning, 588
when to use, 584

atomicity, 23, 609
AtomToString operation, 826
attribute

final (in Java), 550, 558
initialization, 503
object, 502

availability, 717
AXD301 ATM switch, 395

axiom, 646
axiomatic semantics, 40, 444–453, 644

Backus, John, 34
bagof/3 operation (in Prolog), 638, 683
Bal, Henri, 340
batching

distributed stream, 725, 730
object invocations, 546, 572

Baum, L. Frank, 3
Bernstein, Philip A., 609
billion dollar budget, 527
binary integer, 822
binding

basic and nonbasic, 792
dynamic, 511
static, 512
variable-variable, 48

bistable circuit (digital logic), 274
blank space (in Oz), 843
Blasband, Darius, 654
block

file, 297
imperative language, 491
memory, 76, 77
Smalltalk, 549

blocking operation, 243
blue cut (in Prolog), 679, 681
book

Component Software: Beyond Object-
Oriented Programming, 466

Concurrent Programming in Erlang,
590

Concurrent Programming in Java,
589

Concurrent Programming: Princi-
ples and Practice, 590

Object-Oriented Software Construc-
tion, 495

Software Fundamentals, 466
Structure and Interpretation of Com-

puter Programs, xxxiii
The Art of Prolog, 679
The Mythical Man-Month, 466
Transaction Processing: Concepts and

Techniques, 590
boolean, 53

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

872 INDEX

Borges, Jorge Luis, 633
bottom-up software development, 455
bound identifier occurrence, 65
bounded buffer, 268

data-driven concurrent version, 268
lazy version, 295
monitor version, 602

brand, 504
Brand, Per, xl
breadth-first traversal, 159
break statement, 491
break operation, 491
bridge building, xxx, xxxi
Brinch Hansen, Per, 600
Brooks, Jr., Frederick P., 466
Browser tool, see Mozart Programming

System
by-need execution, 286–289, 798

WaitQuiet operation, 800
Multilisp, 342
Oz 3, 811

ByNeed operation, 287
byte (in Java), 560
bytestring, 833

calculator, 3
calculus

analysis, 173
first-order predicate, 645
foundational, xxxi
λ, xxxi, 43, 98, 336, 351, 795, 807,

813, 848
π, xxxi, 43, 55, 807

call/1 operation (in Prolog), 675
call by ..., see parameter passing
call graph, 318
capability, 211

declarative, 213
method label, 516
revocable, 433, 488

Cardelli, Luca, 728
cascading abort, 613
case statement, 68, 793
catch clause (in try), 95
causality, 241, 361
Ceil operation, 824

cell (explicit state), 417, 422–425, 797,
850

cellular phone, xxix, xxxii
channel

asynchronous, 355, 393
component interface, 459
dataflow variable, 337
many-shot, 371
one-shot, 371, 376
port, 354
synchronous, 629

character, 822
alphanumeric, 51, 843
Java, 560

choice statement, 636, 778
chunk, 829

reflection, 524
Church-Rosser Theorem, 336
Churchill, Winston, 453
Clarke, Arthur C., 106, 314
class, 421, 493, 495, 497, 501, 552

abstract, 528, 552
active object, 564
common limitations, 545
complete ADT definition, 498
concrete, 529, 532, 552
delegation, 517
diagram, 534, 539
encapsulation control, 512
event manager example, 570
forwarding, 517
generic, 531
higher-order programming, 532
implementation, 554
incremental ADT definition, 507
inheritance, 508
inner, 546
inner (in Java), 558
introduction, 20
member, 502
metaclass, 553
mixin, 572
parameterized, 531
patching, 527
programming techniques, 524
reflection of object state, 523
structure view, 525

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 873

substitution property, 525, 527
type view, 525

clause
case statement, 84
definite, 662
Erlang, 396
Horn, xxxv, 647, 652, 662, 675

clock
context-sensitive, 707
digital circuit, 275
digital logic, 271
synchronization, 313

clone
array, 440
computation space, 774
dictionary, 441
object, 523

closed distribution, 737
closure, see procedure value
cluster, 717
code duplication, 496
code generator, 164
coherence

between graphical views, 704
cache, 463, 739
network transparency, 726

collector, 192, 326, 434, 488
COM (Component Object Model), 466
combinations, 6
combinator, 282
comment (in Oz), 843
common self, 517
compaction, 77
comparison, 57
compilation

separate, 107
standalone, 232

ping-pong example, 310
unit, 225, 420, 457, 818

compiler, 163, 674
extensible, 548
Prolog, 676
smart-aleck, 314

Compiler Panel tool, see Mozart Pro-
gramming System

complete value, 47
completeness

Turing, 848
complexity

amortized, 149, 177, 440
asymptotic, 169
banker’s method, 178
big-oh notation, 170
introduction, 12–13
physicist’s method, 178
space, 175
time, 13, 169
worst-case, 169, 175

component, 114, 185, 223
abstraction, 462
avoiding dependencies, 463
diagram, 360
encapsulates a design decision, 462
functor, 420
further reading, 466
future role, 464
graph, 465
implementation, 224
interface, 224
module, 420
software, 224

compositionality, 419, 631
class, 507
encapsulated search, 638
exception handling, 92
Solve operation, 638

computation, 63
iterative, 120
recursive, 126
secure, 210

computation model, xxvii, 31
active object, 563
constraint-based, 639, 653, 764
data-driven concurrent, 240
declarative concurrent with exceptions,

332
declarative concurrent, 239
declarative with exceptions, 93
declarative, 50
demand-driven concurrent with ex-

ceptions, 333
demand-driven concurrent, 240, 286
descriptive declarative, 117
distributed, 718

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

874 INDEX

graph notation, 741
extended relational, 673
general, 845
job-based concurrent, 628
lazy concurrent, 240, 286
maximally concurrent, 585, 628, 772
message-passing concurrent, 354
nondeterministic concurrent, 402, 653
object-based, 543
object-oriented, 496
order-determining concurrent, 277
relational, 635
secure declarative, 205
shared-state concurrent, 581
stateful concurrent, 584, 786
stateful, 421
strict functional, 99
atomic action, 588
closed, 326
concurrent constraint, 810
concurrent logic programming, 292,

402, 813
design principles, xxxiii, 845
determinate concurrent constraint pro-

gramming, 343
determinate parallel programming,

343
deterministic logic programming, 648
Erlang, 394
Haskell, 328
insecure, 326
Java, 557, 625
nondeterministic logic programming,

650
open, 326
partial failure, 326, 744
Prolog, 674
secure, 326
semantics, 783
using models together, xxxiv, 325

computation space, 666, 759
computer engineering, xxxvi
computer science, xxxvi
computing, see informatics
conc statement, 283
concurrency, 322

competitive, 259

cooperative, 259
dataflow, 17
declarative, 237, 247, 806
Erlang, 394
further reading, 589
importance for programming, xxx
interactive interface, 90
interleaving, 22
introduction, 16
Java, 625
monitor safety, 601
nondeterminism, 21
order-determining, 277
practical approaches, 581
queue, 592
rules of thumb, 584
teaching, xxxvi
transaction, 610

concurrency control, 573, 611, 751
concurrent composition, 281, 393
condition variable, 607
conditional critical section, 605
configuration, 787
confinement

failure in declarative model, 250
partial failure, 715
transaction, 610

confluence, 336, 807
connector, 326
cons cell (list pair), 7, 54, 830
consistency (in transaction), 609
consistency protocol, 718
constraint, 248

tree drawing, 161
constructor, 560
consumer, 262
context, 92
context-sensitive

grammar, 36
GUI design, 707

continuation, 385
procedure, 367
record, 366

contract, 418
contrapositive law, 644
control abstraction

try – finally , 349

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 875

break, 491
concurrent composition, 282
CSP communication, 629
Erlang mailbox, 410
iteration, 125
loops, 186
need for higher-order, 182
Smalltalk block, 549

coordination model, 460, 594
CORBA (Common Object Request Bro-

ker Architecture), 364, 466
coroutine, 279, 459

relation to laziness, 290, 293, 582
correctness, 644

introduction, 11–12
Cray-1 computer, 178
critical region, 590
cryptography

unique name generation, 210
curriculum (informatics), xxxvi
currying, xxxv, 196–197, 236

Haskell, 329
cyclic structures, 104

dangling reference, 76, 183, 463
Danvy, Olivier, 236
data structure

active, 78
class, 501
cyclic, 102
dictionary, 199
difference list, 144
difference structure, 144
ephemeral, 150
external, 79
graph, 468
higher order, 185
infinite, 14
list, 54, 132
long-lived, 80
partial, 47
persistent, 303
protected, 206, 429
queue, 149
record, 53
recursive, 133
size, 176

stack, 198
store, 76
tree, 153
tuple, 53

data type, see type
data-driven execution, see eager execu-

tion
database, 667

deductive, 668
distributed, 625
in-memory, 176
Mnesia (in Erlang), 395
persistence, 667
query, 668
relational, 667
shared-state concurrency, 584
transaction, 608
update, 668

dataflow, 61
channel, 337
declarative model, 18
error, 91
examples, 252
I-structure, 342
introduction, 17
lazy execution, 290
parallel transitive closure, 473
rubber band, 255
variable, 44, 49, 50

Date, C.J., 668
Dawkins, Richard, 418
DBMS (Database Management System),

668
DCOM (Distributed Component Object

Model), 466
deadlock, 613

callback, 365
concurrency control, 613
detection, 614
digital logic simulation, 274
lazy execution, 293
prevention, 614

deallocation, 76
debugging, 522

dangling reference, 77, 183
declarative component, 314
distributed application, 751

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

876 INDEX

erroneous suspension, 50, 91
inspecting object attributes, 507

declarative, 113, 415
declarative concurrency, see concurren-

cy, declarative
declarative program, 248
declare statement, 4, 88

syntax convention of book, xliii, 88
define clause (in functor), 224
Definite Clause Grammar (DCG), 143,

662
Delay operation, 309
delay gate (digital logic), 274
delay operation (in Multilisp), 342
delay point, 588
delegation, 518–522

otherwise method, 506
Dell Corporation, xl, 204, 475
demand-driven execution, see lazy exe-

cution
De Morgan’s law, 644
denotational semantics, 40
dependency

component, 227
dataflow, 341
declarative component, 314, 324
grammar context, 36
inheritance, 421
order-determining concurrency, 277
removal of sequential, 393
sequential model, 419
word frequency application, 231

depth-first traversal, 158
dereferencing, 47
design methodology

concurrent program, 372
language, 42, 335, 549, 813, 852
large program, 454
small program, 221

design patterns, xxxv, 421, 493, 540–
543

Composite pattern, 540
destructive assignment

interaction with call by name, 490
determinism (declarative programming),

113
diagnostics, 633

dialog model, 704
dictionary, 199, 440

declarative, 199
efficiency, 203
internal structure, 203
list-based implementation, 200
relation implementation, 671
relation to record, 441
relation to stream, 442
secure declarative, 210
standalone, 228
stateful, 201
tree-based implementation, 200
tuple space implementation, 596
usage trade-offs, 442
word frequency implementation, 475
Word of Mouth simulation, 482

difference list, 144
difference structure, 144
digital logic, 271

satisfiability problem, 179
Dijkstra, Edsger Wybe, 444
directed graph, 467
disconnected operation, 747
discriminant, 181
disentailment, 105–106, 785
distributed lexical scoping, 728
distributed system, 326, 358, 363, 392,

713
closed, 737
open, 514, 715, 717, 720

Distribution Panel tool, see Mozart Pro-
gramming System

div (integer division) operation, 56, 823
divide-and-conquer, 140
domain model, 703
domain of discourse, 645
dotted pair, 7, 830
Duchier, Denys, xl, 389
durability, 609
dynamic

binding, 511
linking, 225, 289
scope, see scope, dynamic
typing, 106–108

Dynamic HTML, 692

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 877

eager execution
declarative model, 99
distributed producer/consumer, 725
introduction, 13
producer/consumer stream, 261
relation to synchronization, 339
strictness, 336

eager failure detection, 745
EBNF (Extended Backus-Naur Form),

34, 662, 663, 685
Einstein, Albert, 283
Elcock, E. W., 634
elephant, xxvii
elevator, see lift
Emacs text editor, 817
embedding, 185
encapsulated

search, 637
state, introduction, 18

encapsulation, 419
Encyclopaedia Britannica (11th edition),

493
Ende, Michael, 353
entailment, 100, 105–106, 785
Enterprise Java Beans, 465
environment, 46, 62

adjunction, 63
calculating with, 63
contextual, 67
interactive interface, 88
restriction, 64

ephemeral data structure, 150, 303
equality

structure, 426, 729
token, 426, 720, 729

Ericsson (Telefonaktiebolaget LM Eric-
sson), 327, 394

Erlang, 394–402
error

absolute, 122
domain, 97
relative, 122
type incorrect, 97
variable not introduced, 836
variable used before binding, 49

error logging, 570
Escher, Maurits Cornelis, 689

Euclid, 3
event (in GUI), 693
event handler, 569
event manager

active objects, 569
adding functionality with inheritance,

571
eventually true (in temporal logic), 611
evolutionary software development, 455
example programs (how to run), xliii
exception, 91–97, 549, 849

distribution fault, 749
error , 97, 803
failure , 97, 803
system , 97
uncaught, 95, 803

Exchange operation, 424
exchange operation

on cells, 424
on object attributes, 502

exclusive-or operation, 16
execution state, 62
exercise

(advanced exercise), xxxviii
(research project), xxxviii

explicit state, see state
Explorer tool, see Mozart Programming

System
Explorer tool (in Mozart), 763
export clause (in functor), 224
expression, 82

andthen operator, 84
basic operation, 56
basic value, 51
ill-formed, 93
λ notation, 98, 330
nesting marker ($), 85
normal order reduction, 336
orelse operator, 84
procedure value, 66
receive (Erlang), 399

external resource, 79
extreme programming, 456

factorial function, 4–25, 127–130, 234,
626

fail statement, 636

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

878 INDEX

FailedValue operation, 334
failure

declarative concurrency, 249
detection, 745
exception, 97
failed value, 334
inheritance, 496
negation as failure, 675
partial, 326
software project, 527, 655
transaction, 609
unification, 103

fairness
stream merger, 406
thread scheduling, 243, 245, 256, 339

false , 826
fault model, 745
fault tolerance

Erlang, 395
FCFS (First-Come-First-Served), 375
feature (record field name), 826
FGCS (Fifth Generation Computer Sys-

tem), Japanese project, 405
FIFO (First-In-First-Out), 149, 235, 343,

355, 375, 387, 459, 725, 730
Erlang, 394
message sending, 364
port, 355

file, 213
Filter operation, 194, 831
finalization, 79, 486

lazy execution, 486
finally clause (in try), 95
finite failure, 675
finite state machine

event manager, 570
firewall, 326
first-argument indexing, 669
fixpoint, 772
Flatten operation, 145, 235, 301
Flavius Josephus problem, 565–567
floating point

arithmetic, 823
number, 822

FloatToInt operation, 824
Floor operation, 824
flow control, 100, 266

lazy execution, 266
thread priority, 269

Floyd, Robert W., 444, 634
fold operation, 187

FoldL , 188, 469, 831
FoldR , 188
stream objects, 263

for statement, 190
for loop, 451
ForAll operation, 831
formal language, 35
forwarding, 518
foundational calculus, xxxi
framework

computation model as, 846
France, 419
free identifier occurrence, 59, 65, 645
free memory, 76
freeze/2 operation (in Prolog), 675
fresh

name, 206
variable, 790

full adder, 273
fun statement, 85
function, 85

incremental, 302
introduction, 4
lazy, 800
monolithic, 302
monotonic, 851
partially-applied, 197
state transition, 359

functional decomposition, 138, 547
functional look, 198
functor, 224, 457, 715

interactive use, 818
main, 225
Oz 3, 811

functor statement, 227
future, 342
future operation (in Multilisp), 342

Gamma, Erich, 540
garbage collection, 75, 77

copying dual-space, 79
distributed, 740
external references, 485

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 879

generational, 80
lease-based, 740, 744
real-time, 78
root set, 77
weighted reference counting, 740

gate statement, 277
gate (digital logic), 271
Gelernter, David, 594
generalization, 575
generate-and-test, 641
generating function, 173
genericity, 183–185

object-oriented programming, 531
static and dynamic, 532

global condition, 158
glue (in GUI), 698
Glynn, Kevin, 327
Gödel’s Incompleteness Theorem, 646
Gosling, James, 543
grammar, 34–38

ambiguous, 36, 169
context-free, 35
context-sensitive, 36
definite clause (DCG), 143, 662
disambiguation, 36
EBNF (Extended Backus-Naur Form),

34, 685
left-recursive, 656
natural language, 655
nonterminal symbol, 34, 165
terminal symbol, 34, 165
unification, 662

graph
bushy, 465
component, 465
distribution model, 741
Haskell expression, 328
hierarchical, 465
implementation, 468
nonlocal, 465
Small World, 465

Gray, Jim, 590, 609
green cut (in Prolog), 682
grue cut (in Prolog), 682
guarded method, 605
guardian, 486
GUI (Graphical User Interface)

AWT (Abstract Window Toolkit) pack-
age, 689

component-based programming, 464
design, 689
Haskell fudgets, 689
model-based, 703
QTk module, 690
read-only view, 704
Swing components, xxxv, 689
text input/output, 216
Visual Studio, 689

Halting Problem, 212, 691
Hamming problem, 298, 349
Hamming, Richard, 298
handler

event, 569
exception, 91, 92
finalization, 486
GUI design, 216, 693, 692–698

HasFeature operation, 828
hash table, 442
Haskell, 327–331
Helm, Richard, 540
Herbert, Frank, 755
hexadecimal integer, 822
Hoare, Charles Antony Richard, 235, 444,

600
Horn clause, xxxv, 647, 652, 662, 675
HTML (HyperText Markup Language),

117, 689
Hudak, Paul, 98, 314
Hughes, John, 284

IBM Corporation, 43
IDE (Interactive Development Environ-

ment), xliii, 817
identifier, 4, 46

bound occurrence, 65
escaped, 515
free occurrence, 59, 65, 645

IEEE floating point standard, 550, 822
if statement, 68, 793
ILOG Solver, 676
impedance matching, 325

concurrency, 585
event manager example, 574

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

880 INDEX

imperative, 415
implementation, 418
import clause (in functor), 224
inactive memory, 76
incompleteness, 646
inconsistency, 791
incremental function, 300
independence (declarative programming),

113
infinite precision arithmetic, 6
infinity

floating point, 824
informatics, xxxvi

curriculum, xxxvi
success of object-oriented program-

ming, 493
usefulness of computation models,

xxviii
Information Cities project, 421
information hiding, 493
information systems, xxxvi
inheritance, 21, 421, 493, 495, 508–543

avoiding method conflicts, 516
cautionary tale, 526
design patterns, 540
directed and acyclic, 509
event manager, 571
factoring, 496
generalization, 575
implementation, 556
implementation-sharing problem, 539
Java, 558
multiple, 508, 533

rules of thumb, 539
simple, 508
single, 508, 537
software reuse, 496
static and dynamic binding, 511
structure view, 525
syntactic aspect, 496
thread priority, 258
type view, 525
upwards, 575

inherited argument, 163
instantiation, 185, 419
integer

tilde ˜ as minus sign, 822

interactive system
importance of worst-case complexi-

ty, 177
interface

general concept, 224
Java, 558
Runnable (in Java), 625

interface builder, 689
interleaving semantics, 241, 784
Internet, 209, 361, 713, 717, 723

simulation of Web use, 481
interoperability, 108
interpreter, 43

approach to define semantics, 43
generic parser, 662
GUI description, 712
meta, 667
metacircular, 43
original Erlang, 396

IntToFloat operation, 824
invariant, 137, 390, 420, 444
IsAtom operation, 826
IsChar operation, 824
IsDet operation, 320, 321, 338, 402,

673, 850
IsLock operation, 591
ISO 8859-1 character code, 822, 825
isolation, 609
IsProcedure function, 57
IsRecord operation, 828
I-structure, 342, 473, 814
IsTuple operation, 829

Janson, Sverker, xl, 675
Java, 556–563, 625–626
JavaBeans, 466
Jefferson, Thomas, 11
Johnson, Ralph, 540
journaling, 538

Kahn, Gilles, 343
kernel language, see computation model
kernel language approach, xxx, 38–43

choice of formalism, xxxiii
keywords (table of), 841
knowledge representation, 850
Knuth, Donald Erwin, 173, 477

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 881

Kowalski, Robert, 415
KWIC (keyword in context) index, 679

Label operation, 56, 828
label (record identification), 20, 53
λ calculus, xxxi, 43, 98, 336, 351, 795,

807, 813, 848
LAN (local-area network), 361, 723, 745
language

AKL, xl, 674, 810
Absys, 415, 634
Ada, 436, 629
Algol, 415, 493

declarative concurrent, 343
nondeterministic, 634

Alice, 108
C++, 45, 49, 76, 183, 340, 449, 491,

493, 497, 510, 514, 516, 541,
546, 551, 557

C-Linda, 594
CLOS (Common Lisp Object Sys-

tem), 522
CSP (Communicating Sequential Pro-

cesses), 629
Clean, 331
Cobol, 551, 654

parsing problem, 654
Common Lisp, 60, 193
Concurrent Haskell, xxxiv
Concurrent ML, xxxiv, 852
Concurrent Prolog, 405
C, 76, 182
Eiffel, 525, 852
Erlang, 77, 99, 327, 394–402, 460,

551, 570, 590, 809, 852
E, 211
FCP (Flat Concurrent Prolog), 405,

809
FP, 335
Flat GHC, 405
Fortran, 415, 654

parsing problem, 654
GHC (Guarded Horn Clauses), 405
Haskell, xxviii, xxx, 45, 77, 99, 118,

140, 197, 277, 284, 291, 327–
331, 335, 336, 340, 343, 349,
461, 551, 689, 809

IC-Prolog, 405
Id, 343, 814
Java, xxviii, xxx, 43, 45, 49, 77,

183, 340, 434, 449, 466, 491,
493, 497, 510, 514, 516, 541,
546, 549–551, 556–563, 574, 589,
600, 625–626, 689, 809, 852

monitor, 601
Leda, xxxi
Linda extension, 594, 629, 810
Lisp, xxviii, 7, 60, 77, 132, 415, 663,

830
ML, see Standard ML, Concurrent

ML, Objective Caml
Mercury, xxviii, 118, 331, 675, 809
Miranda, 284, 349
Multilisp, 342, 814
Objective Caml, 549
Obliq, 728
Oz 1, Oz 2, Oz 3, 810–811
Oz, xxxiii, xl, 513, 551, 676, 809,

846, 852
Parlog, 405
Pascal, 163, 182, 434, 809
Prolog, xxviii, xxx, xxxv, 7, 32, 49,

77, 118, 143, 145, 277, 292, 335,
340, 396, 405, 415, 551, 634,
647, 652, 654, 662, 667, 669–
673, 673–684, 809, 852

pure, 652
SICStus, 193, 676

Scheme, xxviii, xxx, xxxi, xxxiv, 32,
45, 60, 99, 291, 551, 809

Simula, 415, 493
Smalltalk, xxviii, 45, 77, 340, 493,

497, 513, 514, 516, 522, 546,
549, 550, 852

Standard ML, xxviii, xxxiv, 32, 45,
99, 118, 140, 197, 291, 331, 335,
809

Visual Basic, 465
pH (parallel Haskell), 343, 814
tcl/tk, 689, 690, 712
assembly, 212, 314, 415, 557, 634
coordination, 594
formal, 35
multiparadigm, xxxi

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

882 INDEX

non-strict, 336
popular computation models, 809
practical, 33
secure, 211
specification, 119
symbolic, 55, 551

language design
abstraction lifecycle, 42
declarative, 335
golden age, 415
layered, 852
lazy execution, 335
object properties, 549
trade-offs, 813

Lao-tzu, 283
last call optimization, 74
latch (digital logic), 275
late error detection (at run-time), 509
latency, 268

tolerance, 341
LaTeX document, 463
Latin-1, 462
layered language design, 852
lazy evaluation, 99

coroutining, 582
example, 13
explicit, 185
Haskell, 328
relation to call by need, 438, 490
relation to non-strict evaluation, 336
schedule, 350
strictness analysis, 295, 329, 349

lazy execution, 283
bounded buffer, 267
flow control, 266
Hamming problem, 298
higher-order programming, 196
incremental, 300
introduction, 13
monolithic, 302, 348
needs finalization, 486
relation to synchronization, 340

lazy failure detection, 745
Lea, Doug, 589
legal program, 33
Length operation, 831
lex/yacc parsing, 654

lexical analyzer, 34
lexical scope, see scope, lexical
lexical syntax (of Oz), 843
lexically-scoped closure, see procedure

value
lexicographic order (of atoms), 57, 825
Ley, Willy, 633
library, 232
lifecycle

abstraction, 42
memory block, 76

lift control system, 374
lifting

booleans to streams, 277
serializability, 609
synchronization, 366

lightweight transaction, 609
Linda (tuple space), 594
linguistic abstraction, see abstraction,

linguistic
linking, 214, 225, 227, 232, 458, 819

component, 226, 462
dynamic, 289
failure detection in Erlang, 395

Linux operating system, xl, 204, 475,
504

list, 54, 131, 830
difference, 144

advantage, 149
flattening, 145
introduction, 6
nested, 138
usage trade-offs, 442

list pair, 54, 830
literal, 825
liveness, 611
Llull, Ramón, 633
local statement, 58, 64, 790
lock, 588, 590–591

get-release, 606
implementation, 599
introduction, 23
Java, 626
read, 630
simple, 599
thread-reentrant, 600
transaction, 611

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 883

write, 630
lock statement, 23, 591
locus of control, 279
logic

gate, 271
predicate calculus, 645
propositional, 644
temporal, 611

logic programming, 644, 646
process model, 403, 809

logical equivalence, 247, 788
configuration, 806

logical formula, 645
logical semantics, 40, 644–653
logical sentence, 645

assertion, 445
invariant, 444

Louis XIV, 413, 418
Lynch, Nancy, 361

Mac OS X operating system, xxxviii, xl,
258

Macintosh computer, xl
MacQueen, David, 343
Maher, Michael, 675, 810
mailbox, 460

Erlang, 394, 397
implementation, 398

maintenance, 461
MakeRecord operation, 828
MakeTuple operation, 381, 829
Manchester Mark I, 38
Manna, Zohar, 444
many-to-one communication, 358
Map operation, 193, 470, 831
mathematical induction, 11
matrix

graph representation, 468
list of lists implementation, 235

Max operation, 196
measurement accuracy

constraint programming, 757
Member operation, 831
memoization, 425, 460

call by need, 438
declarative programming, 315
explicit state, 27, 703

GUI example, 703
unification, 104

memory
address in abstract machine, 57
consumption, 175
content-addressable, 595
leak, 76, 77

Prolog, 681
lifecycle, 76

memory management, see garbage col-
lection

message, 504
message-passing concurrency, see object,

active, see object, port
meta-interpreter, 667, 685
meta-object protocol, see protocol, meta-

object
method

object, 21, 502
wrapping, 522

methodology, see software development
Meyer, Bertrand, 453, 495, 533
Microsoft Corporation, 466, 689
middle-out software development, 455
mind of programmer

capabilities (atoms vs. names), 516
difference list, 149
language design trade-offs, 813
order-determining concurrency, 277
state (implicit vs. explicit), 416
use of constraints, 279

minus sign (use of tilde ˜), 822
Mnesia (Erlang database), 395
mod(integer modulo) operation, 56, 823
model

logic, 645
model-based GUI design, 703
modularity, xxxv, 315, 417, 462

encapsulated search, 638
reengineering, 527
relation to concurrency, 243, 319
relational model, 673
system decomposition, 460

module, 185, 224, 457
Array , 439
Atom, 826
Browser , 228

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

884 INDEX

Char , 823, 824
Compiler , 817
Connection , 721, 737
Dictionary , 440
Distribution (supplement), 724
Fault , 745, 749
File (supplement), 214, 298, 571
Finalize , 485
Float , 823
Int , 823
List , 263, 393, 831
Module , 227, 421, 459, 736, 818
MyList (example), 225
Number, 16, 56, 185, 823
OS, 377, 618, 701, 708, 736
ObjectSupport , 523
Open, 571, 735
Pickle , 219
Property , 95, 258, 260
QTk, 216, 690, 735
Record , 828
Remote , 260, 737
Space , 666
String , 826
Thread , 260, 280
Time , 309
Tk , 712
Tuple , 829
Value , 334, 832
Base, 226, 233
compilation unit, 457
dynamic linking, 290

failure, 334
dynamic typing, 107
importing, 227
interface, 459
library, 232
resource, 735, 752
specification, 224
System, 226, 233

MOGUL (Mozart Global User Library),
225

monad, xxxv, 327, 337
monitor, 588, 600–608

condition variable, 607
guarded method, 605
implementation, 605

Java language, 625
Java semantics, 601

monolithic function, 302
monotonicity, 851

constraint programming, 772
dataflow variable, 341, 578
need predicate, 799
need property, 288
store, 785
thread reduction, 243, 785, 786

Moore’s Law, 178
Morrison, J. Paul, 261
Mozart Consortium, xxxviii, xl, 108
Mozart Programming System, 259

Browser tool, 4, 89
displaying cyclic structures, 104
lists, 830
WaitQuiet operation, 800

cheap concurrency, 256
Compiler Panel tool, 817
Distribution Panel tool, 817
Explorer tool, 817
garbage collection, 79
interactive interface, 3, 88, 817
kernel languages, 846
library modules, 233
limited role of the compiler, 510
Open Source license, xxxviii
overview, xxxviii
Panel tool, 817
performance, 204, 387
separate compilation, 461
thread scheduler, 257
uncaught exception, 95, 803

multi-agent systems (MAS), xxxvii, 370,
584

multimedia, 179
multiprocessor

cluster, 717
shared-memory, 716

mutable store (for cells), 797
Myriorama, 277

name, 206, 720, 795, 825, 849
defining scope, 514
distributed computing, 717
fresh, 206

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 885

generation, 209
name server, 411, 718
Naur, Peter, 34
needed variable, 288, 799
negation as failure, 675
nesting marker, 54, 85, 363, 373
network awareness, 395, 729
network transparency, 260, 395, 714
neutral element, 188
Newoperation, 501, 555
NewActive operation, 564
NewActiveExc operation, 569, 734
NewArray operation, 439
NewCell operation, 424
NewDictionary operation, 440
NewLock operation, 23, 591
NewNameoperation, 206, 795, 825
NewPort operation, 356
NewStat operation, 731

resilient, 748
Newton’s method for square roots, 122
Newton, Isaac, 283
nil , 830
noise (electronic), 477
non-strict evaluation, 336

Haskell, 328
nonblocking operation, 338

receive (in Erlang), 402
receive, 338
send, 338
stack, 585

noncompositional design, 465
nondeterminism

choice statement, 633, 635, 778
declarative concurrent model, 583
don’t know, 325, 634
introduction, 21
limitation of declarative model, 319
logic programming, 650
observable, 22, 238, 319, 578, 581,

583, 584
bounded buffer, 603
Filter operation, 394
lack of in Flavius Josephus prob-

lem, 567
relation to exceptions, 332

relation to coroutines, 280

thread scheduler, 257
nonvar operation (in Prolog), 673, 675
normal order reduction, 336
notify operation (in monitor), 600
notifyAll operation (in monitor), 601
NP-complete problems, 179
number, 53, 821

O’Keefe, Richard, 113, 416, 681
object, 421, 497, 549, 552

declarative, 431, 488, 575
introduction, 19
strong, 549

object code, 225
object graph, 560
object, active, 357, 563

defining behavior with a class, 564
example, 564

object, port, 358, 421
approaches to concurrency, 581
Erlang, 570
further reading, 590
many-to-one communication, 358
reactive, 359
reasoning, 360
sharing one thread, 385
when to use, 584

object, stream, 261, 270–271, 419, 421,
582

comparison with port object, 358
Flavius Josephus problem, 567
higher-order iteration, 262
producer/consumer, 262
transducer, 263

Ockham, William of, 31
octal integer, 822
Okasaki, Chris, 150, 178, 284, 335
OLE (Object Linking and Embedding),

466
OMG (Object Management Group), 466
open distribution, 715, 717, 720
open program, 205
Open Source software, xxxviii
operating system, 211
operational semantics, 40, 61, 647, 783–

814
operator

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

886 INDEX

associativity, 36, 839
infix, 54, 84, 187, 796, 828, 830, 832,

838
mixfix, 827, 838
postfix, 839
precedence, 36, 838
prefix, 838
ternary, 841

OPI (Oz Programming Interface), 817
optimistic scheduling, 612
optimization, 179

avoid during development, 455
combinatoric, 674
compiler, 164
eager execution, 308
early error detection, 510
first-argument indexing, 671
memoization, 703
monitor performance, 606
object system, 552
relational programming, 634
short-circuit protocol, 567
standard computer, 314
thread priorities, 270

orelse operator, 84
otherwise method, 506
OTP (Ericsson Open Telecom Platform),

394
overloading, 331
Oz, Wizard of, 3
ozc command, 232, 819

Panel tool, see Mozart Programming Sys-
tem

Papert, Seymour, xxvii, 237
paradigm, xxvii, xxxi, see computation

model
declarative, 32
school of thought, xxx

parallelism, 241, 322
importance of non-strictness, 337
importance of worst-case complexi-

ty, 177
parameter passing, 434–438

call by name, 437
exercise, 489

call by need, 437

exercise, 490
lazy evaluation, 438

call by reference, 59, 434
Java, 561

call by value, 435
Java, 561

call by value-result, 436
call by variable, 435

parity, 16
Parnas, David Lorge, xxxvi, 466
parser, 34, 163–169

generic, 662
gump tool, 41
natural language, 654

partial termination, 247, 344, 806
partial value, 47
Pascal’s triangle, 6
Pascal, Blaise, 7
pass by ..., see parameter passing
pattern matching

case statement, 8, 68
function (in Erlang), 396
Haskell, 327
receive expression (in Erlang), 399
reduction rule semantics, 787

pencil, xxxii
Pentium III processor, 204, 475
performance

cluster computing, 717
competitive concurrency, 259
constraint programming, 764
Cray-1 supercomputer, 178
declarative programming, 314
dictionary, 204
distributed stream, 730
how to measure, 170
lazy language, 295, 349
low-cost PC, 178
memoization, 27, 315
mobile object, 730
monitor, 606
Mozart Programming System, 204,

387
price of concurrency, 345
role of optimization, 179, 270, 308
role of parallelism, 241, 322
transitive closure, 474

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 887

“Word of Mouth” simulation, 491
permanent failure, 745
permutations, 4
persistence

data structure, 152, 303
database, 667
Erlang, 395
transaction, 609

personal computer, 6, 178, 256, 259, 294,
309

pessimistic scheduling, 612
Phidani Software, 654
π calculus, xxxi, 43, 55, 807
pipeline, 263
pixel, 562
placeholder

dataflow variable, 88
future (in Multilisp), 342
GUI design, 696, 712

planning, 633
Plotkin, Gordon, 783
point, 560
POLA (Principle of Least Authority),

212
polymorphism, 108, 466, 498

Haskell, 330
Ponsard, Christophe, 551
port (explicit state), 356–357, 725, 850
portal, 481
potential function, 178
predicate calculus, 645
preemption, 257
preprocessor, 319

DCG (in Prolog), 662
design patterns, 542
extended DCG (in Prolog), 143
fallacy of, 319

presentation model, 703
principle

abstraction, 418
avoid changing interfaces, 462
avoid premature optimization, 179,

455
balance planning and refactoring, 455
centralized first, distributed later,

751
compartmentalize responsibility, 454

creative extension, xxviii, 846
decisions at right level, 464
declarative concurrency, 247, 286
document component interfaces, 454
documented violations, 464
eager default, lazy declared, 335
either simple or wrong, xl
encapsulate design decisions, 462
enriching control (in logic program-

ming), 653
error confinement, 91
“everything should be an object”,

548
exploit ADT uniformity, 549
form mirrors content, 551
freely exchange knowledge, 454
layered language design, 852
least authority, 212
least privilege, 212
minimize dependencies, 463
minimize indirections, 463
model independence, 460
more is not better or worse, just dif-

ferent, xxxiv
need to know, 212
pay only on use, 631
predictable dependencies, 463
run time is all there is, 510
separation of concerns, 574
stateful component with declarative

behavior, 425
syntax stability, 655
system decomposition, 213
use ADTs everywhere, 549
working software keeps working, 60,

463, 728
private scope, 513, 514

C++ and Java sense, 514
Smalltalk and Oz sense, 513

probability
Exponential distribution, 480
Gaussian distribution, 480
Normal distribution, 480
Uniform distribution, 478
unique name generation, 210

proc statement, 66, 795
procedure

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

888 INDEX

as component, 420
basic operations, 57
importance, 55
order, 180
tail-recursive, 74

procedure value (closure), 54, 66–67, 795
anonymous, 54
common limitation, 182, 558
distributed lexical scoping, 728
encoding as an object, 547
higher-order programming, 180
relation to inner class, 558

process
concurrent program design, 372
CSP, 629
distributed system, 713
Erlang, 357, 397
large program design, 454
operating system, 259
producer and consumer, 730
runtime error, 97
small program design, 221

processor, 241
cluster computing, 717
dataflow machine, 343, 473
parallel functional programming, 337
shared-memory multiprocessor, 716

producer, 262
profiling, 180, 455
program design, see software develop-

ment
program point, 448
programming, xxix, 3

component-based, 420
concurrent, 581
constraint, 45
data-centered, 584
declarative, 31, 415

descriptive, 117
need for algorithms, 119
programmable, 117

Erlang, 395
flow-based, 261
functional, 415
future developments, 464
good style, xxxv
Haskell, 327

higher-order, 116, 126, 180–197
introduction, 15
relation to object-oriented, 544

imperative, 31, 415
Java, 558, 625
kernel language approach, xxx
logic, 45, 102, 145, 415, 644
multi-agent, 420, 584
multiparadigm, xxviii, xl

event manager, 573
object-based, 21, 543
object-oriented, 21, 421
open, 107, 205
paradigm, xxvii, xxx, xxxi, 32, see

computation model
Prolog, 676
real-time, 309
relational, 633
stateful, 31
stateless, 31
synchronous, 271
techniques not covered in this book,

xli
programming model, xxvii, 31
Prolog, 673–684
proof engineering, 119
proof rule, 447
propagate-and-search, 641
property

liveness, 611
object, 502
safety, 611

propositional logic, 644
protected scope, 514

C++ sense, 515
Java sense, 574

protection boundary, 205
protector, 326
protocol, 361

by-need, 287
communication, 721
consistency, 718
DHCP, 209
distributed binding, 739
distributed unification, 739
eager copy, 739
eager immediate copy, 740

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 889

interaction (in GUI), 693
invalidation, 739
IP, 209
lazy copy, 739
meta-object, 522
mobile state, 739
negotiation, 384
short-circuit, 567
stationary state, 738
TCP, 718, 745, 746
timer, 376

pseudorandom numbers, 477
Psion Series 3 palmtop computer, 385
public scope, 513
pure object-oriented language, 549

quadratic equation, 181
quantifier, 445, 448, 645, 657

existential (in Prolog), 684
quantum (in thread scheduling), 257
query

database, 668
logic programming, 646

queue, 149
amortized ephemeral, 150
amortized persistent, 303
breadth-first traversal, 159
concurrent, 387, 592
priority, 614, 623
worst-case ephemeral, 151
worst-case persistent, 304

race condition, 22, 238
raise statement, 94, 803
random number generation, 476
Raymond, Eric, 466
reachable memory, 75
real-time computing

garbage collection, 78
hard, 177, 257, 259, 309
soft, 309

reasoning
algebraic, 114, 118, 324
atomic action, 588
causal, 361, 583
lift control system, 381
logical, xxxiii, 114, 644

message-passing concurrent model,
360

shared-shate concurrent model, 324
stateful model, 324, 444

receive
asynchronous, 338
nonblocking, 338
synchronous, 338

receive expression (in Erlang), 399
record, 20, 53, 826

adjoin, 828
basic operations, 56, 828
importance, 54
usage trade-offs, 442

recurrence equation, 171
recursion, 5, 116, 126

direct, 116
indirect, 116
mutual, 112
polymorphic, 327
programming with, 130
tail recursion optimization, 74

red cut (in Prolog), 683
Red Hat Corporation, xl, 204, 475
reduction order, 336–337

applicative, 336
normal, 336

reengineering, 527
refactoring, 455
reference, 720
referential transparency, 116
reflection, 522
register

abstract machine, 57
distributed binding, 743
forwarding, 633
in finalization, 486

relation, 667
relative error, 122
rendezvous, 629
replicator, 326
resolution

deadlock, 614
logic programming, 647, 652, 675
video display, 321

resource, 735, 752
external, 79, 485

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

890 INDEX

file descriptor, 298
localized, 715
producer/consumer pipeline, 265
use of laziness, 294

resting point, 344
restriction (environment), 64
retract/1 operation (in Prolog), 675
Reuter, Andreas, 590, 609
right, see name
RISC (Reduced Instruction Set Com-

puter) microprocessor, 633
RMI (Remote Method Invocation), 361,

715, 730, 732
Round operation, 824
RPC (Remote Procedure Call), 361, 715
rubber band, 255
runic inscription, 783
Runnable interface, 625

s-expression, 663
Sacks, Oliver, 413
safety, 611
Saint-Exupéry, Antoine de, 113
Santayana, George, 703
Saraswat, Vijay, 343, 675, 810
scalability

compilation, 461
multiprocessor, 717
program development, 107
weighted reference counting, 743

scheduler
Delay operation, 310
deterministic, 257
lift control system, 375
nondeterministic, 257
randomness, 477
round-robin, 257, 261
thread, 243, 256
transaction, 612

Schulte, Christian, xxxvii, xl
science, xxix, xxxii
scientific method, xxxi
scope, 58

attribute, 516
dynamic, 60
lexical, 58, 65, 514, 546

absence in Prolog, 674

distributed, 728
hiding, 224, 419, 431, 445, 488,

501, 555
substitution, 805

private, 513, 514
protected, 514
public, 513
static, see lexical
user-defined, 514

search
aggregate, 683
all-solutions, 638
binary, 155
breadth-first, 656
constraint programming, 279
contribution of AKL, 811
danger, 652
database query, 670
depth-first, 634, 656
deterministic, 634
encapsulated, 637
generate-and-test, 641
iterative deepening, 656
linear, 200
logic programming, 674
n-queens problem, 641
one-solution, 638
overuse, xxxv
propagate-and-search, 641
pruning, 675
relational computation model, 635
relational programming, 634

search space, 634
search tree, 637
security

abstract data type, 204–213, 427
application, 750
atom vs. name, 514
capability, 211
distributed resources, 736
distributed system, 749
engineering, 750
hardware, 750
human society, 211
implementation, 750
kernel language concepts, 849
language, 211, 750

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 891

linguistic abstraction, 41
mechanism, 211
open distribution, 717
policy, 211
right, 795, 849
static typing, 107
threat model, 750

self
clone, 523
delegation, 517
dynamic binding, 511
forwarding, 517
Java, 559
this notation, 558

self (in Erlang), 398
semantic stack, 63
semantics, 33

abstract machine, 57–80, 93–95, 243–
246, 286–288, 355–357, 424–425

axiomatic, 40, 444–453, 644
by-need trigger, 286
cell, 424
common abstractions, 809
denotational, 40
exceptions, 93
interleaving, 784
kernel language, see abstract ma-

chine
kernel language approach, 39
logical, 40, 644–653
operational, 40, 61, 647, 783–814
port, 355, 391
secure types, 205
semantic statement, 62
SOS (Structural Operational Seman-

tics), 783
thread, 243

Send operation, 356
send

asynchronous, 338
latency, 268
nonblocking, 338
synchronous, 338

separation of concerns, 574
serializability, 609
serialization, 715
serializer, 325

setof/3 operation (in Prolog), 638, 679,
683

Shakespeare, William, 817
shared-state concurrency, see atomic ac-

tion, see lock, see monitor, see
transaction

sharing, 426
Browser tool, 104, 830
distributed state, 726
distributed value, 722
thread, 385

short-circuit
concurrent composition, 282
Flavius Josephus problem, 567

side effect, 420
declarative, 293

signal operation (in monitor), 600
signature (for procedure), 131
simulation

components, 421
digital logic, 271–277
inadequacy of declarative model, 176
Internet, 421
multi-agent, 420
Small World, 491
Word of Mouth, 481

single-assignment store, 44–50, 62, 785
importance, 45

sink (consumer), 263
skip statement, 64, 789
SLDNF resolution, 675
Small World

graph, 465
simulation, 491

Smolka, Gert, xl
snapshot, 441, 724
software development, 221, 453

bottom-up, 455
compositional, 456
distributed programming, 751
evolutionary, 455
extreme programming, 456
importance of names, 514
in the large, 453
in the small, 221
interactive interface, 88
middle-out, 455

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

892 INDEX

stepwise refinement, 469, 613
thin-to-thick, 455
top-down, 10, 455

software engineering, 454
component as unit of deployment,

224
concurrency, 237
distributed lexical scoping, 728
further reading, 466
informatics curriculum, xxxvi
lexical scoping, 60

software rot, 463
Solve operation, 638, 778
Sort operation, 831
SOS (Structural Operational Semantics),

783
source (producer), 263
source code, 225

inexistent, 496
interactive, 818
million line, xxx, 38, 395, 461
preprocessor input, 319
reengineering, 527
set of functors, 290
textual scope, 65
variable name, 46

specification, 418
component, 465

specification language, 119
speculative execution

non-strict language, 337
stack

declarative object, 431
depth-first traversal, 159
open declarative, 198, 429
proving it correct, 445
secure declarative bundled, 431
secure declarative unbundled, 208,

430
secure stateful bundled, 431
secure stateful unbundled, 433
semantic, 62
stateful concurrent, 585

standalone application, 225
declare not allowed, 88
Java, 561
uncaught exception, 95

starvation, 280
wait set implementation, 605

state
cell (mutable variable), 422
declarative, 416
explicit, 18, 417
implicit, 416
lazy execution, 486
lazy language, 337
memory management, 79
non-strict language, 337
port (communication channel), 354
reasoning with, 40, 444
revocable capability, 433
threading, 142
transformation, 136

state transition diagram, 361, 376
component design, 373
floor component, 377
lift component, 379
lift controller component, 377
transaction, 616

stateless (declarative programming), 113
statement

case , 68, 793
catch (clause in try), 95
choice , 636, 778
conc , 283
declare , 4, 88
fail , 636
finally (clause in try), 95
for , 190
fun , 85
functor , 227
gate , 277
if , 68, 793
local , 58, 64, 790
lock , 23, 591
proc , 66, 795
raise , 94, 803
skip , 64, 789
thread , 245, 789
try , 94, 802
break, 491
declarative kernel language, 51
interactive, 88
procedure application, 68

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 893

sequential composition, 64, 789
suspendable, 67
value creation, 65
variable-variable binding, 65

static
binding, 512
linking, 225
scope, see scope, lexical
typing, xl, 52, 106–108

stdin (standard input), 232, 560
stdout (standard output), 560
Stirling’s formula for factorial, 626
storage manager, 325
store, 785

equivalence, 788
mutable (for cells), 424
mutable (for ports), 356
predicate, 785
read-only, 209, 800
single-assignment, 44–50, 62, 101,

239, 785
trigger, 287, 798
value, 44

stream, 798
deterministic, 261
Java, 560
merger, 403
producer/consumer, 261
usage trade-offs, 442

strict ..., see eager ...
strict two-phase locking, 613
strictness analysis, 295, 329, 349
string, 54, 832
StringToAtom operation, 826
structure

compiler, 164
compositional, 465
difference, 144
distribution, 260
effect of concurrency, 256
grammar, 34
hierarchical, 456
interpreter, 665
noncompositional, 465
program, 222, 223

structure equality, 105, 426, 729
substitution, 129, 805

substitution property, 525, 527
subtype

basic types, 52
class hierarchy, 525

Sun Microsystems, 466
superclass, 508, 520, 563
supercomputer, 178
supply-driven execution, see eager exe-

cution
suspension

Delay operation, 310
due to program error, 50, 91
thread, 243, 280

Sussman, Gerald Jay, xxxiii, 43
Sussman, Julie, xxxiii, 43
Symbian Ltd., 385
symbolic link, 463
synchronization, 339–343

dataflow, 793
synchronized keyword, 601, 625
synchronized clocks, 313
synchronous failure detection, 745
syntactic sugar, 41, 80–85

local statement, 41
state transition diagram, 377

syntax, 33
convention for examples, xliii
language, 33
Oz language, 835
Oz lexical, 843

synthesized argument, 163
system exception, 97
Szyperski, Clemens, 466

tail recursion optimization, 74
task, 784
tautology, 645
TCP (Transmission Control Protocol),

718, 745
technology, xxix

dangers of concurrency, 23
magic, 314
software component, 466
synchronous digital, 271
transition to 64-bit, 80

Tel, Gerard, 361
tell operation, 786, 791

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

894 INDEX

temporal logic, 611
temporary failure, 745
term (in Prolog), 676
termination

detection, 281, 390
ping-pong example, 311

failure in declarative program, 249
partial, 247, 344, 806
proof, 452
total, 806

testing, 113, 222, 416
text file, 213
Thalys high-speed train, 390
theorem prover, 119, 646, 675
Therac-25 scandal, 23
thin-to-thick software development, 455
thinking machine, 633
third-party independence, 341
this, see self
Thompson, D’Arcy Wentworth, 413
thread, 848

declarative model, 237
interactive interface, 90
introduction, 17
Java, 625
monotonicity property, 243, 785, 786
priority, 257
ready, 243
runnable, 243
suspended, 243
synchronization, 339

thread statement, 245, 789
Thread class, 625
throughput, 268
thunk, 437
ticket, 485, 721
ticking, 311
time complexity, 13
time out, 745

Erlang, 399–402
system design, 464

time slice, 257–259
duration, 258

time-lease mechanism, 485, 740, 744
timer protocol, 376
timestamp, 209, 611
token equality, 426, 720, 729

token passing, 587, 596, 599
token syntax (of Oz), 835
tokenizer, 34, 164
top-down software development, 10, 455
total termination, 806
trade-off

asynchronous communication vs. fault
confinement, 751

compilation time vs. execution speed,
461

composition vs. inheritance, 466
compositional vs. noncompositional

design, 465
dynamic vs. static scoping, 60
functional vs. type decomposition,

547
helper procedure placement, 123
indexed collections, 439
kernel language design, 846
lazy vs. eager execution, 335
manipulability vs. expressiveness, 691
names vs. atoms, 516
non-strictness vs. state, 337, 351
optimistic vs. pessimistic schedul-

ing, 612
planning vs. refactoring, 456
semantics vs. implementation, 791
single vs. multiple inheritance, 537
specification language, 119
type view vs. structure view, 526

transaction, 588, 608–625
bank example, 205
database, 668
distributed, 625
incarnation, 616
logging example, 511
nested, 625
restart, 614
tell operation, 792, 813

transaction manager, 619
transaction processing monitor, 619
transducer, 263
transition, 376
transitive closure, 467–475

declarative algorithm, 469, 473
Floyd-Warshall algorithm, 473
stateful algorithm, 471

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

INDEX 895

translator, see compiler
tree, 153

balanced, 154
depth, 155
drawing, 161
Haskell expression, 328
node depth, 159
ordered binary, 154
parse, 34, 164, 655
search, 637
stream merge, 406
syntax, 164
ternary, 154
traversal, 158

trigger, 196, 286–290, 848
by-need, 583
internal, 286
programmed, 286

true , 826
try statement, 94, 802
tuple, 53, 827

usage trade-offs, 441
tuple space, 460, 594–598
Turing machine, 43, 117, 691, 848
two-phase locking, 612
type, 51, 197

abstract, 197
ADT, 197
basic, 53
bundled, 429
class, 331
concurrent ADT, 585
declarative, 428
descriptive, 132
dynamic, 52, 106–108, 715
hierarchy, 52
inference, 99, 140, 327
open, 427
polymorphic, 330
secure, 204–213, 427
signature, 131, 327
stateful, 428
stateless, 428
static, xl, 52, 106–108
strong, 106, 327
unbundled, 428
weak, 106

type decomposition, 528, 547

UML (Unified Modeling Language), 493,
534

undecidable problem, 212
Unicode, 462, 822

Java, 560
unification, 100–106, 848

algorithm, 102
distributed, 739
equivalence set of variables, 103
examples, 101

unification grammar, 662
unit , 826
Unix operating system, xxxviii, 258, 311,

463, 560, 654
pipe, xxx, 261

URL (Uniform Resource Locator), 214,
721

limited lifetime, 463

value, 45
complete, 47
failed, 334, 804, 849
partial, 47

value store, 44
var operation (in Prolog), 675
variable, 4

binding, 45, 47, 791
dataflow, 44, 50, 848
declarative, 44
determined, 67, 103, 209, 288, 338,

673, 794
equivalence set, 103
escaped, 506, 515
final (in Java), 558
free, 59, 645
fresh, 663, 790
global, 89
identifier, 4, 46
instance, 502
interactive, 89
local, 182
logic, 102
mutable, see cell
needed, 288, 799
read-only, 209, 212, 355, 388, 800,

849

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

896 INDEX

single-assignment, 342
unification, 100

Virding, Robert, 590
virtual machine, xxxi, 43, 685
virtual string, 214, 833
Visual Basic, 465
Vlissides, John, 540
VLSI-BAM microprocessor, 633
VM (Virtual Machine) operating system,

43
Vossen, Gottfried, 609

Wait operation (in dataflow), 794
wait operation (in monitor), 600
wait point, 588
wait-for graph, 614
WaitQuiet operation, 800
WaitTwo operation, 320, 321, 401, 404,

407, 653
WAN (wide-area network), 717, 745
Warren, David H.D., 633
watcher, 745, 747
Weikum, Gerhard, 609
wheel, xxxii
while loop, 451
widget (in GUI), 216, 692, 693
Width operation, 828
Wikström, Claes, 590
Wilf, Herbert S., 173
Williams, Mike, 590
window (in GUI), 693
Windows operating system, xxxviii, 258
wire, 371

many-shot, 371
one-shot, 371, 376

Wood, David, 385
word

frequency, 201
memory, 76
specification, 222

wrapping and unwrapping, 207
WWW (World-Wide Web), 214

XML (Extensible Markup Language), 117

Copyright c© 2001-3 by P. Van Roy and S. Haridi. All rights reserved.

